
The VLDB Journal
https://doi.org/10.1007/s00778-024-00869-6

REGULAR PAPER

WavingSketch: an unbiased and generic sketch for finding top-k items
in data streams

Zirui Liu1 · Fenghao Dong2 · Chengwu Liu1 · Xiangwei Deng1 · Tong Yang1 · Yikai Zhao1 · Jizhou Li1 · Bin Cui1 ·
Gong Zhang3

Received: 21 December 2022 / Revised: 8 February 2024 / Accepted: 28 June 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Finding top-k items in data streams is a fundamental problem in data mining. Unbiased estimation is well acknowledged as an
elegant and important property for top-k algorithms. In this paper, we propose a novel sketch algorithm, calledWavingSketch,
which is more accurate than existing unbiased algorithms. We theoretically prove that WavingSketchcan provide unbiased
estimation, and derive its error bound. WavingSketchis generic to measurement tasks, and we apply it to five applications:
finding top-k frequent items, finding top-k heavy changes, finding top-k persistent items, finding top-k Super-Spreaders,
and join-aggregate estimation. Our experimental results show that, compared with the state-of-the-art Unbiased Space-
Saving, WavingSketchachieves 10× faster speed and 103× smaller error on finding frequent items. For other applications,
WavingSketchalso achieves higher accuracy and faster speed. All related codes are open-sourced at GitHub (https://github.
com/WavingSketch/Waving-Sketch).

Keywords Data streams · Sketches · Unbiased estimation · Top-k frequent items · Heavy changes

B Tong Yang
yangtong@pku.edu.cn

Zirui Liu
zirui.liu@pku.edu.cn

Fenghao Dong
fenghaod@andrew.cmu.edu

Chengwu Liu
liuchengwu@pku.edu.cn

Xiangwei Deng
dengxiangwei@stu.pku.edu.cn

Yikai Zhao
zyk@pku.edu.cn

Jizhou Li
ljzh2014@pku.edu.cn

Bin Cui
bin.cui@pku.edu.cn

Gong Zhang
nicholas.zhang@huawei.com

1 Institute: School of Computer Science, Peking University,
Beijing, China

2 Institute: Carnegie Mellon University, Pittsburgh, USA

3 Institute: Huawei Theory Lab, Shenzhen, China

1 Introduction

1.1 Background andmotivation

Finding top-k items is a fundamental problem in approx-
imate data stream mining. Nowadays, four kinds of top-k
items have attracted wide attention of researchers: (1) top-k
frequent items [1–5]; (2) top-k heavy changes [6–8]; (3) top-
k persistent items [5, 9]; and (4) top-k Super-Spreaders [10].
Frequent items refer to items whose numbers of appearances
exceed a predefined threshold. Heavy changes refer to items
whose frequencies change drastically over two adjacent time
windows. Persistent items are items that appear in many time
windows. Super-Spreaders refer to the sources that connect
to many distinct destinations. Although these top-k prob-
lems have different definition, we find that if an algorithm
does well in finding frequent items, it can also well handle
the other tasks because these tasks can be converted into the
task of finding frequent items (Sect. 5). Recently, sketches, a
kind of probabilistic data structure, have been widely used in
finding top-k items, because of their memory efficiency and
small error.

Unbiased estimation is well acknowledged as an elegant
and important property for top-k algorithms. First, this prop-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00869-6&domain=pdf
http://orcid.org/0000-0003-2402-5854
https://github.com/WavingSketch/Waving-Sketch
https://github.com/WavingSketch/Waving-Sketch

Z. Liu et al.

erty is important for distributed measurement, such as the
tasks of global heavy hitters detection, global distribution
estimation, global entropy estimation, etc. To measure the
frequency of items in distributed data streams, we can deploy
one sketch for each local data stream, and then aggregate
the measurement results of all sketches. If the estimations
are biased, when the measurement results are aggregated,
the error of local sketches will accumulate, leading to large
estimation errors. Second, the property of unbiasedness is
important for the task of estimating the frequency sum.When
estimating the frequency sum of all items in a given set, we
accumulate the estimated frequency of each item in this set.
Similarly, if the estimated frequency is biased, the errors will
accumulate to the final result, thereby significantly degrad-
ing the measurement accuracy. Further, unbiased approaches
can also stimulate the theoretical progress of sketches. Until
now, although numerous sketches have been proposed, only
a very few of them (including the biased Count-Min Sketch
[11] and the unbiased Count Sketch [4]) have explicit and
concise theory bounds and proofs, and most of the other
sketches show rather complicated error bounds. One of the
key reasons is that their estimations are biased, making the
theoretical derivation very complicated.

Among a large number of algorithms for finding fre-
quent items [1, 4, 11–15], only one recent work, Unbiased
Space-Saving (USS) [15], achieves unbiased estimation.
Unfortunately, its estimation variance is relatively large and
its estimation for top-k items still have overestimated error.
As a result, when applied to other applications (e.g., finding
heavy changes, or persistent items), the large estimation vari-
ance of USS will bring large error. The goal of this paper is
to devise a theoretically unbiased sketch algorithm that have
high accuracy and generic to different applications.

1.2 Our proposed approach

Towards the above design goal, this paper presentsWavingS-
ketch. As shown in Fig. 1, we use a simple example to explain
the key idea of WavingSketch. To find the top-k frequent
items, we maintain a counter C and a list. The counter, which
is called Waving Counter, provides an unbiased estimation
for each item’s frequency, and the list is used to store k′
(k′ > k) items and their estimated frequencies. For each
incoming item e, we first use a hash function s(e) to hash
e to +1 or −1, and then increase or decrease the Waving
Counter by 1. We estimate the frequency of e using theWav-
ingCounter: the estimated frequency is f̂ = s(e)×C.Wewill
prove that the estimated frequency f̂ for any item is unbiased
(see Sect. 4.1). Afterwards, if the estimated frequency of e
is larger than the smallest frequency in the list, we evict the
least frequent item from the list, and insert e into the list. In
this way, we manage to record frequent items and evict infre-
quent items in the list. Based on this idea, we encapsulate the

Fig. 1 Basic idea of WavingSketch

aforementioned data structure (Waving Counter and list) into
a bucket, and construct our WavingSketchas a bucket array.
To achieve higher accuracy, wewill also add additional fields
in the list (Sect. 3.1) and extend the Waving Counter in each
bucket into multiple Waving Counters (Sect. 3.4).

Below we explain the rationale of WavingSketch. In prac-
tice, the value of the Waving Counter fluctuates over time,
which is similar to the waves in the ocean.When the absolute
value of the Waving Counter rises sharply, it is likely that a
strong flow (frequent item) is driving it. Thus, we expect to
catch these frequent items when the absolute value of the
counter is fairly high. Specifically, given an incoming item,
we use the Waving Counter to unbiasedly estimate its fre-
quency. If the estimated frequency is large enough, it is of
high probability that the incoming item is more frequent than
the least frequent item in the list. Therefore, we replace the
least frequent itemwith the incoming item. In this way,Wav-
ingSketchmanages tomaintain top-k frequent items and their
estimated frequencies in the list.

WavingSketchhas four advantages. First, WavingSketch-
can provide unbiased estimation, which is theoretically
proved inSect. 4.1. Second,WavingSketchis accurate. Exper-
imental results show that the error of WavingSketchis much
smaller than state-of-the-art Space-Saving and Unbiased
Space-Saving. Third, WavingSketchis generic to various
applications. We apply WavingSketchto five applications:
finding frequent items, finding heavy changes, finding persis-
tent items, finding Super-Spreaders, and join-aggregate esti-
mation. Fourth,WavingSketchis fast.WavingSketchachieves
higher insertion throughput than prior art, and it can be fur-
ther accelerated by SIMD instructions (see Sect. 3.5).

1.3 Key contributions

– We propose a sketch algorithm called WavingSketch,
which can provide unbiased estimation with high accu-
racy, and is generic to many top-k tasks.

– We theoretically prove that WavingSketchcan provide
unbiased estimation, and derive its error bound.

123

WavingSketch: an unbiased and generic sketch...

– We apply WavingSketchto five applications: finding fre-
quent items, finding heavy changes, finding persistent
items, finding Super-Spreaders, and join-aggregate esti-
mation.

– We conduct extensive experiments, and the results show
that WavingSketchachieves 103× smaller error and 10×
faster speed than state-of-the-art Unbiased Space-Saving
[15] in finding frequent items.

2 Background and related work

2.1 Problem statement

Data stream: A data stream σ is defined as a sequence
{ei }i=1,2,...,n of n items drawn from the universe [m] :=
{1, 2, . . . , m}. Each item ei in σ is associated with a times-
tamp ti indicating its arrival time.

Frequent items: σ of n elements, the frequency of an item
e ∈ [m] is defined as f = ∣

∣{ j ∈ [n] : e j = e}∣∣. Frequent
items refer to a set of items �F ⊆ [m], where the frequency
of each item in �F is larger than a predefined threshold F .
Intuitively, frequent items refer to items with large frequen-
cies.

Heavy changes: Given a data stream σ , we divide it into
equal-sized and continuous time windows. Consider an item
e ∈ [m] and two adjacent time windows w1 and w2. The fre-
quency of e inw1 (orw2), namely f ′ (or f ′′), is defined as the
number of appearances of e in time window w1 (or w2). The
frequency change of e in w1 and w2, namely � f , is defined
as � f = | f ′′ − f ′|. The heavy changes between w1 and w2

refer to a set of items�C ⊆ [m], where the frequency change
of each item in �C is larger than a predefined threshold C .
Intuitively, heavy changes refer to items whose frequencies
change drastically over two adjacent time windows.

Persistent items: Given a data stream σ , we divide it into
equal-sized and continuous time windows again. Given an
item e ∈ [m], we define its persistence p as the number of
time windows that e appears. Persistent items refer to a set of
items �P ⊆ [m], where the persistence of each item in �P

is larger than a predefined threshold P . Intuitively, persistent
items refer to items that appear in many time windows.

Super-Spreaders: We consider a particular kind of data
streams: network streams. For a network stream σn , each
incoming item in σn is a packet ei ∈ �with a source address
srci and a destination address dsti , namely ei = (srci , dsti).
Here, � is the set of all distinct packets (or the set of flows).
Given a source address src, we define its number of destina-
tions as |{e j ∈ � : src j = src}|. Super-Spreaders refer to
a set of source addresses �S , where the number of destina-
tions of each source address in�S is larger than a predefined

Table 1 Symbols frequently used in this paper

Notation Meaning

σ A data stream {ei }i=1,2,...,n where ei ∈ [m]
n Number of items in σ

m Number of distinct items in σ

ei The i th incoming item in data stream σ

fi Real frequency of item ei

f̂i (or f̂) Estimated frequency of item ei

B[i] The i th bucket of WavingSketch

B[i] · count Waving Counter of bucket B[i]
B[i] · heavy Heavy Part of bucket B[i]
l Number of buckets in WavingSketch

d Number of cells in B[i] · heavy

hash(·) Raw hash function that uniformly maps items into
32-bit/64-bit integers

h(·) Hash function mapping items into buckets

s(·) Hash function mapping items to {+1,−1}
c Number of Waving Counters in each bucket

g(·) Hash function mapping items into Waving Counters

B[i] · count[j] The j th Waving Counter of B[i]
r Compression ratio or expansion ratio

threshold S. Intuitively, Super-Spreaders refer to sources that
connect to a large number of distinct destinations.

2.2 Related work

2.2.1 Finding frequent items

There are two types of solutions for finding frequent items.
Thefirst type, sketch-based solutions, records the frequencies
of all items by hashing. The second type,KV-based solutions,
records the 〈I D, f requency〉 pairs of a subset of items with
large frequencies.
Sketch-based solutions: A sketch is an excellent data struc-
ture that records the approximate statistics of data streams
by maintaining a summary. Typical sketches include CM
[11], CU [12], Count [4], ASketch [16], and more [17–
19]. These sketches often consist of multiple arrays, each
of which contains many counters. Each array is associated
with a hash function that maps items to the counters. As
sketches suffer the error incurred by hash collision, people
propose many strategies to reduce this error. However, these
strategies are usually memory inefficient for the task of find-
ing top-k frequent items, because they record frequent items
and infrequent items simultaneously, while infrequent items
are useless for reporting top-k items.
KV-based solutions: Typical KV-based solutions include
Space-Saving [13, 20], Unbiased Space-Saving [15], Lossy
Counting [14], HeavyGuardian [21], Cold filter [22], and

123

Z. Liu et al.

LD-Sketch [23]. Space-Saving (SS) and Unbiased Space-
Saving (USS) use a list with m buckets to record frequent
items and their estimated frequencies. For an incoming item
e, if it is recorded in the list, we increment its frequency by
one. If e is not in the list and the list is not full, we insert
(e, 1) into the list. Otherwise, SS increments the frequency
of the least frequent item, and replace the least frequent item
with the incoming item. We can see that the estimated fre-
quency recorded in SS are always overestimated. Based on
SS, Unbiased Space-Saving (USS)makes small modification
by replacing the least frequent itemwith a certain probability.
For each item recorded in the list, USS reports an overesti-
mated frequency, and for each item not recorded in the list,
USS estimates its frequency as 0. Thismeans that, the estima-
tion of all non-recorded items are heavily biased downward,
and the estimation of all recorded items are heavily biased
upward. USS proves that its estimated result for any item is
unbiased. This is because its overestimated error for recorded
items and underestimated error for non-recorded items can
just offset each other. However, although USS provides an
unbiased estimation for any item, its estimated results for
top-k frequent items are also biased upward. In addition, the
estimation variance of USS is rather large, which leads to
its unsatisfactory accuracy for finding frequent items. Notice
that as probabilistic algorithms, when there are more than k
buckets equipped (each bucket stores an item), SS and USS
cannot guarantee to accurately report all top-k items. LD-
Sketch [23] is a KV-based algorithm. The data structure of
LD-Sketch is d bucket arrays, where each bucket stores a list
of l KV pairs and several counters. The d bucket arrays in
LD-sketch operate independently of each other. Therefore, a
top-k itemmight be recorded in each of these d bucket arrays,
which leads to a memory waste. To theoretically ensure the
accuracy of finding the top-k items, the KV pair list in each
bucket of LD-Sketch independently expands its size l. This
leads to an uncontrollable totalmemory usage and unsatisfac-
tory processing speed. In addition, LD-Sketch is an algorithm
solely dedicated to the task of finding top-k items. It can
only estimate the frequency upper bound and lower bound
for each top-k item, and does not provide a method for esti-
mating the exact frequency. Thus, LD-Sketch is not generic
to frequency-related tasks like join-aggregate estimation.

2.2.2 Finding heavy changes

There are two kinds of solutions for finding heavy changes.
The first kind is “record all” solutions. This kind of solu-
tions builds a data structure to record all items in each
time window, and then decodes these data structures and
reports heavy changes. Typical algorithms include k-ary [7],
reversible sketch [6], and FlowRadar [8]. These solutions are
not memory efficient because they record all items, while
recording persistently infrequent items are unnecessary for

finding heavy changes. By contrast, the other kind, “record
sample” solutions, only records frequent items. A typical
“record sample” algorithm is Cold filter [22]. However, in
practice, the data structure of Cold filter will be filled up
very quickly, and thus needs to be cleaned up periodically.
LD-Sketch [23] proposes to build one sketch for each time
window to record only top-k items. It reports a top-k item as
a heavy change if the difference of its estimated frequency in
the two time windows exceeds predefined threshold. How-
ever, the accuracy of its frequency estimation has much room
for improvement.

2.2.3 Finding persistent items

Again, two kinds of solutions exist. The first kind, namely
“record all” solutions, records all items. A typical algorithm
is PIE [9]. For each time window, PIE builds a hash table
to record the fingerprints of the incoming items. PIE uses
the key technique of Raptor codes [24] to generate different
fingerprints in different time windows. For a persistent item
that appears in many time windows, we can find many of its
fingerprints, and these fingerprints can be used to recover the
item ID. In this way, persistent items have a higher probabil-
ity to be successfully recovered. Unfortunately, the accuracy
of PIE is also affected by hash collisions between infrequent
items and persistent items. The second kind, namely “record
samples” solutions, records only potential persistent items.
Small-Space [25] use sampling techniques to select persis-
tent items, but its sampling error is hard to control. On-Off
Sketch [26] combines CM sketch and Space-Saving to build
a top-k sketch. It adds a 1-bit marker to each counter in the
sketch to decide whether an item first appears in current time
window. If so, it increments the frequency of this item. How-
ever, the accuracy of this top-k sketch has much room for
improvement.

2.2.4 Finding super-spreaders

There are also two kinds of solutions. The first is “record all”
solutions. A typical algorithm is OpenSketch [27], which
combines CM sketch [11] and bitmap. However, OpenS-
ketch has poor accuracy under tight memory. The second
kind is “record samples” solutions, which records only
potential super-spreaders. One-level filtering and two-level
filtering [10] use sampling technique to filter infrequent
items. SpreadSketch [28] combines CM sketch [11] and
multi-resolution bitmap [29] to achieve theoretial guaran-
tees on accuracy. Its data structure is d independent bucket
arrays. Each super-spreader can be recorded in each of these
d arrays, which leads to high memory overhead and slow
processing speed.

123

WavingSketch: an unbiased and generic sketch...

2.3 Importance of unbiasedness property

In practice, the property of unbiased estimation is important
to many applications. In this subsection, we take two typical
tasks as examples to explain the importance of unbiasedness
property: (1) answering subset query; (2) finding global top-
k items in disjoint data streams. Besides these two tasks,
unbiased algorithms are also widely applied in other tasks
like computing item ranking [30], join-aggregate estimation
[31, 32], and network packet sampling [33].
Subset query: Given a set of items, the subset query problem
estimates the aggregated results over all items in the set. Two
typical subset query tasks are subset sum query and subset
average query,which estimate the frequency sumand average
for a given set respectively. The problem of subset query is of
significant importance in data stream analysis. For example,
in ad click analysis, each item represents a user’s visit to an
ad. Operators may wish to query the total number of views
for ads from all users belonging to the same company, or
from a specific country [34]. In network measurement, each
item represents a packet in the network. Users may query for
the total number of packets originated from a certain subnet.
The above queries can be expressed as subset sums [35].

As pointed out by prior works [15, 34, 35], the unbiased-
ness property is crucial for subset query tasks, particularly for
the subset sum task. Thanks to the Law of Larger Numbers,
the unbiasedness property ensures that when aggregating
the estimated frequencies of all items in a set, the overes-
timated errors and underestimated errors in the estimation
of individual item frequencies can offset each other. By
contrast, applying a biased algorithm to subset sum esti-
mation will result in unacceptably accumulated errors, with
larger sets exhibiting more substantial error accumulation.
Our experimental results will show that compared to the
algorithms with one-sided overestimated error, our unbiased
WavingSketchachieves significantly smaller relative error
(> 103×) on estimating the subset sum/average for top-k
items (Sect. 6.4.3).
Finding global top-k items: Given N disjoint data streams
S1, · · · ,SN , the global top-k problem finds the k items with
the largest frequency among S1, · · · ,SN . This problem is
important in many application scenarios. For example, con-
sider an autonomous system (AS) in a wide-area network
(WAN) with multiple border routers [36, 37]. All external
network packets sent to the AS from the same source IP
address must pass through the same border router. If we
regard the source IP address of network packets as the key,
the network packet streams on different border routers form
a group of disjoint data streams. Network operators usually
want to monitor the main source of traffic entering the AS,
i.e. the k source IP addresses that send the most packets. This
objective can be cast into our problem of finding global top-k
items in disjoint data streams.

To find global top-k items, each data stream Si uses a
top-k algorithm Bi to report the set Ti of local top-k items
and their estimated frequency. The central analyzer obtains
global top-k items by selecting k items with the k largest
estimated frequency from ∪N

i=1Ti . As pointed out by prior
works [30], the property of unbiasedness is important in
ensuring fairness in the selection of global top-k items. As
an example, suppose we use the well-known Space-Saving
(SS) [13] or Unbiased Space-Saving (USS) [15] as the top-k
algorithm. Recall that SS and USS always provide over-
estimated estimation for top-k items (Sect. 2.2), and the
overestimated error is positively correlated to the size of the
data stream. If we directly sort all the selected local top-
k items based on their estimated frequency, the result will
be significantly related to the items’ local environment (size
of its data stream) rather than their real frequency. This is
because the items in the heavy data streams,1 will be over-
estimated more and get higher chances to be selected as
global top-k items, while the real top-k frequent items in
the light data streams will tend to be ignored due to their
small overestimated error, which is unfair. By contrast, if the
algorithm can always provide unbiased estimation for top-k
items, the global top-k results will no longer be influenced
by the local environment, thereby achieving top-k fairness
[30]. Our experimental results will show that compared to
the algorithms with one-sided overestimated error, our unbi-
asedWavingSketchachieves significantly higher F1 score (up
to 60%) on finding global top-k items (Sect. 6.4.4).

3 TheWavingSketch algorithm

3.1 Data structure

As shown in Fig. 2, the data structure of WavingSketchis an
array of l buckets. Let B[i] be the i th bucket. Each incom-
ing item ei in the data stream is mapped into one bucket
B[h(ei)] through a hash function h(·). In our implementa-
tion, we get the hash function h(·) by modular operation:
h(·) = hash(·)%l, where hash(·) is a raw hash function
that uniformly maps an item ID into a 32-bit/64-bit integer
(e.g., we use 32-bit Murmur Hash [39] in our experiments).
We use another hash function s(·) to map each item into
{+1,−1}. Similarly, s(·) is also obtained frommodular oper-
ation. Each bucket B[i] consists of two parts: a Waving
Counter B[i].count , and a Heavy Part B[i].heavy. (1) The
Waving CounterB[i].count provides an unbiased estimation
for the frequency of any item that ismapped intoB[i]. (2) The
Heavy Part B[i].heavy consists of d cells. Each cell records

1 Notice that in practice the sizes of data streams are often skewed (e.g.
power law distribution) [30, 38], where heavy data streams have more
items and light data streams have less items.

123

Z. Liu et al.

Fig. 2 Data structure and insertion examples of WavingSketch(d = 2)

a key-frequency pair and a flag 〈I D, f requency, f lag〉,
where key is the ID of the recorded item, frequency is its esti-
mated frequency, and flag indicates whether the estimated
frequency is accurate (i.e., whether the estimated frequency
is the real frequency). All fields in the data structure are ini-
tialized to 0 or Null.

3.2 Basic operations

Insertion (Fig. 2): The pseudocode of the insertion operation
is shown in Algorithm 1. Given an incoming item ei , we
first compute the hash function h(ei) to map ei into bucket
B[h(ei)] (we call B[h(ei)] the hashed bucket of ei in this
paper). Below we show how to insert ei into B[h(ei)]. There
are three cases as follows:

Case 1: (see line 1–4 inAlgorithm1). If ei is already recorded
inB[h(ei)].heavy, there are two situations. (1) ei is recorded
with a flag of true: We just increment its corresponding fre-
quency in the Heavy Part by one; (2) ei is recorded with
a flag of f alse: We not only increment its correspond-
ing frequency by one, but also add s(ei) to B[h(ei)].count
(s(ei) ∈ {−1,+1}).
Case 2: (see line 5–6 in Algorithm 1) If ei is not recorded in
B[h(ei)].heavy andB[h(ei)].heavy is not full, we just insert
〈ei , 1, true〉 into B[h(ei)].heavy.

Case 3: (see line 7–15 in Algorithm 1). If B[h(ei)].heavy is
full and the item ei is not recorded inB[h(ei)].heavy, we first
add s(ei) toB[h(ei)].count . Next, let f̂i = B[h(ei)].count×
s(ei) be the estimated frequency of ei . If f̂i is larger than the
smallest frequency in B[h(ei)].heavy, we replace the least
frequent item in B[h(ei)].heavy (denoted as er) with ei as
follows: (1)We set the ID field to ei ; (2)We set the frequency
field to f̂i ; and 3)We set the flag field to f alse (indicating the
frequency of ei has error). If the flag of the replaced item er is
true, we also need to insert er intoB[h(ei)].count by adding
f̂r × s(er) to B[h(ei)].count , where f̂r is the frequency field
of er before replacement.

Algorithm 1: Insertion of WavingSketch.
Input: An incoming item ei

1 if ei is recorded in B[h(ei)].heavy then
2 increment the frequency of ei by one;
3 if ei . f lag = f alse then
4 B[h(ei)].count ← B[h(ei)].count + s(ei);
5

6 else if B[h(ei)].heavy is not full then
7 insert 〈ei , 1, true〉 into B[h(ei)].heavy;
8 else
9 B[h(ei)].count ← B[h(ei)].count + s(ei);

10 f̂i ← B[h(ei)].count × s(ei);
11 er ← the least frequent item in B[h(ei)].heavy;

12 f̂r ← er . f requency;

13 if f̂i > f̂r then
14 if er . f lag = true then
15 B[h(ei)].count ← B[h(ei)].count + f̂r × s(er);

16 replace er in B[h(ei)].heavy with 〈ei , f̂i , f alse〉;
17

18 return;

Below we use two examples to show how WavingS-
ketchhandles Case 3 (see Fig. 2). In our examples, we use
a WavingSketchwith l buckets, and the Heavy Part of each
bucket consists of d = 2 cells. Suppose we have inserted
some items into the WavingSketch.

Example 1 When item e4 arrives, it is mapped into bucket
B[h(e4)], and we have s(e4) = +1. As e4 is not in
B[h(e4)].heavy and B[h(e4)].heavy is full, we first add
s(e4) = +1 to B[h(e4)].count . Then we have f̂4 =
B[h(e4)].count ×s(e4) = −131. Since f̂4 is smaller than the
smallest frequency 135 in B[h(e4)].heavy, we do not insert
e4 into the Heavy Part.

Example 2 When item e7 arrives, it is mapped into bucket
B[h(e7)], and we have s(e7) = −1. As e7 is not in
B[h(e7)].heavy and B[h(e7)].heavy is full, we first add
s(e7) = −1 to B[h(e7)].count . Then we have f̂7 =
B[h(e7)].count × s(e7) = 128. Since f̂7 is larger than the
smallest frequency 127 in B[h(e7)].heavy, we replace the
least frequent item in B[h(e7)].heavy (namely e5) with e7:
We set the ID field of that cell to e7; We set the frequency
field to f̂7 = 128; We set the flag to f alse.

Unbiased estimation: Given an item e, to report the unbi-
ased estimation of its frequency, we check the Heavy Part
of B[h(e)]. If e is in the Heavy Part with a flag of true, we
report the frequency field as its estimated frequency. Other-
wise, we report the value of f̂ = B[h(e)].count × s(e). We
will theoretically prove that the estimated frequency of e is
unbiased in Sect. 4.1.

Top-k query: To report top-k frequent items, we traverse all
Heavy Parts of the WavingSketch, and report the items with
top-k largest recorded frequencies.

123

WavingSketch: an unbiased and generic sketch...

3.3 Elastic operations

Motivation: In practice, the density of many data streams
changes dynamically over time. For example, consider a
cache stream formed bymanymemory access requestswhere
each request is an item. When there arrives an I/O intensive
task, the cache stream will become very dense. When apply-
ing WavingSketchto measure such data streams, we cannot
always set the optimal size of the sketch beforehand. When
the sketch is not large enough for current high-density data
stream, we should build a larger sketch to avoid poor accu-
racy. By contrary, when the sketch is too large for current
low-density data stream, we can build a smaller sketch to
save memory. However, simply building a new sketch will
result in the loss of information recorded in the previous
sketch. An ideal solution is to make on-the-fly reconfigura-
tion on the sketch size. Towards this goal, we propose two
elastic operations ofWavingSketch, bywhichwe can dynam-
ically compress and expand the size of WavingSketchby any
integer factor.

Compression: The compression operation compresses the
size of aWavingSketchby any integer factor r . To compress a
WavingSketchB of l buckets to aWavingSketchB′ of l ′ = l/r
buckets (suppose l = r · l ′), we take two steps: (1) distribute
the l buckets into l ′ = l/r groups; and (2) merge the buckets
in the same group into one bucket. Below we describe the
two steps in detail.

To compress a WavingSketchB, we first split the bucket
array B into r equal-sized shards B0, · · · ,Br−1, each of
which has l ′ = l/r buckets. We have Bi [j] = B[i × r + j]
where i ∈ {0, · · · , r − 1} and j ∈ {0, · · · , l/r − 1}.
We distribute the buckets with the same index in the r
shards into the same group. For example, we distribute
B0[0],B1[0], · · · ,Br−1[0] into group 0; and we distribute
B0[1],B1[1], · · · ,Br−1[1] into group 1, etc.

Second, we build the compressed sketch B′ by merging
the buckets in each group. We have B′[i] = O P{B0[i],
· · · ,Br−1[i]}, where O P is the merging operator. To merge
buckets B0[i], · · · ,Br−1[i] into one bucket B′[i], we first
sum up the Waving Counters of the r buckets to get
B′[i].count = ∑r−1

j=0 B j [i].count . Next, we retrieve all
items in the Heavy Parts of the r buckets. For the d × r
items, we select d items to store in B′[i].heavy according to
the following rules: (1) First, we prefer the items with flag
true. (2) For the itemswith the same flag, we prefer the items
with larger frequencies.

Afterwards, for the rest d × (r − 1) items that are not
selected, we insert each of them with flag true into the
Waving Counter B′[i].count . Specifically, for an item er

with recorded frequency of f̂r , namely 〈er , f̂r , true〉, we
insert it into the Waving Counter by adding f̂r × s(er) to
B′[i].count . Finally, we modify the hash function of the

Fig. 3 Example of the elastic compression operation of WavingSketch
(d = 2, r = 3, l = 9, and l ′ = l/r = 3)

compressedWavingSketchto h′(·) = hash(·)%l ′. Recall that
hash(·) is the raw hash function that maps an item ID into
a 32-bit/64-bit integer, and the hash function of the orig-
inal WavingSketchis obtained by h(·) = hash(·)%l. We
can see that the compression operation needs to check each
item stored in WavingSketch, and thus its time complexity is
O(d · l).
Discussion: We explain why the design of our compression
operation is reasonable. First, we prove that for each item e
recorded in B[h(e)], it can still be retrieved in B′[h′(e)] after
compression. Consider an item e. The index of its hashed
bucket in B is h(e) = hash(e)%l. Note that in our compres-
sion operation, we distribute every r buckets into the same
group for merging, and each group has l ′ = l/r buckets.
Thus, after compression, e will be recorded in B′[h(e)%l ′].
On the other hand, for item e, the index of its hashed bucket
in B′ is h′(e) = hash(e)%l ′. We have the following lemma.

Lemma 1 For any integer b, l, and l ′, if l is divisible by l ′,
then (b%l)%l ′ = b%l ′

For example, (15%8)%4 = 15%4. Therefore, we have
(hash(ei)%l)%l ′ = hash(e)%l ′, namely h(e)%l ′ = h′(e).
This property guarantees that each item in the original Wav-
ingSketchcan be retrieved in the compressed WavingSketch.
Note that if we modify the compression operation to simply
merging every r consecutive buckets, we must change the
hash function of the compressed WavingSketchto h′(·) =
	h(·)/r
 = 	(hash(·)%l)/r
, which is more complicated.
Example (Fig. 3): We use an example to illustrate the elas-
tic compression operation of WavingSketch. To compress
a WavingSketchB by r = 3 times, we first split B into
r = 3 shards B0, B1, and B2. We distribute the buckets
into l ′ = l/r = 3 groups according to their indices in the
r = 3 shards, where the buckets distributed into the same
group are marked with the same color. Next, we build the
compressed sketch B′ by merging the buckets in each group.
Specifically, we merge B0[0], B1[0], and B2[0] to get B′[0]:
First, we sum up the Waving Counters of the 3 buckets to
get B′[0].count = −132 + 114 − 141 = −159. Then we
check the Heavy Parts of the 3 buckets. Since there are 3

123

Z. Liu et al.

items with the flag of true, we select the top-2 items with
the largest frequencies (e1 and e5), and insert the other item
e3 into the Waving Counter by adding s(e3) × 176 = 176 to
B′[0].count . Finally, we get B′[0].count = 17, and we have
e1 and e5 recorded in B′[0].heavy. Similarly, we merge the
other 2 groups to get B′[1] and B′[2].
Expansion: The expansion operation enlarges the size
of a WavingSketchby any integer factor r . To expand a
WavingSketchB of l buckets to a WavingSketchB′ of l ′ =
l × r buckets, we also take two steps: (1) copy the l buck-
ets of B r times to get B′; (2) mark each bucket in B′ as
redundant , meaning that there could be redundant items in
the Heavy Part of this bucket. Finally, we modify the hash
function h(·) to h′(·) = hash(·)%l ′.

After expansion, when a redundant bucket B′[j] is
accessed during insertion/query, we perform the following
redundancy-clean operation: For each item in the Heavy
Part of B′[j], we check whether it is a redundancy. Specifi-
cally, for an item e stored in B′[j].heavy, we check whether
h′(e) = j . If not, we regard e as a redundancy and delete it
from B′[j] by clearing its cell in the Heavy Part. Note that if
the redundant item e has a f alse flag, we subtract f̂ × s(e)
from B′[j].count before clearing its cell. After checking all
items in B′[j].heavy, we remove the redundancy mark of
B′[j]. We can see that the expansion operation copies the
l buckets in WavingSketchby r times, and then cleans the
redundant items in a lazy manner. Therefore, its time com-
plexity is O(r · l). If we directly check all items in expanded
WavingSketchand immediately clean the redundant ones dur-
ing expansion, the time complexity will be O(r · l · d).
Discussion:We explain the reason why each item e in orig-
inal WavingSketchB can still be retrieved in the expanded
WavingSketchB′. Consider an item e recorded in B. The
index of its bucket is h(e) = hash(e)%l. After expan-
sion, e will exist in each of the following r buckets:
B′[h(e)],B′[h(e) + l], · · · ,B′[h(e) + (r − 1) · l].

Lemma 2 For any integer b, l, and r, we have b%(r × l) ∈
{b%l, b%l + l, · · · , b%l + (r − 1) · l}.

For example, when b = 11, l = 7, and r = 2. We
have b%l = 4, and b%(r × l) = 11%(2 × 7) = 11 =
4 + 7 = b%l + l. Therefore, when b = hash(e), we
have h′(e) = hash(e)%l ′ ∈ {hash(e)%l, hash(ei)%l +
l, · · · , hash(e)%l + (r − 1) · l}. This property guarantees
that e must exist in B′[h′(e)] after expansion.

In this way, consider a frequent item e in the Heavy Part
of bucket B[h(e)]. After expansion, it can be immediately
retrieved in B′[h′(e)]. Notice that if e does not appear after
the expansion operation, it will first exist inB′[h′(e)].heavy.
As more items arrive, item e might no longer be a fre-
quent item, and thus it can be kicked from the Heavy

Fig. 4 Example of the elastic expansion operation of WavingSketch
(d = 2, r = 2, l = 3, and l ′ = l × r = 6)

PartB′[h′(e)].heavy to theWaving CounterB′[h′(e)].count
(Case 3 in Sect. 3.2).
Example (Fig. 4): We use an example to illustrate the elastic
expansion operation of WavingSketch. To expand a Wav-
ingSketchby r = 2 times, we copy the l = 3 buckets of
B by r = 2 times to get B′, where B′[0] is identical to
B′[3], B′[1] is identical to B′[4], etc. Then we mark each
bucket of B′ as redundant , and modify the hash function
of the expanded WavingSketchfrom h(·) = hash(·)%l to
h′(·) = hash(·)%l ′.

After expansion, when a redundant bucket is first
accessed, we perform the redundancy − clean operation.
Below we take bucket B′[0] and B′[3] as examples to illus-
trate this procedure. (1) When B′[0] is first accessed, we
check all items in its Heavy Part. For item e1 with the true
flag, as h′(e1) = 3 �= 0, we delete it from the Heavy Part.
For item e2, as h′(e1) = 0, we keep it in B′[0]. Finally,
we remove the redundancy mark of B′[0]. (2) Similarly,
when B′[3] is first accessed, we also check all items in its
Heavy Part. For e2 with the f alse flag, as h′(e2) = 0 �= 3,
we subtract f̂2 × s(e2) from B′[3].count and delete e2 from
the Heavy Part. We finally remove the redundancy mark of
B′[3].
Automatic Memory Adjustment:We discuss how to lever-
age the elastic compression/expansion operations to enable
one-the-fly memory adjustment of WavingSketch, thereby
accommodating the dynamic variations in data stream den-
sity (skewness). In practice, the skewness of data streams
often varies over time. Ideally, when the skewness of data
stream increases, meaning that the frequencies of top-k items
also increase, the problem of finding top-k itemswill become
easier. In such case,WavingSketchcan use lessmemory.Con-
versely, when the skewness of data stream decreases, the
top-k problem becomes more challenging, and WavingS-
ketchshould use more memory. To achieve the above goal,
we periodically calculate the hit rate θ of incoming items
in the Heavy Part of WavingSketch. We use this hit rate to
reflect the real-time skewness of data stream and control the
memory size ofWavingSketch.Wemaintain θ within a range
[�1,�2] through adjusting the memory of WavingSketch.

123

WavingSketch: an unbiased and generic sketch...

Specifically, when θ falls below�1, it indicates a decrease in
data stream skewness, and in such case, we execute an expan-
sion operation to double the memory. Conversely, when θ

exceeds �2, indicating an increase in data stream skewness,
we execute a compression operation to halve the memory.
Note that the difference |�2 − �1| should be sufficiently
large to prevent oscillations of repeated compression and
expansion operations. We will see that by maintaining the
hit rate between [73%, 77%], our WavingSketchcan auto-
matically adjust its size to adapt to dynamically changing
data stream skewness, so as to always achieve > 97% F1
score (Sect. 6.3.3).

3.4 Optimization usingmulti-counter bucket

Motivation and rationale: WavingSketchuses Waving
Counter to provide unbiased estimation for the items not
recorded in Heavy Part (and the items recorded with flag
f alse). In the basic version of WavingSketch, each bucket
only has one Waving Counter. When the data stream is
of high-density, multiple top-k items will collide into one
bucket, and thus collide into oneWaving Counter. These col-
lisions significantly degrade the accuracy of WavingSketch.
For example, consider two items e1 and e2 with frequencies
f1 = 100 and f2 = 100. Suppose s(e1) = s(e2) = 1.
When e1 and e2 collide into oneWaving Counter C , we have
C = f1×s(e1)+ f2×s(e2) = 200. In this case, the estimated
frequency of e1 (or e2) will be f̂1 = C × s(e1) = 200, which
is significantly larger than its true frequency 100. To tackle
this issue, we propose a multi-counter version of WavingS-
ketch, where we extend the Waving Counter in each bucket
into an array of c (c > d) Waving Counters. We add another
hash function g(·) to map each item ei into one of the c
Waving Counters in its hashed bucket B[h(ei)]. In this way,
multi-counter WavingSketchreduces the collisions of top-k
items in Waving Counters by c times at the cost of more
memory usage. Although simply increasing the number of
buckets in basicWavingSketchcan also improve the accuracy,
we find that usingmulti-counterWavingSketchis more effec-
tive: Both our theoretical analyses (see Sects. 4.2 and 4.3) and
experimental results (see Sect. 6.1) show that under the same
memory usage,multi-counterWavingSketchhas higher accu-
racy than basicWavingSketch. Next, we briefly introduce the
operations of multi-counter WavingSketch.

Basic operations:
1) Insertion: For an incoming item ei , we first compute hash
function h(ei) to map it into bucket B[h(ei)]. If ei is already
recorded in B[h(ei)].heavy (Case 1) or B[h(ei)].heavy is
not full (Case 2), we perform the same insertion operation
as in the basic version. Otherwise (Case 3), we com-
pute hash function g(ei) to map ei into a Waving Counter
B[h(ei)].count[g(ei)], and add s(ei) to this counter. Let

f̂i = B[h(ei)].count[g(ei)] × s(ei). If f̂i is larger than the
smallest frequency in B[h(ei)].heavy, we replace the least
frequent item er with ei . Similar to the basic version, if the
flag of the replaced item er is true, we insert er into its Wav-
ing Counter by adding f̂r × s(er) to B[h(er)].count[g(er)],
where f̂r is the frequency field of er before replacement.
2) Unbiased estimation:Given an item e, we also first check
the Heavy Part of B[h(e)]. If e is in the Heavy Part with
flag true, we report its recorded frequency. Otherwise, we
report the value of B[h(e)].count[g(e)] × s(e) as its esti-
mated frequency. We theoretically prove that the estimated
frequency made by multi-counterWavingSketchis also unbi-
ased in Sect. 4.1.

Elastic operations: Multi-counter WavingSketchalso sup-
ports the elastic operations in Sect. 3.3. (1) For the com-
pression operation, when merging B0[i], · · · ,Br−1[i] into
B′[i], we get the t th Waving Counter by B′[i].count[t] =
∑r−1

j=0 B j [i].count[t] for ∀t ∈ [0, c). Afterwards, we select
the d items to be recorded in B′[i].heavy according to the
method described in Sect. 3.3, and evict each not-selected
item er with flag true into its Waving Counter by adding
f̂r × s(er) to B′[i].count[g(er)]. The other procedures of
the compression operation are the same as in the basic ver-
sion. (2) The expansion operation is exactly the same as that
in the basic version.We just copy the sketch r times andmark
all buckets as redundant .

3.5 SIMD acceleration

Many data streams, such as network packet streams [40] and
high-frequency financial transaction streams [41], are gen-
erated at extremely high speeds (> 10 million items per
second), necessitating that sketch algorithms be sufficiently
fast to catch up with this high speed. In addition, many appli-
cations like online ML training [42] and real-time anomaly
detection [23] also have strict requirements on the latency of
sketch algorithms. Therefore, it is of great value to make the
speed of WavingSketchas fast as possible. Single instruc-
tion, multiple data (SIMD) [43] is a widely used parallel
processing technology that can perform the same operation
on multiple data points simultaneously. In this subsection,
we use SIMD instructions to further accelerate the inser-
tion/query speed of WavingSketch. Nowadays, most modern
processors come with built-in SIMD instructions sets (like
SSE, AVX on x86 architectures). The utilization of SIMD
instructions allows for harnessing the full potential of mod-
ern processors. There are also many existing sketches that
use these features to accelerate their speed [26, 40, 44–46].

To accelerate WavingSketchwith SIMD, we first propose
the Heavy Part rearrangement technique to vectorizes the
d keys and values in each bucket of WavingSketch, allow-

123

Z. Liu et al.

Fig. 5 Examples illustrating the unbiasedness of WavingSketch

ing for their parallel processing with SIMD.2 By utilizing
the parallel processing capabilities of SIMD, we further
propose two techniques to accelerate the two critical pro-
cedures in the insertion/query operation of WavingSketch:
(1) finding matched key (used in insertion and query oper-
ations); (2) finding the item with the smallest frequency
(used in insertion operations). We discuss the implementa-
tion details of the above techniques in our supplementary
materials [47]. Experimental results show that after using
SIMD acceleration, we improve the insertion/query speed of
WavingSketchby up to 45%/51% (see Sect. 6.2.3).

4 Mathematical analysis

4.1 Proof of unbiasedness

We prove that for an arbitrary item, its estimated frequency
made by WavingSketchis unbiased. We first consider the
basic version ofWavingSketchin Theorem1. Thenwe extend
the conclusion to multi-counter WavingSketchin Theorem 2.
In this subsection, we provide a concise proof framework
for Theorem 1 proving the unbiasedness nature of WavingS-
ketch, and uses some examples to explain the different cases
in our proof. We provide the detailed proof with rigorous
mathematical languages in our supplementarymaterials [47].

Theorem 1 Given a data stream σ and an arbitrary item
e ∈ [m] in σ , the estimated frequency of e made by basic
WavingSketch, namely f̂ , is unbiased, i.e., E

(

f̂
) = f , where

f is the real frequency of e.

Proof For item e, its estimated frequency f̂ is only affected
by the items mapped into the same bucket with e, namely the
items mapped into B[h(e)]. Thus, we only need to consider
the itemsmapped intoB[h(e)]. Consider an incoming item ek

2 Notice that in our implementation, we always use the Heavy Part rear-
rangement technique for higher processing speed, evenwithout enabling
SIMD acceleration.

mapped into B[h(e)]. We prove that the expected increment

to the estimated frequency f̂ , namely E
(

� f̂
)

, is 1 if ek = e

and 0 if ek �= e.

Case1 : ek = e, and ek is error − f ree.
In this case,WavingSketchjust increments the corresponding
frequency of e in the Heavy Part by one. Afterwards, e is still
in the Heavy Part and is error-free. Thus, we have � f̂ =
� f = 1.
Example (Fig. 5a): In Case 1 of Fig. 5a, the incoming item
e1 is in the Heavy Part with the flag true. Therefore, we just
increment its frequency in the Heavy Part, and the increment
of the estimated frequency � f̂1 = 1.

Case2 : ek = e, and ek is not error − f ree.
In this case, WavingSketchestimates the frequency of e as
f̂ = B[h(e)].count × s(e). After insertion, if no error-free
item is removed from the Heavy Part, we just add s(e) to
the Waving Counter. Therefore, we have � f̂ = s(e) ×
s(e) = 1. Otherwise, suppose er is the error-free item in
Heavy Part that is replaced by e. We have B[h(e)].count ′ =
B[h(e)].count +s(e)+ fr ×s(er). Therefore, we have� f̂ =
s(e)×(s(e) + fr × s(er)) = s(e)×s(e)+ fr ×s(er)×s(e) =
1 + fr × s(er) × s(e). Since s(er) and s(e) are indepen-
dent, we can prove the expectation E (s(er) × s(e)) = 0.
The detailed proof can be found in our supplementary mate-

rials [47]. Therefore, we finally have E
(

� f̂
)

= 1.

Example (Fig. 5a): In Case 2 of Fig. 5a, the incoming
item e2 is not in the Heavy Part, and after inserting e2,
an error-free item e6 in the Heavy Part is replaced by
the incoming item e2. In this case, we add s(e2) and
s(e6) × f6 to the Waving Counter. We have � f̂2 = s(e2) ×
(s(e2) + f6 × s(e2) × s(e6)) = 1 + f6 × s(e6) × s(e2).
Note that for two distinct items e2 and e6, s(e2) and s(e6)
are independent. Based on this property, we can prove that

E (s(e2) × s(e6)) = 0, which indicates that E
(

� f̂2
)

= 1.

123

WavingSketch: an unbiased and generic sketch...

Case3 : ek �= e, and ek is error − f ree.
In this case,WavingSketchjust increments the corresponding
frequency of ek in the Heavy Part by one, which does not
affect the estimated frequency of e. Thus, we have � f̂ = 0.
Example (Fig. 5b): In Case 3 of Fig. 5b, e3 is an error-free
item. The incoming item e8 just adds s(e8) to the Waving
Counter, which has nothing to do with the estimated fre-
quency of e3. Thus, we have � f̂3 = 0.

Case4 : ek �= e, and ek is not error − f ree.
We consider two subcases of Case 4 by discussing whether
e is error-free before the insertion of ek .

Subcase4.1 : e is error − f ree.
In this subcase, if e is not removed from the Heavy Part
by ek , it will remain error-free after the insertion of ek .
Therefore, we naturally have � f̂ = 0. Otherwise, e is
replaced by ek , and inserted into B[h(e)].count . We have
B[h(e)].count ′ = B[h(e)].count +s(ek) + s(e) × f , and
f̂ ′ = B[h(e)].count ′×s(e) = f +(B[h(e)].count + s(ek))×
s(e). Notice that e is error-free before the insertion of ek ,
meaning that e has not been inserted intoB[h(e)].count , and
thus the value of s(e) does not affect B[h(e)].count . There-
fore, B[h(e)].count and s(e) are independent. In addition,
s(ek) and s(e) are also independent. Similar to case 2, we
can prove E ((B[h(e)].count + s(ek)) × s(e)) = 0. In this

way, we have E
(

� f̂
)

= 0.

Example (Fig. 5b): In Case 4.1 of Fig. 5b, e4 is not
error-free. The incoming item e10 adds s(e10) to the Wav-
ing Counter, and replaces the error-free item e4 in the
Heavy Part. After inserting e10, the estimated frequency
of e4 is f̂4 = (B[h(e4)].count + s(e10) + f4 × s(e4))
×s(e4) = (B[h(e4)].count + s(e10)) × s(e4) + f4. There-
fore, we have � f̂4 = (B[h(e4)].count + s(e10)) × s(e4).
As e4 is error-free before inserting e10, it has not yet
been inserting into B[h(e4)].count , meaning that s(e4) and
B[h(e4)].count are independent. On the other hand, for
two distinct items e4 and e10, s(e4) and s(e10) are also
independent. Based on these properties, we can prove that
E ((B[h(e4)].count + s(e10)) × s(e4)) = 0, which indi-

cates that E
(

� f̂4
)

= 0.

Subcase4.2 : e is not error − f ree.
In this subcase, WavingSketchestimates the frequency of e
as f̂ = B[h(e)].count × s(e). Similar to Case 2, we discuss
whether an error-free item is removed from the Heavy Part
after inserting ek .
4.2.1) If no error-free item is removed from the Heavy Part,
we have B[h(e)].count ′ = B[h(e)].count + s(ek), and
� f̂ = s(ek) × s(e).
4.2.2) If an error-free item er is removed from the Heavy
Part, we have B[h(e)].count ′ = B[h(e)].count + s(ek) +
fr × s(er), and � f̂ = s(ek) × s(e) + fr × s(er) × s(e).

For both situations in (4.2.1) and (4.2.2), we can prove that
E (s(ek) × s(e)) = 0 and E (fr × s(er) × s(e)) = 0, mean-

ing thatE
(

� f̂
)

= 0. The detailed proof can be found in our

supplementary materials [47].
It should be noted that in either situation of (4.2.1) and

(4.2.2), it is incorrect to assume that s(e) and s(ek) are inde-
pendent of each other, as was mistakenly assumed in our
conference version [48]. This is because the fact that whether
an error-free item is replaced adds conditions on the value of
s(e) × s(ek). For example, if an error-free item is removed
from the Heavy Part (situation 4.2.2), it essentially requires
the s(·) values of all erroneous items in the Waving Counter
tend to be more uniform. In other words, at this point, the
value of s(e) × s(ek) has a larger probability of being 1 than
0. Nevertheless, we can circumvent this issue in our proof by
using some techniques in measure theory. For more details,
please refer to our supplementary materials [47].

In this way, we have proved that the expected increment

E

(

� f̂
)

= 1 if ek = e and E

(

� f̂
)

= 0 if ek �= e, which

means that E
(

f̂
) = f always holds. �

Theorem 2 Given a data stream σ and an arbitrary item
e ∈ [m] in σ , the estimated frequency of e made by multi-
counter WavingSketchis also unbiased.

This theorem can be proved by making small modifica-
tions to the proof of Theorem 1. The detailed proof can be
found in our supplementary materials [47].

We have proved that WavingSketchcan provide unbiased
estimation for any item (or for any top-k item). By contrast,
as discussed in Sect. 2.2.1, the estimated frequency made
by Space-Saving [13] and Unbiased Space-Saving [15] for
top-k items is always biased upward. Therefore, for the tasks
wherewewant to aggregate the estimated results (e.g., subset
query, finding global top-k items), SS andUSSwill suffer sig-
nificant accumulated errors (Sect. 2.3). We will see that our
unbiased WavingSketchachieves significantly higher accu-
racy than biased SS and USS in these tasks in Sect. 6.4.3 and
Sect. 6.4.4.

4.2 Variance

We derive the variance of the estimated frequency. We first
consider the basic version of WavingSketchin Theorem 3.
Then we extend the formula to multi-counter WavingS-
ketchin Theorem 4.

Theorem 3 Given a data stream σ and an arbitrary item
e ∈ [m] in σ (suppose e is not error-free, and let �′ be the
current event). Consider the basic version of WavingSketch.
Let S1 ⊆ [m] be the set of all items mapped into B[h(e)]
that are not error-free. Let S′

1 = S1\{e}. The variance of

the estimated frequency of e, namely V ar
(

f̂
)

, satisfies the

123

Z. Liu et al.

following bound: V ar
(

f̂
)

� |S′
1| × ∑

e j ∈S′
1

f 2j , where |S′
1|

is the cardinality of S′
1.

Theorem 4 Given a data stream σ and an arbitrary item
e ∈ [m] in σ (suppose e is not error-free). Consider the
multi-counter version of WavingSketch. Let S2 ⊆ [m] be
the set of all items mapped into B[h(e)].count[g(e)] that
are not error-free. Let S′

2 = S2\{e}. The variance of the esti-

mated frequency of e, namely V ar
(

f̂
)

, satisfies the following

bound: V ar
(

f̂
)

� |S′
2|×

∑

e j ∈S′
2

f 2j , where |S′
2| denotes the

cardinality of set S′
2.

The detailed proof to Theorems 3 and 4 can be found in our
supplementarymaterials [47].We can see that the variance of
multi-counter WavingSketchis smaller than that of the basic
WavingSketchbecause S′

2 ⊆ S′
1.

4.3 Error bound

We first derive the general error bound of WavingSketch-
without distribution assumption in Theorems 5 and 6. Then
we derive the error bound of WavingSketchunder Zipf dis-
tribution in Theorems 7 and 8. Finally, we summarize
the theoretical results and analyze how the parameters of
WavingSketch(l and c) affect its error. We directly consider
multi-counter WavingSketchin this subsection. We present
the detailed proof and the definition of probability space in
our supplementary materials [47].

We first derive the error bound of WavingSketchwithout
distribution assumption. We use L2-norm and L1-norm to
derive Theorem 5 and Theorem 6.

Theorem 5 Given a data stream σ and an arbitrary item

e ∈ [m] in σ . Let ||Fe||2 =
√

∑

e j ∈S′
2

f 2j , where S′
2 is defined

in Theorem 4. The estimated frequency of item e, namely f̂ ,

satisfies the following error bound: P
(∣
∣
∣ f̂ − f

∣
∣
∣ � ε

√

|S′
2|·

||Fe||2) � 1
ε2

.

Theorem 6 Given a data stream σ and an arbitrary item e ∈
[m] in σ . Let ||Fe||1 =

∣
∣
∣

∑

e j ∈S′
2

f j

∣
∣
∣, where S′

2 is defined in

Theorem 4. The estimated frequency of item e, namely f̂ , sat-

isfies the following error bound:P
(∣
∣
∣ f̂ − f

∣
∣
∣ � ε · ||Fe||1

)

�
1
ε
.

We then derive the error bound of WavingSketchunder
Zipf distribution. In a data stream σ from a Zipf [49] distri-
bution, the kth most frequent item in [m] shows up n

kαζ(α)

times, where α3 is the parameter of Zipf distribution and
ζ(α) = ∑m

i=1
1
iα . Next, we use L2-norm and L1-norm to

derive Theorem 7 and Theorem 8.

3 We assume α > 1 so that the series
∑∞

i=1
1
iα converges.

Theorem 7 Given a data stream σ that comes from a Zipf
distribution with the parameter α > 1. Let ||F ||2 =
√

∑

e j ∈[m] f 2j . Let Z =
(

m
ζ(α)

) 1
α

,4 meaning that the fre-

quency of the Z th most frequent items is n
m . For an arbitrary

item e ∈ [m] in σ , its estimated frequency f̂ has the following
error bound:

P

(∣
∣
∣ f̂ − f

∣
∣
∣ � ε||F ||2

)

� Z

lc
+ 4m

ε2l2c2
+ 2lc

m
(1)

Theorem 8 Given a data stream σ that comes from a Zipf
distribution with the parameter α > 1. Let ||F ||1 =
∣
∣
∣

∑

e j ∈[m] f j

∣
∣
∣. Let Z =

(
m

ζ(α)

) 1
α

, meaning that the frequency

of the Z th most frequent items is n
m . For an arbitrary item

e ∈ [m] in σ , its estimated frequency f̂ has the following
error bound:

P

(∣
∣
∣ f̂ − f

∣
∣
∣ � ε||F ||1

)

� Z

lc
+

√
2

ε
√

lc
+ 2lc

m
(2)

Summary: From Theorem 7, we can see that when lc � m,

we have that P
(

| f̂ − f | � ε||F ||2
)

� Z
lc + 2m

ε2 l2c2
. In prac-

tice, we can set l and c so that l2c2 is significantly larger
than m (i.e.,

√
m � lc � m), in which case the error of

any item is theoretically guaranteed to be very small. For
example, we can set lc to be m0.8 to get a small value in
the right side of the inequality in Theorem 7. In addition,
we can see that when lc � m, larger value of lc goes with
smaller error of WavingSketch, which proves multi-counter
WavingSketchismorememory-efficient than basicWavingS-
ketch. This is because under the same value of lc, thememory
usage of multi-counter WavingSketchis smaller. For exam-
ple, consider a basic WavingSketchW1 with 2l buckets and
a multi-counter WavingSketchW2 with l buckets and c = 2
Waving Counters per bucket. We can see that the value of lc
of W1 and W2 are the same, but the memory usage of W1 is
larger than that of W2 because W1 has more Heavy Parts. In
other words, under the same memory usage, multi-counter
WavingSketchhas smaller value of lc than basic WavingS-
ketch, and thus has smaller error.

4.4 Analysis for elastic operations

We first prove that the elastic expansion and compression
operations do not change the unbiased property of Wav-
ingSketchin Theorems 9 and 10. Then we discuss how the

4 Notice that Z is a constant determined by data stream σ .

123

WavingSketch: an unbiased and generic sketch...

theoretical error bounds of WavingSketchchange following
the elastic operations. We directly consider multi-counter
WavingSketchin this subsection.
Theorem 9 Given a data stream σ and an arbitrary item
e ∈ [m] in σ . After inserting σ into a WavingSketchB, we
perform the elastic expansion operation to expand B by r
times and get B′. Then the estimated frequency made by B′

is unbiased, namely E

(

f̂ ′
)

= f .

Proof In Sect. 4.1, we have proved that the estimated fre-

quency made by WavingSketchis unbiased, namely E

(

f̂
)

= f . After the expansion operation, the estimated frequency
of e remains unchanged, namely we have f̂ = f̂ ′. Thus, we
naturally have E

(

f̂ ′
)

= E

(

f̂
)

= f . �

Theorem 10 Given a data stream σ and an arbitrary item
e ∈ [m] in σ . After inserting σ into a WavingSketchB, we
perform the elastic compression operation to compress B by
r times and get B′. Then the estimated frequency made by B′

is unbiased, namely E

(

f̂ ′
)

= f .

Proof We discuss the following three cases.

Case1 : e is error − f ree in both B and B′.
We have f̂ ′ = f , which naturally means E

(

f̂ ′
)

= f .

Case2 : e is error − f ree in B but not error − f ree in B′.
We have f̂ = f . Let �1 be the set of all erroneous
items mapped into B′[h(e)].count[g(e)] (except e). In other
words, �1 denotes the items that conflict with item e as a
result of the compression operation. We have f̂ ′ = f +
∑

e j ∈�2
f j × s(e) × s(e j). For any item e j ∈ �1, s(e)

and s(e j) are independent from each other. Therefore, we

have E

(

f̂ ′
)

= f + ∑

e j ∈�2
f j × E

(

s(e) × s(e j)
) =

f + ∑

e j ∈�2
f j × E (s(e)) × E

(

s(e j)
) = f + 0 = f .

Case3 : e is not error − f ree in both B and B′.
According to the unbiased property of WavingSketch

(Sect. 4.1), we have E

(

f̂
)

= f . Let �2 be the set of

all erroneous items mapped into B′[h(e)].count[g(e)] but
not mapped into B[h(e)].count[g(e)]. In other words, �2

denotes the items that conflict with item e as a result of the
compression operation. We have f̂ ′ = f̂ + ∑

e j ∈�2
f j ×

s(e) × s(e j). For any item e j ∈ �2, s(e) and s(e j) are

independent from each other. Therefore, we have E
(

f̂ ′
)

=
E

(

f̂
)

+∑

e j ∈�2
f j ×E

(

s(e) × s(e j)
) = E

(

f̂
)

+∑

e j ∈�2

f j × E (s(e)) × E
(

s(e j)
) = E

(

f̂
)

+ 0 = f . �

We finally discuss how the theoretical error bounds of
WavingSketchin Sect. 4.3 change following the elastic oper-
ations. For Theorems 5 and 6, their error bounds are based

on set S2, which is the set of all items mapped into the same
Waving Counter B[h(e)].count[g(e)] as the target item e.
According to the definition of S2, after performing expan-
sion/compression operations, set S2 will contract/expand to
S2. By substituting S2 with the new S2 and plugging it into
Theorems 5 and 6, we can get the new error bound after
elastic operations. For Theorems 7 and 8, their error bounds
are based on parameters l, c, m, and Z , where m and Z
are parameters of data stream, and l and c are parameters
of WavingSketch. After performing expansion/compression
operations, parameter l (number of the buckets in WavingS-
ketch) will become l ′, and parameter c (number of Waving
Counters in each bucket) remains unchanged. By substitut-
ing l with l ′ and plugging it into Theorems 7 and 8, we can
get the new error bound after elastic operations.

5 Application

5.1 Finding top-k frequent items

Goal: Finding top-k frequent items refers to report the items
that have top-k largest frequencies. In other word, the algo-
rithm should report a set of items�F , where the frequency of
each item in�F should be larger than a predefined threshold
F , and F is the real frequency of the kth most frequent item
in data stream σ (see Sect. 2.1).

Method: WavingSketchcan directly find frequent items. To
report the top-k frequent items, we simply traverse the bucket
array of WavingSketchand return the IDs of the items that
have top-k largest frequencies.

5.2 Finding top-k heavy changes

Goal: Finding top-k heavy changes refers to report the items
with top-k largest frequency changes over two adjacent time
windows. The algorithm should report a set of items �C ,
where the frequency change of each item in �C should be
larger than threshold C , and C is the kth largest frequency
change of all items (see Sect. 2.1).

Method: Consider two adjacent time windows w1 and w2.
We build two WavingSketchesB1 and B2 for w1 and w2.
To report the top-k heavy changes between w1 and w2, we
traverse B1.heavy and B2.heavy to get the IDs of all items
recorded in the Heavy Parts of B1 and B2. For each item e,
we query it in B1 and B2 to get its estimated frequencies in
w1 and w2: f̂ ′ and f̂ ′′. We estimate the frequency change of
e by� f̂ = | f̂ ′′ − f̂ ′|. Finally, we report the items with top-k
largest � f̂ .

123

Z. Liu et al.

5.3 Finding top-k persistent items

Goal:Finding top-k persistent items refers to report the items
with top-k largest persistence 5. In other words, the algorithm
should report a set of items�P , where the persistence of each
item in �P should be larger than a predefined threshold P ,
and P is the kth largest persistence of all items (see Sect. 2.1).

Preliminary of Bloom filter [50]: A Bloom filter [50] is
a probabilistic data structure used to judge whether an item
exists in a set. A Bloom filter consists of z hash functions and
one bit array, where all bits are initialized to zero. To insert
an item, Bloom filter computes the z hash functions to pick
z bits in the bit array (called the z hashed bits), and set each
of the z bits to one. To query an item, Bloom filter checks
the z hashed bits. If all the z hashed bits are one, Bloom filter
reports true. Otherwise, it reports f alse. Bloom filter has
false positive errors and no false negative errors.

Method: We build one WavingSketchand one Bloom filter,
which is used to answer whether an item has appeared in
current time window. For each incoming item ei , we first
query it in the Bloom filter: (1) If the Bloom filter reports
true, meaning that ei has already appeared in current time
window, we discard ei . (2) If the Bloom filter reports false,
we insert ei into the Bloom filter and WavingSketch. We
periodically clean up the Bloom filter at the end of each time
window. In thisway,we use theWavingSketchtomaintain the
persistencies of items. To report the top-k persistent items,
we traverse the bucket array of WavingSketchand return the
IDs of items that have top-k largest frequencies.

5.4 Finding top-k super-spreaders

Goal: As stated in Sect. 2.1, we consider a particular kind
of data stream, namely network stream, where each item is
a source/destination address pair (srci , dsti). Finding top-
k Super-Spreaders refers to report k source addresses that
have top-k largest connections. In other words, the algorithm
should report a set of source addresses�S , where the number
of distinct destinations of each source address in �S should
be larger than a predefined threshold S, and S is the kth largest
number of destinations of all source addresses (see Sect. 2.1).

Method: We build one WavingSketchand one Bloom filter.
The WavingSketchis used to record the number of desti-
nations for source addresses, and the Bloom filter is used
to remove duplicated items. For each incoming item ei =
(srci , dsti), we first query it in the Bloom filter: (1) If the
Bloom filter reports true, meaning that ei has appeared
before, we just discard ei . (2) If the Bloom filter reports

5 We have formally defined the persistence of an item as the number of
time windows it appears (see Sect. 2.1).

f alse, we insert ei = (srci , dsti) into the Bloom filter,
and then insert srci into the WavingSketch. To report the
top-k Super-Spreaders, we traverse the bucket array of Wav-
ingSketchand return the source addresses with top-k largest
frequencies.

5.5 Performing join-aggregate estimation

Goal: Join-aggregate estimation is an important task in
data management society. Given two data streams σ1 =
{ei }i=1,2,...,n1 and σ2 = {e j } j=1,2,...,n2 drawn from the uni-
verse [m] := {1, 2, . . . , m}. For an arbitrary item ei . Let fi

and gi denote the frequency of ei in σ1 and σ2, respectively.
The result of the join-aggregate query on σ1 and σ2 is defined
as J (σ1, σ2) = ∑m

i=1 fi · gi , where m is the number of dis-
tinct items in σ1 and σ2.

Background and prior art: Join-aggregate estimation is the
base of many data management applications [51–54]. For
example, in many data mining applications [55, 56], join-
aggregate results are used to measure the cosine similarity of
two data streams. For another example, consider the case of
distributed multi-way join in DBMS, a good join-aggregate
estimation algorithm can guide us to devise an optimal join
plan, which minimizes the volume of intermediate relations
and the communication time. In some cases, we must treat
the attribute values from a large table as a data stream [52],
because these tables are so large thatwe canonly process their
values in a one-passmanner. As it is impractical and unneces-
sary to compute the exact join-aggregate results, researchers
turn to probabilistic data structures, namely sketches, for fast
approximate join-aggregate computation. Typical sketches
include AGMS [57], Fast-AGMS (FAGMS) [32], Skimmed
sketch [58], JoinSketch [31], and more [59–62]. Skimmed
sketch [58] and JoinSketch [31] propose to separate items
into multiple parts according to their frequencies, and record
items in different parts with different components. Specif-
ically, Skimmed sketch separates items into two parts: hot
items and cold items. JoinSketch separates items into three
parts: hot items, medium items, and cold items. In this way,
they achieve higher accuracy than traditional FAGMS.

Method:Similar as the separation idea above,we applyWav-
ingSketchto perform join-aggregate estimation by separately
considering frequent items and infrequent items. We use
basic WavingSketchto explain our join-aggregate procedure.
It is straightforward to extend our method to multi-counter
WavingSketch.

First, we build two equal-sizedWavingSketchesB1 andB2

for the two data streams σ1 and σ2. We calculate Ĵ (σ1, σ2)

by checking every two buckets in the same position of B1

and B2. Specifically, for B1[k] and B2[k], we define �k as
the set of all items mapped into B1[k] or B2[k], i.e., �k :=
{ei : ei ∈ [m] ∧ h(ei) = k}. We calculate the join-aggregate

123

WavingSketch: an unbiased and generic sketch...

value Ĵk(σ1, σ2) of the items in �k by dividing �k into the
following three parts:

1) Let �k,1 ⊆ �k be the set of the items recorded in both
B1[k].heavy and B2[k].heavy with flag true.
We calculate Ĵk,1(σ1, σ2) = ∑

ei ∈�k,1
f̂i · ĝi , where f̂i

and ĝi are the recorded frequencies in the Heavy Parts.
2) Let �1

k,2 ⊆ �k be the set of the items that are recorded
in B1[k].heavy with flag true, but are not recorded
in B2[k].heavy or recorded in B2[k].heavy with flag
f alse. We calculate the first part of Ĵk,2(σ1, σ2) as
Ĵ 1

k,2(σ1, σ2) = ∑

ei ∈�1
k,2

f̂i · ĝi , where f̂i is recorded

in the Heavy Part of B1[k] and ĝi = B2[k].count ×
s(ei). Similarly, let �2

k,2 ⊆ �k be the set of the
items that are recorded in B2[k].heavy with flag true,
but are not recorded in B1[k].heavy or recorded in
B1[k].heavy with flag f alse. We calculate the second
part of Ĵk,2(σ1, σ2) as Ĵ 2

k,2(σ1, σ2) = ∑

ei ∈�2
k,2

f̂i · ĝi ,

where f̂i = B1[k].count × s(ei) and ĝi is recorded in
the Heavy Part of B2[k].

3) Let �k,3 = �k\(�k,1 ∪ �k,2) be the set of the other
items in �k . We calculate their join-aggregate value as
Ĵk,3(σ1, σ2) = B1[k].count × B2[k].count . Finally, we
get Ĵ (σ1, σ2) = ∑l−1

k=0 Ĵk(σ1, σ2) = ∑l−1
k=0

∑3
i=1 Ĵk,i

(σ1, σ2). Next, we theoretically prove that this estimated
join-aggregate result made byWavingSketchis unbiased,
and uses an example to explain the estimation process
and the mathematical proof.

Theorem 11 Given two data streams σ1 and σ2, the estimated
result of their join-aggregate query made by WavingSketchis
unbiased, namely we have E

(

Ĵ (σ1, σ2)
) = J (σ1, σ2).

Proof This theorem can be proved by separately proving
all of the three parts of Ĵk(σ1, σ2) are unbiased. Actually,
it is quite straightforward to see that the first two parts of
Ĵk(σ1, σ2) are unbiased. We will illustrate this fact in our
following example. For the detailed proof, please refer to
our supplementary materials [47]. �

Example (Fig. 6): To calculate the join-aggregate result
Ĵ (σ1, σ2), we check every pair of buckets in the same posi-
tion of B1 and B2. We take the second bucket pair B1[1] and
B2[1] as an example to illustrate the estimation process. We
calculate the three parts of Ĵ1(σ1, σ2) as follows.

1) We can see that e1 is the only item that is error-free
in both B1[1].heavy and B2[1].heavy, meaning that
�1,1 = {e1}. Therefore, we have Ĵ1,1(σ1, σ2) = f̂1 · ĝ1 =
25·16 = 400. It is straightforward to see that Ĵ1,1(σ1, σ2)
is error-free because both f̂1 and ĝ1 are error-free. There-
fore, Ĵ1,1(σ1, σ2) is naturally unbiased.

Fig. 6 Example of the unbiased join-aggregate estimation

2) We can see that e2 is the item that is error-free in
B1[1].heavy and not error-free in B2, meaning that
�1

1,2 = {e2}. Similarly, we can see that �2
1,2 = Ø. We

calculate the second part as Ĵ1,2(σ1, σ2) = f̂2 · ĝ2 =
23 · 11 = 253, where f̂2 is recorded in B1[1].heavy and
ĝ2 = B1[1].count × s(e2) = 11 × 1 = 11. In Sect. 4.1,
we have proved that the estimated frequency made by
WavingSketchis unbiased (Theorems 1 and 2), meaning
that ĝ2 is unbiased. As f̂2 is error-free and ĝ2 is unbiased,
we have Ĵ1,2(σ1, σ2) = f̂2 · ĝ2 is also unbiased.

3) We directly calculate the third part as Ĵ1,3(σ1, σ2) =
B1[1].count ×B2[1].count = 12× 11 = 132. We theo-
retically prove Ĵ1,3(σ1, σ2) is also an unbiased estimation
for the join-aggregate value of the items in �1,3 in our
supplementary materials [47].

6 Experimental results

We conduct experiments on one synthetic dataset (Zipf [49])
and three real-world datasets (IP Trace [63], WebPage [64],
and Network [65]). For the synthetic dataset, we use Web
Polygraph [66], an open-source performance testing tool, to
generate 10 synthetic datasets following Zipf [49] distribu-
tion with different skewness (α ∈ [0, 3]). By default, we
use the dataset with α = 1.0. We use the following metrics:
Average Relative Error (ARE), Recall Rate (RR), Precision
Rate (PR), F1 Score, and Throughput. For details about the
platform, implementation, datasets, and metrics, please refer
to our supplementary materials [47].

6.1 Experiments on finding frequent items

We compare WavingSketchwith four algorithms: Count
sketch + Max-Heap (Count+Heap) [4], Unbiased Space-
Saving (USS) [15], Space-Saving (SS) [13], and LD-Sketch
(LD) [23]. We set k = 2000 and conduct experiments using
both basic WavingSketch(d = 8, c = 1) and multi-counter
WavingSketch(d = 8, c = 16). For WavingSketch, SS, and

123

Z. Liu et al.

Fig. 7 Average Relative Error (ARE) on finding frequent items (“MC_Waving” refers to Multi-counter WavingSketch)

Fig. 8 Recall Rate (RR) on finding frequent items (“MC_Waving” refers to Multi-counter WavingSketch)

Fig. 9 Precision Rate (PR) on finding frequent items (“MC_Waving” refers to Multi-counter WavingSketch)

Fig. 10 Insertion throughput on finding frequent items (“MC_Waving” refers to Multi-counter WavingSketch)

USS, we vary their memory by changing bucket number l.
For Count+Heap, we vary its memory by changing the num-
ber of counters in Count sketch and the Heap size. Recall that
the KV-pair list in each bucket of LD-Sketch independently
expands its size, and thus the total memory usage of LD-
Sketch is uncontrollable (Sect. 2.2.1). In our experiments, we
control the initial memory of LD-Sketch to be the same as
the other algorithms, meaning that the actual memory usage
of LD-Sketch is significantly larger than that indicated in
Figs. 7, 8, 9, 10 and 11 (at least 10× larger).

ARE (Fig. 7a–d): We find that the ARE of WavingSketchis
significantly smaller than that of SS, USS, Count+Heap, and
LD-Sketch, and the ARE of multi-counter WavingSketchis
smaller than that of basicWavingSketch. We conduct experi-
ments to estimate the frequency of top-k items and report the
ARE. Recall that LD-Sketch is an algorithm solely designed
for finding top-k items (Sect. 2.2.1). However, the algorithm
of LD-Sketch can provide an upper estimation and a lower
estimation for the frequency of each recorded top-k item. In
this experiment, we use the upper estimation of LD-Sketch
as the estimated frequency because we find that this method

123

WavingSketch: an unbiased and generic sketch...

yields lower error. On synthetic dataset, when using 200KB
memory, the ARE of basic WavingSketchand multi-counter
WavingSketchare 2.06 × 10−4 and 5.28 × 10−5, while that
of SS, USS, Count+Heap, and LD-Sketch are 2.02, 2.00,
0.025, and 0.25, respectively. On the other three real-world
datasets, the ARE of WavingSketchand multi-counter Wav-
ingSketchare also significantly smaller than other algorithms.
The ARE of SS and USS is high because of their overesti-
mated errors. The ARE of Count+Heap is high, because the
Count sketch has small error only when there is sufficient
memory. LD-Sketch has large ARE because its estimation
has large upward bias. Actually, its original paper did not
conduct experiments on frequency estimation, nor did it spec-
ify a method for estimating frequency. Besides, as discussed
in Sect. 2.2.1, LD-Sketch is memory inefficient due to the
redundancy of the top-k item in its data structure.

RR (Fig. 8a–d): We find that the RR of WavingSketchis sig-
nificantly higher than that of SS, USS, and Count+Heap. The
RR of multi-counter WavingSketch, basic WavingSketch,
and LD-Sketch are almost identical, which are nearly 100%.
On synthetic dataset, under the memory usage of 100KB,
theRRof basicWavingSketch,multi-counterWavingSketch,
Count+Heap, SS, USS, and LD-Sketch are 96.50%, 99.05%,
25.23%, 20.52%, 19.97%, and 100%, respectively. On the
other datasets, the RR of WavingSketchand LD-Sketch are
also almost always 100%, which are significantly better
than the other algorithms. Notice that although LD-Sketch
achieves almost 100% RR, its actual memory usage is sig-
nificantly larger (at least 10× larger) than that indicated in
the figures. In addition, we will see that it has poor precision
rate.

PR (Fig. 9a–d): We find that the PR of WavingSketchis sig-
nificantly higher than that of SS, USS, Count+Heap, and
LD-Sketch, and the PR of multi-counter WavingSketchis
higher than that of basic WavingSketch. On the synthetic
dataset, under the memory usage of 100KB, the PR of basic
WavingSketch, multi-counter WavingSketch, Count+Heap,
SS, USS, and LD-Sketch are 88.60%, 99.40%, 20.16%,
41.01%, 39.20%, and 25.86%, respectively. On the other
datasets, the PR ofWavingSketchis also almost 100%, which
is significantly better than the other algorithms. LD-Sketch
demonstrates a low PR because it reports top-k items based
on the upper estimation of item frequency. The overestimated
error of upper estimation leads to false positives while min-
imizes false negatives. In other words, LD-Sketch sacrifices
precision rate in favor of high recall rate. We can see that
the PR of SS and USS sometimes decreases as memory
grows. This is common for algorithms that have overesti-
mated errors. For example, under small memory usage, if
the algorithm can only record 200 items, then the frequencies
of all the 200 items might exceed the predefined frequency
threshold, resulting in a 100% PR. However, under large

Fig. 11 WavingSketchon large-scale IP trace dataset

memory, if 2000 items are recorded, then there might only
be 1800 items whose estimated frequency exceeds the pre-
defined threshold, which leads to a 90% PR.

Insertion throughput (Fig. 10a–d): We find that the inser-
tion throughput of WavingSketchis significantly higher than
that of SS, USS, Count+Heap, and LD-Sketch, and the
throughput of multi-counter WavingSketchis lower than that
of basic WavingSketch. On the synthetic dataset, under the
memory usage of 100KB, the throughput of basic WavingS-
ketch, multi-counter WavingSketch, Count+Heap, SS, USS,
and LD-Sketch are 29.42 Mops, 29.43 Mops, 9.34 Mops,
1.96 Mops, 10.24 Mops, and 1.01 Mops respectively. On
the other datasets, the throughput of WavingSketchis also
significantly higher than the other algorithms. SS and USS
have slow throughput because of the frequent cache misses.
Count+Heap has slow throughput because it needs multiple
memory accesses per insertion, and the time complexity of
its heap operations is O(log k′)where k′ is its heap size. LD-
Sketch has slow throughput because of the following reasons.
(1) As each item accesses d buckets during insertion, LD-
Sketch needs at least d memory accesses per insertion. (2)
The KV-pair list in each bucket of LD-Sketch independently
expands its size. These frequent dynamic expansion oper-
ations are time-consuming. (3) Each bucket in LD-Sketch
varies in size, and thus the bucket array of LD-Sketch can-
not be implemented in a hardware-friendly manner. It cannot
leverage hardware techniques (e.g., SIMD) to accelerate its
speed either. By contrast, WavingSketchhas always O(1)
time complexity, and it only needs one memory access per
insertion, which is very fast.

Performance on large-scale dataset (Fig. 11): We find
that on large-scale dataset with billions of items, WavingS-
ketchalso achieves high accuracy and fast speed. As shown
in Fig. 11a, when using 1MB memory, the F1 score of basic
WavingSketch, multi-counter WavingSketch, Count+Heap,
SS, USS, and LD-Sketch are 98.03%, 99.37%, 37.94%,
48.12%, 49.79%, and 83.51%, respectively. The through-
put of basic WavingSketch, multi-counter WavingSketch,
Count+Heap, SS, USS, and LD-Sketch are 32.32 Mops,

123

Z. Liu et al.

Fig. 12 Impact of WavingSketchparameters

31.84 Mops, 9.67 Mops, 14.23 Mops, 4.73 Mops, and 1.72
Mops, respectively.

Summary:

1) Under limited memory usage, WavingSketchhas higher
accuracy than SS, USS, Count+Heap, and LD-Sketch.
This is because when using small memory, SS, USS, and
LD-Sketch have large overestimated errors, and Count
sketch has large variance.

2) WavingSketchis faster than SS, USS, Count+Heap, and
LD-Sketch. This is because the time complexity of Wav-
ingSketchis always O(1), while that of the other three
algorithm is related to their sizes. In addition, when using
small d, WavingSketchonly needs one memory access
per insertion. By contrast, SS, USS, Count+Heap, and
LD-Sketch need multiple memory accesses and complex
operations.

3) Compared to basic WavingSketch, multi-counter Wav-
ingSketchhas higher accuracybut slightly slower through-
put. As explained in Sect. 3.4, multi-counter WavingS-
ketchhas higher accuracybecause it reduces the collisions
of frequent items in Waving Counters, and as this oper-
ation needs extra computation, its insertion speed is
slower.

4) WavingSketchscales well to large-scale datasets, where it
also achieves higher accuracy and faster speed than prior
art.

6.2 Experiments on different settings

6.2.1 Impact of WavingSketchparameters

We evaluate how the two parameters (d and c) of WavingS-
ketchaffect its performance in Fig. 12. We fix the memory of
WavingSketchto 50KB, because such small memory better
exposes the impact of different d and c. We vary d from 4
to 32, and vary c from 1 to 64. We further show that multi-
counter WavingSketchis more memory efficient in Fig. 13,
wherewe report theminimalmemory ofWavingSketchunder
different ARE/RR requirement. We use the synthetic dataset
and set k = 2000 by default.

ARE (Fig. 12a): We find that larger d always goes with
smaller ARE, and when d is fixed, the ARE first decreases
and then increases as c grows from 1 to 64. For basic
WavingSketch(c = 1), the ARE of d = 32 is about 3.6×
smaller than that of d = 4. For multi-counter WavingSketch,
when c = 16, the ARE of d = 32 is about 6.2× smaller than
that of d = 4. When d = 8, the optimal value of c is from
14 to 18.

RR (Fig. 12b): We find larger d goes with higher RR, and
when d is fixed, the RR first increases and then decreases as
c grows from 1 to 64. For basic WavingSketch, the RR under
different d are almost the same. For multi-counter WavingS-
ketch, when c = 16, the RR of d = 16 is 92.5%, and the RR
of d = 4 is 81.8%. When d = 8, the optimal value of c is
from 12 to 16.

PR (Fig. 12c): We find that under large value of c, larger
d always goes with higher PR, and when d is fixed, the PR
always increases as c grows from 1 to 64. When c = 32, the
PR of d = 32 is 90.1%, and the PR of d = 4 is 83.5%.When
d = 8, the PR reaches its optimal value when c is larger than
18.

Insertion throughput (Fig. 12d):Wefind that smaller d goes
with higher insertion throughput. We also find that when d
is fixed, the throughput is insensitive to c. Our results show
that the throughput of d = 4 is around 1.11×, 1.29×, and
1.41× higher than that of d = 8, d = 16, and d = 32. When
d = 8, the throughput of WavingSketchis about 29.0 Mops.

Minimal memory (Fig. 13): We find that multi-counter
WavingSketchis 10% ∼ 35% more memory efficient than
basic WavingSketch. Under the ARE requirement of 10−4,
the minimal memory of basic WavingSketchand multi-
counter WavingSketchare 330KB and 252KB. Under the RR
requirement of 99%, the minimal memory of basic Wav-
ingSketchand multi-counter WavingSketchare 158KB and
104KB.

Summary:

1) Multi-counter WavingSketchis more memory efficient
than basic WavingSketch.

123

WavingSketch: an unbiased and generic sketch...

Fig. 13 Minimal size under different ARE/RR requirement

2) Under fixed c, larger d goes with higher accuracy and
lower throughput. The reason is that as d grows, there are
more cells in the Heavy Part, and thus WavingSketchhas
more chance to record the ground-truth top-k items. At
the same time, we also need to check more cells at each
insertion, which slows down its throughput.

3) Under fixed d, as c grows from 1, the accuracy first
increases and then decreases. When c is relatively small
(< 100), the throughput is nearly not affected by c. As
explained in Sect. 3.4, using multiple Waving Counters
reduces the probability of frequent items colliding into
the same counter, and thus improves the accuracy. How-
ever, under fixed memory usage, if we use too much
Waving Counters, the number of cells in the Heavy Part
will decreases, which will degrade the accuracy. Our
results show that the optimal value of c is from 1.5d
to 2.5d.

Parameter setupmethods:Webriefly explain how to set the
three parameters of WavingSketch(l, d, and c) in practice.

1) First, we set d according to the speed requirement. For
applications that prefer higher speed, we can choose a
small d, and for applications that prefer higher accuracy,
we can choose a large d. In practice, we recommend to
use d = 8 or d = 16.

2) For multi-counter WavingSketch, we recommend to set
c to 1.5d ∼ 2.5d. For example, when d = 8, we can set
c = 16.

3) When d and c are fixed, meaning that the size of each
bucket is fixed, we set l according to the size of available
memory.

6.2.2 Impact of data distribution

We evaluate how the data distribution affect the performance
ofWavingSketch.Weuse the 10 synthetic datasets that follow

Fig. 14 Impact of data distribution

the Zipf [49] distribution with the skewness varies from 0.0
to 3.0. We set k = 2000, d = 8, and c = 16, and we vary the
memory from 20KB to 60KB, because such small memory
better exposes the difference between different distributions.

ARE (Fig. 14a): We find that the ARE of WavingSketchde-
creases as the data skewness grows. For example, when using
60KB memory, the ARE under the skewness of 3.0 is about
10.3× and 1.7× smaller than that under the skewness of 0.3
and 0.6, respectively.

F1 score (Fig. 14b): We find that the F1 score of WavingS-
ketchincreases as the data skewness grows. For example,
when using 60KB memory, the F1 score under the skew-
ness of 3.0 is about 1.78× and 1.08× higher than that under
the skewness of 0.3 and 0.6 respectively.

Summary and analysis We find that higher data skew-
ness goes with higher accuracy of WavingSketch, meaning
that WavingSketchis good at processing skewed data. These
results validate that WavingSketchis most suitable for the
application scenarios where the data stream follows a highly
skewed distribution.

6.2.3 Impact of SIMD acceleration

We evaluate the speed improvement of WavingSketchunder
SIMD acceleration. We use SIMD to accelerate a multi-
counter WavingSketchwith c = 16. We fix the memory
usage of WavingSketchto 200KB, and conduct the experi-
ments using the synthetic dataset.
Experimental results (Fig. 15): We find SIMD acceleration
improves the insertion and query speed of WavingSketchby
27% ∼ 45% and 30% ∼ 51%. As shown in Fig. 15a, when
d = 32, the insertion throughput of WavingSketchwithout
and with SIMD are 21.18 Mops and 30.60 Mops. As shown
in Fig. 15b, when d = 32, the query throughput of Wav-
ingSketchwithout and with SIMD are 30.13 Mops and 45.41
Mops.

123

Z. Liu et al.

Fig. 15 Impact of SIMD acceleration

6.3 Experiments on elastic operations

6.3.1 Performance of elastic compression

We evaluate the accuracy of the compressed WavingSketc-
hand the compression speed under the synthetic dataset. We
set d = 8 and c = 16. In Fig. 16a–c, we build a 320KB
WavingSketch, and compress it by different ratio. For each
compression ratio r , we compare the accuracy of the com-
pressedWavingSketchW1 with theWavingSketchof the same
memory asW1. In Fig. 16d,we evaluate the compression time
at different initial memory and compression ratio.

Accuracy (Fig. 16a–c): We find that under the same mem-
ory, the accuracy of WavingSketchcompressed from large
memory is significantly better than that of the WavingSket-
chinitially using small memory. When r = 16, the ARE
of the WavingSketchcompressed from 320KB to 20KB is
1.0 × 10−6, which is four orders of magnitude smaller than
that of theWavingSketchinitially using20KBmemory.When
r = 16, the RR/PR of the WavingSketchcompressed from

320KB to 20KB is 76.9%/100%, while that of the WavingS-
ketchinitially using 20KB memory is 52.1%/68.2%.

Speed (Fig. 16d): We find that WavingSketchachieves fast
compression speed. It only takes 1.24 millisecond to com-
press a 320KBWavingSketchby 16 times,which is negligible
compared to the sketch building time. In addition, under the
same initial memory, larger compression ratio r goes with
more compression time.

Summary and analysis

1) After compression, WavingSketchstill has high accuracy
on top-k frequent items. This is because in the compres-
sion procedure, WavingSketchattempts to maintain the
information of frequent items in Heavy Parts, and dis-
cards the information of infrequent items into Waving
Counters. Thus, as long as d × c > k, the compressed
WavingSketchcan still make accurate estimation.

2) WavingSketchhas fast compression speed.This is because
in the compressionprocedure,we access eachbucket only
once, and do not need any hash computation. Thus, the
compression time is just the time to traverse all buckets
in WavingSketch.

6.3.2 Performance of elastic expansion

We evaluate the accuracy of the expandedWavingSketchand
the expansion speed under the synthetic dataset.We set d = 8
and c = 16. In Fig. 17a–c,we buildWavingSketchesof differ-
ent memory and insert the first 1

4 dataset into them. For each
WavingSketch,we expand it to 320KB, and insert the remain-

Fig. 16 Performance of elastic compression

Fig. 17 Performance of elastic expansion

123

WavingSketch: an unbiased and generic sketch...

ing 3
4 dataset into it. For each expansion ratio r , we compare

the expandedWavingSketchW1 with the non-expandedWav-
ingSketch. In Fig. 17d, we evaluate the expansion time at
different initial memory and expansion ratio r .

Accuracy (Fig. 17a–c):
We find after expansion, the RR and PR are higher than
that of the non-expanded WavingSketch, but ARE does not
show much improvement. When r = 16, the RR/PR of
the WavingSketchexpanded from 20KB to 320KB is 80.0%/
63.2%, while that of the non-expanded WavingSketchis
52.7%/39.6%.When r = 16, the ARE of theWavingSketch-
expanded from 20KB to 320KB is 0.038, while that of the
non-expanded WavingSketchis 0.074.

Speed (Fig. 17d):
We find that WavingSketchachieves fast expansion speed.
It only takes < 1 millisecond to expand a 320KB WavingS-
ketchby 16 times, which is negligible compared to the sketch
building time. We also find that under the same initial mem-
ory, larger expansion ratio r goeswith longer expansion time.

Summary and analysis
(1) After expansion, the accuracy of WavingSketchis signif-
icantly improved. Therefore, in practice, when the density
of workload suddenly increases, we can perform the elastic
expansion operation to maintain the accuracy of WavingS-
ketch. (2) WavingSketchhas fast expansion speed. This
is because in the expansion procedure, we just copy the
WavingSketchr times, and do not need any computation.

6.3.3 Experiments on automatic adjustment

We evaluate the performance of WavingSketchon automatic
memory adjustment described in Sect. 3.3. We create a syn-
thetic Zipf [49] data stream of 100M items, and change its
skewness every 10M items by varying α from 1.0 to 1.1. In
Fig. 18a–c, the darker the background color, the higher the
skewness of the data stream. We set k = 1000 and set the hit
rate range to [73%, 77%] (marked as red lines inFig. 18a).We
will see that under such range,WavingSketchalways achieves
high accuracy on finding top-1000 items. We set the initial
memory of WavingSketchto 1024KB.
Experimental results (Fig. 18): We find that WavingSketch-
can automatically tune its memory to adapt to the dynamic
changes of data stream skewness, so that it can always main-
tain high accuracy (> 97% F1 score) on finding top-k items.
As shown in Fig. 18a, b, as the skewness increases at the
1st and the 30Mth item, the hit rate θ exceeds the upper
bound�2, which triggers the compression operation ofWav-
ingSketchto save memory. As the skewness decreases at the
80Mth item, the hit rate θ drops below the lower bound �1,
which triggers the expansion operation of WavingSketchto
improve the accuracy. FromFig. 18c, we can see that with the

automatic memory adjustment mechanism, WavingSketch-
can always maintain its F1 score above 97%. In particular,
as the skewness drops after the 50Mth item, the F1 score of
WavingSketchalso gradually drops, and at the 80Mth item,
WavingSketcheventually triggers the expansion mechanism,
thereby alwaysmaintaining theF1 score above a certain level.

6.4 Experiments on other applications

6.4.1 Experiments on other top-k applications

We show the performance of WavingSketchon three top-k
tasks. On finding heavy changes, we compare WavingS-
ketchwith FlowRadar (FR) [8], FlowRadar +Cold filter
(FR+CF) [22], and LD-Sketch [23]. On finding persistent
items, we compare WavingSketchwith PIE [9], Small-Space
[25], and On-Off Sketch [26]. On finding Super-Spreaders,
we compare WavingSketchwith One-level Filtering (OLF)
[10], Two-level Filtering (TLF) [10], OpenSketch [27], and
SpreadSketch [28].

Settings: For WavingSketch, we set d = 8 and c = 16. For
other algorithms,we set their parameters according to the rec-
ommendation of their authors. On finding heavy changes, we
set the memory of FR and FR+CF to be 10× larger than that
ofWavingSketch, as they cannot decode all flows under small
memory. As in Sect. 6.1, we configure the initial memory of
LD-Sketch to be the same asWavingSketch, meaning that its
actual memory usage is significantly larger than that marked
in Fig. 19 (at least 10× larger). We use the IP Trace dataset,
and use the tuple of source and destination IP addresses (4+4
bytes) of each packet as the ID field.

Finding heavy changes (Fig. 19a, b):
We find that even just using 1/10 times of memory, the

accuracy and throughput of WavingSketchare still signif-
icantly higher than that of FR, FR+CF, and LD-Sketch.
When using 2MB ofmemory,WavingSketchhas the F1 score
of 98.22%. By contrast, under >20MB memory, the F1
score of FR, FR+CF, and LD-Sketch are 0.40%, 1.17%,
and 56.13%, respectively. The throughput ofWavingSketchis
around 1.44×, 2.05×, and 43.44× higher than that of FR,
FR+CF, and LD-Sketch.

Finding persistent items (Fig. 20a, b):
We find that the accuracy ofWavingSketchis significantly

higher than that of Small-Space, PIE, and On-Off Sketch,
and the throughput of WavingSketchis close to Small-Space,
which is slower than On-Off Sketch and faster than PIE.
When using 80KB memory, the F1 Score of WavingSketch,
Small-Space, PIE, and On-Off Sketch are 97.23%, 6.54%,
0.53%, and 35.80%, respectively. The throughput of Wav-
ingSketchis close to that of Small-Space, which is around
1.55× slower than that of On-Off Sketch and 27.95× faster
than that of PIE.

123

Z. Liu et al.

Fig. 18 Performance of automatic memory adjustment

Fig. 19 Performance on finding heavy changes (Note that the memory
of “FR” and “FR+CF” is 10× larger than that marked in the figure,
and the memory of LD-Sketch is > 10× larger than that marked in the
figure)

Fig. 20 Performance on finding persistent items

Finding Super-Spreaders (Fig. 21a,b):
We find that the accuracy of WavingSketchis higher than

that of OpenSketch, TLF, OLF, and SpreadSketch, and the
throughput of WavingSketchis higher than OpenSketch and
SpreadSketch but lower than TLF and OLF. When using
600KB memory, the F1 score of WavingSketch, TLF, OLF,
OpenSketch, SpreadSketch are 99.57%, 16.23%, 13.11%,
77.75%, and 83.43%. And the throughput of WavingSketch,
TLF,OLF,OpenSketch, SpreadSketch are 24.04Mops, 78.38
Mops, 80.16 Mops, 11.48 Mops, and 8.24 Mops.

Summary and analysis

1) Onfinding heavy changes,WavingSketchachieves higher
accuracy than FR, FR+CF, and LD-Sketch while using
< 1

10 memory. This is because finding heavy changes is
based on estimating the frequencies of items. SinceWav-

Fig. 21 Performance on finding Super-Spreaders

ingSketchprovides more accurate estimation, it naturally
performs better in this task.

2) On finding persistent items, WavingSketchhas higher
accuracy than Small-Space, PIE, and On-Off Sketch. For
Small-Space, when using small memory, the inevitable
undersampling magnifies its errors. For PIE, its accuracy
is significantly degraded by hash collisions. For On-Off
Sketch, it combinesCMsketch andSpace-Saving to build
a top-k sketch and uses this data structure to record item
persistence. The accuracy of this structure on persistence
estimation is lower thanWavingSketch, soOn-Off sketch
has lower F1 score. But On-Off sketch has faster speed.

3) On finding Super-Spreaders, the accuracy of Wav-
ingSketchalso outperforms OpenSketch, OLF, TLF, and
SpreadSketch. One main reason is that prior algorithms
use a lot of memory to remove duplicates. For example,
OpenSketch uses bitmaps, OLF and TLF use hash-tables.
By contrast, our solution uses a Bloom filter, which is
more memory-efficient. SpreadSketch also uses multi-
resolution bitmap [29] to remove duplicates. Moreover,
as discussed in Sect. 2.2.4, each super-spreader can be
recorded d times in its data structure, making it not mem-
ory efficient.

6.4.2 Experiments on join-aggregate estimation

Weshow theperformanceofWavingSketchon join-aggregate
estimation. The experiments are conducted on two 1-minute
IP trace datasets. We use the multi-counter WavingSketch-
with d = 16 and c = 16, and compare it with FAGMS [32],
Skimmed sketch [58], and JoinSketch [31]. We compare the

123

WavingSketch: an unbiased and generic sketch...

Fig. 22 Performance on join-aggregate estimation

four algorithms under the same memory usage, and use the
relative error (RE) as themetric,which is defined as |J− Ĵ |/J
where J is the join-aggregate result of the two data streams.
Experimental results (Fig. 22): We find that the relative error
of WavingSketchis smaller than FAGMS and Skimmed but
larger than JoinSketch, and the processing speed of Wav-
ingSketchis faster than Skimmed and JoinSketch but slower
than FAGMS.When using 100KBmemory, the relative error
of WavingSketch, FAGMS, Skimmed, and JoinSketch are
4.8×10−2, 8.6×10−2, 7.2×10−2, and 7.4×10−3. And the
join time of WavingSketch, FAGMS, Skimmed, and JoinS-
ketch are 0.15 ms, 0.019 ms, 5.33 ms, and 1.10 ms. FAGMS
has faster speed because it does not separate frequent and
infrequent items, and thus its error is the largest. On the other
hand, JoinSketch separate items into three parts, and thus has
the smallest error and slow speed. By contrast, WavingS-
ketchseparate items into two parts, which strikes an balance
between FAGMSand JoinSketch. Therefore, its relative error
and processing time are also between that of FAGMS and
JoinSketch.

6.4.3 Experiments on subset query

We evaluate the accuracy on subset query on the synthetic
dataset, and compareWavingSketchwith two algorithmswith
overestimated error for top-k items: SS [13] and USS [15].
We build 100 subsets with a size of 1000. Each subset is built
by randomly selecting 1000 items from the top-2000 items.
We evaluate the error on reporting subset sum/average, and
report the average relative error (ARE) on the 100 subsets.
Experimental results (Fig. 23): We find that on both subset
sum task and subset average task,WavingSketchachieves sig-
nificantly smallerARE thanSS andUSS.When using 200KB
memory, WavingSketch, SS, and USS have 5.72 × 10−7,
5.53 × 10−4, and 3.38 × 10−4 ARE on subset sum task and
4.36 × 10−4, 0.58, and 0.61 ARE on subset average task.
As discussed in Sect. 2.3, when aggregating the estimated
results on a subset, the overestimated error and underesti-
mated error of unbiased WavingSketchcan offset each other,
which leads to high accuracy. By contrast, the overestimated
error of SS and USS will accumulate, resulting in their poor
accuracy. Recall that although USS achieves the unbiased-

Fig. 23 Performance on subset query

Fig. 24 Performance of finding global top-k items in data streams of
equal size

ness property for all items, its estimation for frequent items
is biased upward. Therefore, when querying the aggregate
results on a subset of top-k frequent items, it still suffers
large accumulated error.

6.4.4 Experiments on global top-k problem

We evaluate the accuracy on finding global top-k items in
disjoint data streams, and compare WavingSketchwith two
algorithms with overestimated error for top-k items: Space-
Saving [13] and Unbiased Space-Saving [15]. Following
prior work [30], we divide the synthetic dataset into N dis-
joint data streams S1, · · · ,SN with size m1, · · · , m N . For
each algorithm, we deploy one of its copy on each data
stream to detect local top-k items, and then aggregate the
results to find global top-k items. Memory sizes of all the
copies on different data streams are set the same. For Fig. 24,
we create N = 10 data streams of equal size by setting
m1 = · · · = m N = m

N , where m = ∣
∣∪N

i=1Si
∣
∣. We set

k = 5000 and vary the local memory usage of candidate
algorithms. For Fig. 25, we create N = 100 data streams of
skewed size by setting m1 = r ·m and mi = 1−r

N−1 ·m,∀i � 2

where r � 1
N represents the skewness of the size distribu-

tion across different data streams. In this setup, there are
one heavy streams S1 with large size and 99 light streams
S2 ∼ S100 with small size. We set k = 2000 and set the
memory of each algorithm on each data stream to 10KB.
Performance on data streams of equal size (Fig. 24):

We find that compared to the biased algorithms (SS, USS),
our unbiased WavingSketchachieves significantly higher F1
score and smaller ARE.When using 15KB localmemory, the

123

Z. Liu et al.

Fig. 25 Performance of finding global top-k items in data streams of
skewed size

F1 score ofWavingSketch, SS, andUSSare 97.27%, 37.49%,
and 37.42%, and theARE for global top-k items ofWavingS-
ketch, SS, and USS are 3.6 × 10−3, 3.09, and 3.32. SS and
USS have poor accuracy because they provide highly over-
estimated frequency estimation under small memory, so they
cannot accurately find global top-k items. By contrast, our
unbiased WavingSketchmaintains high accuracy even under
small memory.
Performance on data streams of skewed size (Fig. 25): We
find that compared to the biased algorithms (SS, USS),
our unbiased WavingSketchachieves significantly higher F1
score and smaller ARE. On the skewness r = 0.1, the F1
score of WavingSketch, SS, and USS are 98.57%, 91.86%,
and 91.47%, and the ARE for global top-k items of Wav-
ingSketch, SS, and USS are 1.36 × 10−3, 0.176, and 0.186.
As discussed in Sect. 2.3, SS and USS have poor accuracy
because of their overestimated error for local top-k items.
In this way, local top-k candidates in heavy streams tend to
be highly overestimated, so even if an item in heavy stream
has small real frequency, its estimated frequency might still
be high enough to be falsely selected as a global top-k item.
With items in heavy streams falsely selected as global top-
k items and items in light streams ignored, the F1 Scores
of SS and USS become unacceptably low when skewness is
large. By contrast, for unbiasedWavingSketch, the frequency
of a local top-k item has the same chance to be overesti-
mated or underestimated, so the global top-k result is no
longer influenced by the size of local data stream. Therefore,
WavingSketchachieves higher F1 score under data streams
of skewed size.

6.5 Experiments on apache flink

We implementWavingSketchon Apache Flink [67], showing
WavingSketchcan be easily integrated into modern stream
processing framework. We build a Flink cluster with 1 mas-
ter node and5worker nodes.Wedeploy oneWavingSketchon
each of these nodes, and evaluate the streaming process-
ing speed in both local mode and cluster mode. As shown
in Fig. 26, WavingSketchachieves satisfactory throughput
(1.2 ∼ 1.8 million events per second) in our Flink cluster.

Fig. 26 Throughput of WavingSketchon Apache Flink

We present the details of the experimental setup and discuss
the experimental results in our supplementary materials [47].

7 Conclusion

In this paper, we propose an algorithm calledWavingSketch-
for finding top-k items. WavingSketchprovides unbiased
estimation and outperforms the state-of-the-art algorithm on
both accuracy and speed. We theoretically prove the unbi-
asedness property ofWavingSketchand analyze its error, and
we apply WavingSketchto five applications. Experimental
results show that, compared with Unbiased Space-Saving,
WavingSketchachieves 10× faster insertion speed and 103×
smaller error in finding frequent items.

Acknowledgements This work is supported by National Key R&D
Program of China (No. 2022YFB2901504), National Natural Science
Foundation of China (NSFC) (No. U20A20179, 62372009, 623B2005),
and research grant No. SH-2024JK29.

References

1. Lukasz,G., David,D., D,D.E., Alejandro, L., Ian,M.J.: Identifying
frequent items in sliding windows over on-line packet streams. In:
IMC. ACM, (2003)

2. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm
for finding frequent elements in streams and bags. ACM Trans.
Database Syst. 28(1), 51–55 (2003)

3. Nishad,M., Themis, P.: Frequent items in streaming data: an exper-
imental evaluation of the state-of-the-art. DataKnowl. Eng., (2009)

4. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent
items in data streams. Languages and Programming. Springer, In
Automata (2002)

5. Wei, Z., Luo, G., Yi, K., Du, X., Wen, J.-R.: Persistent data sketch-
ing. In: Proc. ACM SIGMOD, pp. 795–810. ACM, (2015)

6. Schweller, R., Li, Z., Chen, Y., et al.: Reversible sketches: enabling
monitoring and analysis over high-speed data streams. IEEE/ACM
Trans. Netw. 15(5), 1059–1072 (2007)

7. Balachander, K., Subhabrata, S., Yin, Z., Yan, C.: Sketch-based
change detection: methods, evaluation, and applications. In: Pro-
ceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, pp. 234–247. ACM, (2003)

8. Li, Y., Miao, R., Kim, C., Yu, M.: Flowradar: a better netflow for
data centers. In: USENIX NSDI, pp. 311–324. USENIX Associa-
tion, (2016)

123

WavingSketch: an unbiased and generic sketch...

9. Dai, H., Shahzad, M., Liu, A.X., Zhong, Y.: Finding persistent
items in data streams. Proc. VLDB Endow. 10(4), 289–300 (2016)

10. Venkataraman, S., Song, D.X., Gibbons, P.B., Blum, A.: New
streaming algorithms for fast detection of superspreaders. In:
NDSS, (2005)

11. Cormode, G., Muthukrishnan, S.: An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms
55(1), 58–75 (2005)

12. Estan, C., Varghese, G.: New directions in traffic measurement and
accounting. ACM SIGMCOMM CCR, 32(4), (2002)

13. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation
of frequent and top-k elements in data streams. In: International
Conference on Database Theory. Springer, (2005)

14. Singh, M.G., Rajeev, M.: Approximate frequency counts over data
streams. In: Proc. VLDB, pp. 346–357, (2002)

15. Ting, D.: Data sketches for disaggregated subset sum and frequent
item estimation. In: SIGMOD Conference, (2018)

16. Pratanu, R., Arijit, K., Gustavo, A.: Augmented sketch: Faster and
more accurate stream processing. In: Proc, ACM SIGMOD (2016)

17. Yang, D., Li, B., Rettig, L., Cudré-Mauroux, P.: D22 histos-
ketch: discriminative and dynamic similarity-preserving sketching
of streaming histograms. IEEE Trans. Knowl. Data Eng. 31(10),
1898–1911 (2018)

18. Buddhika, T.,Malensek,M., Pallickara, S.L., Pallickara, S.: Synop-
sis: A distributed sketch over voluminous spatiotemporal observa-
tional streams. IEEE Trans. Knowl. Data Eng. 29(11), 2552–2566
(2017)

19. Zhao, B., Li, X., Tian, B., Mei, Z., Wu,W.: Dhs: Adaptive memory
layout organization of sketch slots for fast and accurate data stream
processing. In: Proceedings of the 27thACMSIGKDDConference
on Knowledge Discovery & Data Mining, pp. 2285–2293, (2021)

20. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data
streams. Proc. VLDB Endow. 1(2), 1530–1541 (2008)

21. Yang, T., Gong, J., Zhang, H., Zou, L., Shi, L., Li. X.: Heavy-
guardian: Separate and guard hot items in data streams. In:
SIGKDD, (2018)

22. Zhou, Y., Yang, T., Jiang, J., Cui, B., Yu, M., Li, X., Uhlig, S.:
Cold filter: A meta-framework for faster and more accurate stream
processing. In: SIGMOD Conference, (2018)

23. Huang, Q., Lee, P.P.: Ld-sketch: A distributed sketching design for
accurate and scalable anomaly detection in network data streams.
In: IEEE INFOCOM 2014-IEEE Conference on Computer Com-
munications, pp. 1420–1428. IEEE, (2014)

24. Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory 52(6),
2551–2567 (2006)

25. Lahiri, B., Chandrashekar, J., Tirthapura, S.: Space-efficient track-
ing of persistent items in a massive data stream. Stat. Anal. Data
Mining 7, 70–92 (2011)

26. Zhang, Y., Li, J., Lei, Y., Yang, T., Li, Z., Zhang, G., Cui, B.: On-
off sketch: a fast and accurate sketch on persistence. Proc. VLDB
Endow. 14(2), 128–140 (2020)

27. Yu, M., Jose, L., Miao, R.: Software defined traffic measurement
with opensketch. In: NSDI 2013, (2013)

28. Tang, L., Huang, Q., Lee, P.P.: Spreadsketch: Toward invertible and
network-wide detection of superspreaders. In: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pp. 1608–
1617. IEEE, (2020)

29. Estan, C., Varghese, G., Fisk, M.: Bitmap algorithms for counting
active flows on high speed links. In: Proceedings of the 3rd ACM
SIGCOMM Conference on Internet Measurement, pp. 153–166,
(2003)

30. Zhao, Y., Han,W., Zhong, Z., Zhang, Y., Yang, T., Cui, B.: Double-
anonymous sketch: achieving top-k-fairness for finding global top-
k frequent items. Proc. ACM Manag. Data 1(1), 1–26 (2023)

31. Wang, F., Chen, Q., Li, Y., Yang, T., Tu, Y., Yu, L., Cui, B.: Joins-
ketch: a sketch algorithm for accurate and unbiased inner-product
estimation. Proc. ACM Manag. Data 1(1), 1–26 (2023)

32. Cormode, G., Garofalakis, M.: Sketching streams through the net:
Distributed approximate query tracking. In: Proceedings of the 31st
International Conference on Very Large Data Bases, pp. 13–24,
(2005)

33. Liu, Z.,Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One
sketch to rule them all: Rethinking network flow monitoring with
univmon. In: Proceedings of the 2016 ACM SIGCOMM Confer-
ence, pp. 101–114, (2016)

34. Miao, R., Zhang, Y., Qu, G., Yang, K., Yang, T., Cui, B.: Hyper-
uss: Answering subset query over multi-attribute data stream. In:
Proceedings of the 29thACMSIGKDDConference onKnowledge
Discovery and Data Mining, pp. 1698–1709, (2023)

35. Zhang, Y., Liu, Z., Wang, R., Yang, T., Li, J., Miao, R., Liu, P.,
Zhang, R., Jiang J.: Cocosketch: High-performance sketch-based
measurement over arbitrary partial key query. In: Proceedings of
the 2021 ACMSIGCOMM2021 Conference, pp. 207–222, (2021)

36. Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (bgp-4).
Technical report, (2006)

37. Sobrinho, J.L.: Network routingwith path vector protocols: Theory
and applications. In: Proceedings of the 2003Conference onAppli-
cations, Technologies, Architectures, and Protocols for Computer
Communications, pp. 49–60, (2003)

38. Park, K., Lee, H.: On the effectiveness of route-based packet fil-
tering for distributed dos attack prevention in power-law internets.
ACM SIGCOMM Comput. Commun. Rev. 31(4), 15–26 (2001)

39. Murmur hashing source codes. https://github.com/aappleby/
smhasher/blob/master/src/MurmurHash3.cpp

40. Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao,
R., Li, X., Uhlig, S.: Elastic sketch: Adaptive and fast network-
wide measurements. In: ACMSIGCOMM, vol. 2018, pp. 561–575
(2018)

41. Kim, W., Yun, J., Jung, H.: Evaluation of high-frequency financial
transaction processing in distributed memory systems. In: Pro-
ceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems, pp. 362–364, (2014)

42. Zhang, H., Liu, Z., Chen, B., Zhao, Y., Zhao, T., Yang, T., Cui, B.:
Cafe: Towards compact, adaptive, and fast embedding for large-
scale recommendation models. In: Proceedings of the 2024 ACM
International Conference on Management of Data (SIGMOD),
(2024)

43. Flynn, M.: Some computer organizations and their effectiveness.
IEEE Trans. Comput. 100, 948–960 (1972)

44. Li, Y., Wang, F., Yu, X., Yang, Y., Yang, K., Yang, T., Ma, Z., Cui,
B., Uhlig, S.: Ladderfilter: Filtering infrequent items with small
memory and time overhead. Proc. ACM Manag. Data 1(1), 1–21
(2023)

45. Liu, Z., Kong, C., Yang, K., Yang, T., Miao, R., Chen, Q., Zhao,
Y., Tu, Y., Cui B.: Hypercalm sketch: One-pass mining periodic
batches in data streams. In: 2023 IEEE 39th International Confer-
ence on Data Engineering (ICDE). IEEE, (2023)

46. Zhou, Y., Yang, T., Jiang, J., Cui, B., Yu, M., Li, X., Uhlig, S.:
Cold filter: A meta-framework for faster and more accurate stream
processing. In: Proceedings of the 2018 international conference
on management of data, pp. 741–756, (2018)

47. Supplementary materials of wavingsketch. https://github.com/
WavingSketch/Waving-Sketch/blob/master/WavingSketch_
Supplementary.pdf

48. Li, J., Li, Z., Xu, Y., Jiang, S., Yang, T., Cui, B., Dai, Y., Zhang, G.:
Wavingsketch: An unbiased and generic sketch for finding top-k
items in data streams. In: Proceedings of the 26th ACM SIGKDD
InternationalConference onKnowledgeDiscovery&DataMining,
pp. 1574–1584, (2020)

123

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/WavingSketch/Waving-Sketch/blob/master/WavingSketch_Supplementary.pdf
https://github.com/WavingSketch/Waving-Sketch/blob/master/WavingSketch_Supplementary.pdf
https://github.com/WavingSketch/Waving-Sketch/blob/master/WavingSketch_Supplementary.pdf

Z. Liu et al.

49. Powers, D.M.: Applications and explanations of Zipf’s law. In:
Proc. EMNLP-CoNLL,Association for Computational Linguistics
(1998)

50. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(7), 422–426 (1970)

51. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neu-
mann, T.: How good are query optimizers, really? Proc. VLDB
Endow. 9(3), 204–215 (2015)

52. Izenov, Y., Datta, A., Rusu, F., Shin, J.H.: Compass: Online sketch-
basedqueryoptimization for in-memorydatabases. In: Proceedings
of the 2021 International Conference on Management of Data, pp.
804–816, (2021)

53. Leis, V., Radke, B., Gubichev, A., Mirchev, A., Boncz, P., Kemper,
A., Neumann, T.: Query optimization through the looking glass,
and what we found running the join order benchmark. VLDB J.
27(5), 643–668 (2018)

54. Wang, Y., Yi, K.: Secure yannakakis: Join-aggregate queries over
private data. In: Proceedings of the 2021 International Conference
on Management of Data, pp. 1969–1981, (2021)

55. Kutzkov, K., Ahmed, M., Nikitaki, S.: Weighted similarity estima-
tion in data streams. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp.
1051–1060, (2015)

56. Pruthi, G., Liu, F., Kale, S., Sundararajan, M.: Estimating train-
ing data influence by tracing gradient descent. Adv. Neural. Inf.
Process. Syst. 33, 19920–19930 (2020)

57. Alon, N., Gibbons, P.B.,Matias, Y., Szegedy,M.: Tracking join and
self-join sizes in limited storage. In Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems 10–20 (1999)

58. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing data-stream
join aggregates using skimmed sketches. In: International Confer-
ence on Extending Database Technology, pp. 569–586. Springer,
(2004)

59. Ganguly, S., Kesh, D., Saha, C.: Practical algorithms for tracking
database join sizes. In: International Conference on Foundations
of Software Technology and Theoretical Computer Science, pp.
297–309. Springer, (2005)

60. Rusu, F., Dobra, A.: Sketches for size of join estimation. ACM
Trans. Database Syst. 33(3), 1–46 (2008)

61. Rusu, F., Dobra, A.: Statistical analysis of sketch estimators. In:
Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, pp. 187–198, (2007)

62. Cai, W., Balazinska, M., Suciu, D.: Pessimistic cardinality estima-
tion: Tighter upper bounds for intermediate join cardinalities. In:
Proceedings of the 2019 International Conference onManagement
of Data, pp. 18–35, (2019)

63. CAIDA [online]. Available: http://www.caida.org/home
64. Real-life transactional dataset. http://fimi.ua.ac.be/data/
65. TheNetworkdataset InternetTraces. http://snap.stanford.edu/data/
66. Rousskov, A., Wessels, D.: High-performance benchmarking with

web polygraph. Practice and Experience, Software (2004)
67. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S.,

Tzoumas, K.: Apache flink: Stream and batch processing in a sin-
gle engine. Bull. IEEE Comput. Soc. Tech. Committee Data Eng.,
36(4), (2015)

68. Source code related to WavingSketch.. https://github.com/
WavingSketch/Waving-Sketch

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://www.caida.org/home
http://fimi.ua.ac.be/data/
http://snap.stanford.edu/data/
https://github.com/WavingSketch/Waving-Sketch
https://github.com/WavingSketch/Waving-Sketch

	WavingSketch: an unbiased and generic sketch for finding top-k items in data streams
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Our proposed approach
	1.3 Key contributions

	2 Background and related work
	2.1 Problem statement
	2.2 Related work
	2.2.1 Finding frequent items
	2.2.2 Finding heavy changes
	2.2.3 Finding persistent items
	2.2.4 Finding super-spreaders

	2.3 Importance of unbiasedness property

	3 The WavingSketch algorithm
	3.1 Data structure
	3.2 Basic operations
	3.3 Elastic operations
	3.4 Optimization using multi-counter bucket
	3.5 SIMD acceleration

	4 Mathematical analysis
	4.1 Proof of unbiasedness
	4.2 Variance
	4.3 Error bound
	4.4 Analysis for elastic operations

	5 Application
	5.1 Finding top-k frequent items
	5.2 Finding top-k heavy changes
	5.3 Finding top-k persistent items
	5.4 Finding top-k super-spreaders
	5.5 Performing join-aggregate estimation

	6 Experimental results
	6.1 Experiments on finding frequent items
	6.2 Experiments on different settings
	6.2.1 Impact of WavingSketchparameters
	6.2.2 Impact of data distribution
	6.2.3 Impact of SIMD acceleration

	6.3 Experiments on elastic operations
	6.3.1 Performance of elastic compression
	6.3.2 Performance of elastic expansion
	6.3.3 Experiments on automatic adjustment

	6.4 Experiments on other applications
	6.4.1 Experiments on other top-k applications
	6.4.2 Experiments on join-aggregate estimation
	6.4.3 Experiments on subset query
	6.4.4 Experiments on global top-k problem

	6.5 Experiments on apache flink

	7 Conclusion
	Acknowledgements
	References

