
56

TreeSensing: Linearly Compressing Sketches with Flexibility

ZIRUI LIU, YIXIN ZHANG, YIFAN ZHU, RUWEN ZHANG, and TONG YANG∗†, Peking
University, China and Peng Cheng Laboratory, China

KUN XIE, Hunan University, China

SHA WANG and TAO LI, National University of Defense Technology, China

BIN CUI, Peking University, China

A Sketch is an excellent probabilistic data structure, which records the approximate statistics of data streams.

Linear additivity is an important property of sketches. This paper studies how to keep the linear property

after sketch compression. Most existing compression methods do not keep the linear property. We propose

TreeSensing, an accurate, efficient, and flexible framework to linearly compress sketches. In TreeSensing,
we first separate a sketch into two parts according to counter values. For the sketch with small counters,

we propose a technique called TreeEncoding to compress it into a hierarchical structure. For the sketch with

large counters, we propose a technique called SketchSensing to compress it using compressive sensing. We

theoretically analyze the accuracy of TreeSensing. We use TreeSensing to compress 7 sketches and conduct

two end-to-end experiments: distributed measurement and distributed machine learning. Experimental results

show that TreeSensing outperforms prior art on both accuracy and efficiency, which achieves up to 100×
smaller error and 5.1× higher speed than state-of-the-art Cluster-Reduce. All related codes are open-sourced.

1

CCS Concepts: • Theory of computation→ Data compression.

Additional Key Words and Phrases: Data streams; Sketches; Compression; Distributed measurement

ACM Reference Format:
Zirui Liu, Yixin Zhang, Yifan Zhu, Ruwen Zhang, Tong Yang, Kun Xie, Sha Wang, Tao Li, and Bin Cui.

2023. TreeSensing: Linearly Compressing Sketches with Flexibility. Proc. ACM Manag. Data 1, 1, Article 56
(May 2023), 28 pages. https://doi.org/10.1145/3588910

1 INTRODUCTION
A Sketch is an excellent probabilistic data structure [1–5], which records the approximate statistics

of data streams by maintaining a summary. Thanks to their fast speed and small memory overhead,

sketches are widely used in the fields of database [6–9], data mining [10–15], and networks [16, 17]

∗
Tong Yang (yangtongemail@gmail.com) is the corresponding author.

†
Tong Yang, National Key Laboratory forMultimedia Information Processing, School of Computer Science, Peking University,

is also with Peng Cheng Laboratory, Shenzhen, China.

1
https://github.com/TreeSensing/TreeSensing

Authors’ addresses: Zirui Liu, (zirui.liu@pku.edu.cn); Yixin Zhang, (yxzh@stu.pku.edu.cn); Yifan Zhu, (yifan.zhu@stu.

pku.edu.cn); Ruwen Zhang, (zrw@pku.edu.cn); Tong Yang, (yangtongemail@gmail.com), National Key Laboratory for

Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China and Peng Cheng

Laboratory, Shenzhen, China; Kun Xie, (xiekun@hnu.edu.cn), College of Computer Science and Electronic Engineering,

Hunan University, Changsha, China; ShaWang, (ws0623zz@163.com); Tao Li, (taoli_network@163.com), School of Computer,

National University of Defense Technology, Changsha, China; Bin Cui, (bin.cui@pku.edu.cn), National Key Laboratory for

Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART56 $15.00

https://doi.org/10.1145/3588910

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

HTTPS://ORCID.ORG/0000-0001-9062-6565
HTTPS://ORCID.ORG/0000-0002-0465-9510
HTTPS://ORCID.ORG/0000-0001-8541-4496
HTTPS://ORCID.ORG/0000-0002-6102-9195
HTTPS://ORCID.ORG/0000-0003-2402-5854
HTTPS://ORCID.ORG/0000-0002-2163-2723
HTTPS://ORCID.ORG/0009-0008-4677-7452
HTTPS://ORCID.ORG/0000-0001-7168-3628
HTTPS://ORCID.ORG/0000-0003-1681-4677
https://doi.org/10.1145/3588910
https://github.com/TreeSensing/TreeSensing
https://orcid.org/0000-0001-9062-6565
https://orcid.org/0000-0002-0465-9510
https://orcid.org/0000-0001-8541-4496
https://orcid.org/0000-0002-6102-9195
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0002-2163-2723
https://orcid.org/0009-0008-4677-7452
https://orcid.org/0000-0001-7168-3628
https://orcid.org/0000-0003-1681-4677
https://doi.org/10.1145/3588910

56:2 Zirui Liu et al.

to perform various tasks, such as frequency estimation [18, 19], finding top-𝑘 items [20, 21],

distributed data analysis [22–24], and the acceleration of machine learning [25].

Linear additivity is an important property of sketches. Consider a distributed data analysis

scene consisting of 𝑛 measurement nodes. Each node 𝑁𝑖 builds a local sketch 𝑆𝑖 using its local data

shard 𝐷𝑖 , and periodically sends the sketch to a central analyzer. Suppose 𝑆 is the sketch built from

all data shards 𝐷1, · · · , 𝐷𝑛 together. The linear additive property guarantees that 𝑆 =
∑𝑛

𝑖=1 𝑆𝑖 , where

the addition operation between sketches refers to adding up the counters in the same position.

For example, suppose 𝑛 = 2, 𝑆1 = [0, 1, 1, 1, 1] and 𝑆2 = [0, 1, 2, 3, 4], then we have 𝑆 = [0, 2, 3, 4, 5].
Under the linear property, the central analyzer can first aggregate the 𝑛 received sketches into

𝑆 =
∑𝑛

𝑖=1 𝑆𝑖 and then use the aggregated sketch 𝑆 to answer queries, rather than query each of the

𝑛 sketches .

This paper studies how to keep this linear property after sketch compression. Sketch compression

is an important mechanism for many practical scenarios [25, 26]. A compression algorithm could

keep the linear additive property: Given a sketch compression algorithm 𝐶 (·), let 𝐶 (𝑆𝑖) denote
the compression of sketch 𝑆𝑖 . The compression algorithm keeps the linear property if it satisfies

𝐶 (∑𝑛
𝑖=1 𝑆𝑖) =

∑𝑛
𝑖=1𝐶 (𝑆𝑖). It is important for a sketch compression algorithm to keep the linear

property. 1) Consider a distributed data analysis scene [27–30] with 𝑛 nodes and one central

analyzer. In each measurement period, each node 𝑁𝑖 builds a local sketch 𝑆𝑖 , compresses the sketch

to 𝐶 (𝑆𝑖), and sends 𝐶 (𝑆𝑖) to the central analyzer. The analyzer wants to acquire the aggregated

sketch

∑𝑛
𝑖=1 𝑆𝑖 and use it to perform global analysis tasks. If the compression algorithm keeps

the linear property, the analyzer just needs to sum up all received data

∑𝑛
𝑖=1𝐶 (𝑆𝑖) = 𝐶 (∑𝑛

𝑖=1 𝑆𝑖),
and then perform one recovery operation to directly acquire the aggregated sketch 𝑆 =

∑𝑛
𝑖=1 𝑆𝑖 .

Otherwise, the analyzer must first perform𝑛 recovery operations to get 𝑆1 · · · 𝑆𝑛 , and then aggregate
the 𝑛 recovered sketches to get

∑𝑛
𝑖=1 𝑆𝑖 , which is very inefficient. 2) Another scene where linear

property matters is Secure Aggregation, which is a key topic in federated learning [31–33] and cloud

computing [34]. Consider a federated learning scene [31] where 𝑛 workers collaboratively train a

model under the coordination of an aggregator. In each training period, each worker 𝑁𝑖 computes

gradient 𝐺𝑖 using its local data. To protect the local gradient 𝐺𝑖
2
against the untrusted aggregator,

each worker 𝑁𝑖 masks its gradient into 𝐺𝑖 + Y𝑖 and sends the masked gradient to the aggregator.

Here, Y𝑖 is a random noise coordinated by all workers to guarantee that

∑𝑛
𝑖=1 Y𝑖 = 0. The aggregator

aggregates all masked gradients to get 𝐺 =
∑𝑛

𝑖=1 (𝐺𝑖 + Y𝑖) =
∑𝑛

𝑖=1𝐺𝑖 , and broadcasts the aggregated

gradient 𝐺 to each worker. It is reported that the training time of such system is dominated by the

expensive communication overhead [31]. Therefore, it is lucrative to reduce the communication

overhead by encoding local gradient𝐺𝑖 into sketch 𝑆𝑖 [25] and compressing 𝑆𝑖 into𝐶 (𝑆𝑖) to send. In
such case, only a linear algorithm can work. If the compression algorithm keeps the linear property,

the aggregator can aggregate the received data to get

∑𝑛
𝑖=1 (𝐶 (𝑆𝑖)+Y𝑖) =

∑𝑛
𝑖=1𝐶 (𝑆𝑖) = 𝐶 (∑𝑛

𝑖=1 𝑆𝑖), and
broadcast 𝐶 (∑𝑛

𝑖=1 𝑆𝑖) to each worker. Each worker then recovers the aggregated sketch 𝑆 =
∑𝑛

𝑖=1 𝑆𝑖
to get the aggregated gradient. Otherwise, the aggregator cannot aggregate the received data.

Existing methods to compress sketches can be divided into two categories: linear compression
methods and non-linear compression methods. 1) To our knowledge, Hokusai [35] is the only linear

method. To compress the sketch by _ times, Hokusai first divides every _ counters into the same

group, and then merges the counters in each group by summing them up. 2) Typical non-linear

methods include Elastic [36] and Cluster-Reduce [26]. The key difference between Elastic and

Hokusai is that Elastic merges the counters by taking the maximum value in each group, which

compromises the linear property and makes it cannot compress the sketches with negative counters

2
Local gradient may leak private information about locally stored data [32].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:3

(e.g., the Count sketch [37]). Cluster-Reduce [26] further proposes to first rearrange similar counters

into the same group, and then merges each group by taking the maximum value.

In this paper, we propose TreeSensing, an accurate, efficient, and flexible framework to linearly
compress sketches. To compress a sketch 𝑆 , we first separate 𝑆 into two partial sketches: a sketch ¤𝑆
with only small counters (called small sketch) and a sketch ¥𝑆 with only large counters (called large
sketch). To get the small sketch ¤𝑆 , we set all counters with large values in the full sketch 𝑆 to zero.

Similarly, we get the large sketch ¥𝑆 by setting all small counters in 𝑆 to zero. In other words, 𝑆 = ¤𝑆+ ¥𝑆 .
For example, suppose 𝑆 = [1, 89, 2, 3, 1], then we have ¤𝑆 = [1, 0, 2, 3, 1] and ¥𝑆 = [0, 89, 0, 0, 0]. Next,
we propose two key techniques, namely TreeEncoding and SketchSensing, to compress the small

sketch and the large sketch, respectively. Both the two techniques keep the linear property. In

addition, each of the two techniques can be used alone. For example, in applications that only

care about the accuracy of frequent items (e.g., SketchML [25]), we can just use SketchSensing to

compress the large sketch and discard the small sketch.

The first key technique of TreeSensing, namely TreeEncoding, compresses the small sketch

into a hierarchical structure called HieraricalTree. This data structure is designed based on our

observation that in practice, most counters of a sketch have small values, and only a small fraction

of counters have large values. Therefore, it is wasteful to record all of these values using equal-

sized (32-bit) counters in a flat structure, like existing sketch compression methods do [26, 35, 36].

HierarchicalTree uses smaller-sized (e.g., 4-bit) counters, and organizes them into a shape of tree.

One overflowed counter automatically enlarges its size by expanding to the higher layer of the

tree and setting an overflow indicator. We further propose a smart technique called ShiftBfEncoder

(see § 3.2) to compress the overflow indicator of HierarchicalTree. The structure of HierarchicalTree
is flexible. We can choose to send different layers of HierarchicalTree to achieve different level

of accuracy. Under limited bandwidth, we can just send the high layer(s) of HierarchicalTree to
approximately recover the sketch, and an approximately recovered sketch can also provide high

accuracy (see § 3.2). Although we can use TreeEncoding to encode the entire sketch, we find the

limitation of this hierarchical structure: it is unfriendly to frequent items. Specifically, as higher

layer has fewer counters, there are more collisions between frequent items in higher layer, which

significantly degrades the accuracy of top-𝑘 frequent items.

To address the above limitation, we propose the second key technique of TreeSensing, namely

SketchSensing. SketchSensing employs the theory of compressive sensing [38] to compress the large

sketch in a nearly lossless way. Compressive sensing is a technique widely used in signal processing

field for acquiring and recovering a sparse signal. When original data is sparse, compressive sensing

provides near-perfect recovery. Recall that we have the observation that only a small fraction of

counters have large values. Thus, after setting small counters to zero, the resulted large sketch

will be very sparse. This sparse sketch perfectly suits the requirements of compressive sensing.

SketchSensing works in a flexible way: it compresses the large sketch into many small fragments

(called sensing fragments). The recovery process does not need all sensing fragments. Under limited

bandwidth, one can just send a partial collection of sensing fragments to approximately recover

the sketch, and an approximately recovered sketch can also provide high accuracy and effective

query rate (see § 3.3).

TreeSensing has three key advantages: 1) Accurate recovery: TreeSensing achieves up to

100× smaller error than state-of-the-art Cluster-Reduce [26] (see Figure 9). 2) Efficient compres-
sion: TreeSensing can compress a 13.2MB sketch by 10 times within 69 milliseconds, outper-

forming Cluster-Reduce by 5.1× (see Figure 12). TreeSensing achieves 316MHz throughput on

FPGA platforms (see Table 6). 3) Flexibility: TreeSensing allows users to choose appropriate

compression techniques and compression ratio to strike a balance between bandwidth and accuracy.

TreeSensing can optionally recover the original sketch from a fraction of compressed data, and

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:4 Zirui Liu et al.

the partially recovered sketch also provides high accuracy. All related codes are open-sourced

anonymously [39].

This paper makes the following key contributions.

• We introduce the linear additive property in sketch compression, and we believe this is an

important property.

• We propose TreeSensing, a generic framework to linearly compress sketches, which is efficient,

accurate, and flexible.

• We theoretically analyze the accuracy of TreeSensing.
• We use TreeSensing to compress 7 sketches (CM [1], CU [40], Count [37], MinMax [25], CMM

[41], CML [42], and CSM [43]), and apply TreeSensing to three applications: distributed mea-

surement, distributed ML, and join-aggregate estimation.

• We extensively evaluate the performance of TreeSensing, showing it outperforms prior art on

both accuracy and efficiency.

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce typical sketches in § 2.1. We summarize existing works of sketch

compression in § 2.2. We introduce the fundamental concepts of compressive sensing in § 2.3.

Table 1. Symbols frequently used in this paper.

Symbols Meaning

𝑑 Number of arrays in a sketch

𝑤 Number of counters in each array of a sketch

A𝑖 The 𝑖𝑡ℎ array of a sketch

𝜏 Separating threshold of TreeSensing
𝑙 Number of layers in HierarchicalTree
𝐿𝑖 The 𝑖𝑡ℎ layer of HierarchicalTree
𝑛𝑖 Number of counters in 𝐿𝑖
𝛿𝑖 Each counter in 𝐿𝑖 contains 𝛿𝑖 bits

^𝑖 ^𝑖 adjacent counters in 𝐿𝑖 are with a counter in 𝐿𝑖+1
_ Compressing ratio in SketchSensing
𝑟 Rounding parameter in SketchSensing
𝑓 Number of fragments in SketchSensing
𝑚 Number of counters in each fragment in SketchSensing

2.1 Sketches for Data Stream Measurement
A Sketch is an excellent probabilistic data structure that can perform various tasks such as frequency

estimation, finding frequent items, cardinality estimation, etc. Sketch uses a small digest to record

approximate information of the data stream. Typical sketches include CM [1], CU [40], Count [37],

CSM [43], CML [42], CMM [41], and more [44, 45]. A sketch usually consists of multiple arrays,

each of which has many counters. Take the most well-known CM sketch [1] as an example. A CM

sketch consists of 𝑑 arraysA1, · · · ,A𝑑 . Each arrayA𝑖 has𝑤 counters and is associated with a hash

function ℎ𝑖 (·) that maps each item into a counter in it. To insert an item 𝑒 , it increments each of

the 𝑑 hashed counters A1 [ℎ1 (𝑒)], · · · ,A𝑑 [ℎ𝑑 (𝑒)] by one. For query, it returns the minimum of the

𝑑 hashed counters. Other sketches devise more smart techniques to further improve the accuracy

and achieve unbiased estimation [37, 40–43, 46].

There is also a line of sketches that propose to use hierarchical structures to fit the highly skewed

data distribution [47, 48], such as Counter-Braid [49], Pyramid [50], and Diamond [51]. However,

to guarantee that any practical large value can be represented, their structure must have many

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:5

layers. In addition, these sketches fix their hierarchical structures before insertion, and thus have

slow speed because each insertion may access all layers in the worst case. We believe that a better

solution is to first use the simple and flat data structure at insertion, and then proactively compress

the sketch into a hierarchical structure when requiring to transmit.

2.2 Related Work on Sketch Compression
Until now, there are only a few works on sketch compression, including Hokusai [35], Elastic

[36], and Cluster-Reduce [26]. To our knowledge, Hokusai [35] is the only work that keeps the

linear property. To compress a sketch S with 𝑤 counters by _ times, Hokusai first divide the

counters into
𝑤
_
groups, each of which has _ counters. Next, Hokusai merges the _ counters of each

group into one by taking the sum of these counters. Based on Hokusai, Elastic [36] makes small

modification by taking the maximum of the counters in each group, which improves the accuracy

but compromises the linear property. In addition, this modification makes Elastic cannot compress

the sketches with negative counters (e.g., Count sketch [37]). Cluster-Reduce [26] proposes the idea

of nearness clustering, which works by rearranging similar counters into the same group. It then

uses a technique named unique reducing to get the representative value of each group. Compared

with prior solutions, Cluster-Reduce achieves the best accuracy, but it also cannot keep the linear

additive property.

Another kind of data compression methods, lossless compression methods, can also be applied to

compress sketches. Typical methods include Huffman coding [52], Deflate [53], and more [54, 55].

However, the compression and recovery speed of lossless methods are usually slow because of

complicated arithmetic computation. More importantly, all lossless methods do not keep the linear

property.

2.3 Preliminary of Compressive Sensing
Compressive sensing [38] is a technique that can efficiently recover sparse signals. Classical

compressive sensing incorporates two procedures: sensing and recovery. 1) Given an original signal

®𝑥 of length𝑛, the sensing procedure compresses ®𝑥 into a compact vector ®𝑦 of length𝑚 by multiplying

a𝑚 × 𝑛 sensing matrix𝛷 , i.e., ®𝑦 = 𝛷 × ®𝑥 . Common sensing matrices include Gaussian Matrix (GM)

[56] and Bernoulli Matrix (BM) [57]. 2) The recovery procedure reconstructs ®𝑥 using ®𝑦 and𝛷 by

solving a linear system:

∑𝑛
𝑗=1𝛷𝑖, 𝑗 · 𝑥 𝑗 = 𝑦𝑖 . Under the prior knowledge that ®𝑥 is sparse, the problem

of solving the above linear system can be transformed into an optimization problem:minimize: ∥𝑥 ∥1,
subject to: ®𝑦 = 𝛷 × ®𝑥 . Theoretical analysis guarantees that the solution ®𝑥 ′ is close to ®𝑥 as long as ®𝑥 is

sparse enough [58–60]. Besides L1 optimization [61], other recovery algorithms include Orthogonal

Matching Pursuit (OMP) [62], Iteratively Reweighted Least Square (IRLS) [63], and more [64, 65].

In practice, compressive sensing has been widely adopted in the field of signal processing [66] and

data transmission [67, 68]. We believe that applying compressive sensing to compress probabilistic

data structures is a promising open area.

3 THE TREESENSING ALGORITHM
In this section, we first take the most widely-used CM sketch as an example to explain how

TreeSensing works. We present the workflow of TreeSensing in § 3.1, and describe the two key

techniques of TreeSensing, namely TreeEncoding and SketchSensing in § 3.2 and § 3.3. We explain

how to compress other sketches in § 3.4.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:6 Zirui Liu et al.

3.1 TreeSensing Overview
Rationale: We aim at devising an accurate, efficient, and flexible framework to linearly compress

sketches. 1) We observe that in practice, the counters of a sketch are highly skewed: most coun-

ters have small values and only a small fraction of counters have large values.
3
It is wasteful to

record these skewed values using equal-sized counters (32-bit). Thus, we propose the TreeEncoding
technique to compactly encode the sketch into a hierarchical structure with smaller-sized counters

(e.g., 4-bit). Our methodology is to dynamically assign appropriate number of bits for different

original counters: larger counters are allocated more bits in multiple layers and smaller counters

are allocated fewer bits in one layer. 2) Although we can use TreeEncoding to encode the entire

sketch, we find it is not suitable for large counters: we must use many layers to record a large

counter, which leads to slow compression speed and large memory overhead. In addition, we notice

that there are many applications (e.g., distributed ML in § 5.2) that only use large counters. These

applications are sensitive to the error of large counters but indifferent to small counters. It is desired

to devise another method that specifically compresses large counters in a nearly-lossless way.

Recall that only a small fraction of counters have large values. If we neglect small counters and

only consider the large counters, the sketch will become a sparse array. This sparsity well suits

the requirement of compressive sensing [38]. Thus, we further propose SketchSensing technique,

which uses compressive sensing to compress large counters in a nearly lossless way.

2 80 1 5 75 9 4 3
Separating

2 0 1 5 0 9 4 3 0 80 0 0 75 0 0 0

32-bit counters

Compressive Sensing

Sensing Fragments

TreeEncoding SketchSensing

HierarchicalTree

2 0 1 1 0 1 0 3

0 1 2 1 4-bit
counters

large arraysmall array

1 2

𝒜!

�̇�! �̈�!

Fig. 1. TreeSensing Overview.

As shown in Figure 1, in TreeSensing, we propose two techniques: TreeEncoding and Sketch-
Sensing. For each array A𝑖 in a CM sketch, we first use a threshold 𝜏 (named separating threshold)

to separate it into two partial arrays: an array
¤A𝑖 with only small counters (called small array) and

an array
¥A𝑖 with only large counters (called large array). Specifically, for each counter inA𝑖 , we set

it to zero if it is larger than 𝜏 , and the resulted array is the small array
¤A𝑖 . Similarly, we can get the

large array
¥A𝑖 . Obviously, A𝑖 = ¤A𝑖 + ¥A𝑖 . For the small array, TreeSensing uses the TreeEncoding

technique to compactly encode it into a hierarchical data structure called HierarchicalTree. Each
counter in HierarchicalTree has smaller size than the counters in original sketch. For the large array,

which is sparse, TreeSensing uses the SketchSensing technique to compress it into many small

fragments, named sensing fragments. Both TreeEncoding and SketchSensing keep the linear property.

In addition, TreeEncoding and SketchSensing are orthogonal, each of which can be used alone. Note

that both TreeEncoding and SketchSensing do not guarantee exact recovery, but under good choice

of parameters, they can achieve nearly lossless recovery.

3
This phenomenon stems from the unbalanced data distribution in most real-world applications. For example, in network

stream, most flows are small flows and a small fraction of large flows contribute to most traffic [47].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:7

3.2 The TreeEncoding Algorithm
Overview: TreeEncoding uses a structure called HierarchicalTree to compactly record the small

array. HierarchicalTree organizes small-sized counters (e.g., 4-bit) into a tree shape. Once a counter

overflows, it automatically enlarges its size by expanding into a counter in higher layer, and set

a corresponding 1-bit overflow indicator to true. We propose a technique called ShiftBfEncoder

to further compress the overflow indicators. Since HierarchicalTree only encodes counters with

small values, it does not need to use many layers. In practice, two or three layers suffice for good

performance. For recovery, we can either use the entire HierarchicalTree to recover the small array

at best effort, or use the high layer(s) of HierarchicalTree to approximately recover the small array.

Data structure: As shown in Figure 2, the data structure of HierarchicalTree consists of 𝑙 layers:
𝐿1, · · · , 𝐿𝑙 . Each counter in 𝐿𝑖 contains 𝛿𝑖 bits. Two adjacent layers 𝐿𝑖 and 𝐿𝑖+1 are associated

in the following way: ^𝑖 adjacent counters in 𝐿𝑖 are associated with one counter in 𝐿𝑖+1. For
example, 𝐿𝑖 [0], · · · , 𝐿𝑖 [^𝑖 − 1] are associated with 𝐿𝑖+1 [0]. We call 𝐿𝑖+1 [0] the parent counter of
𝐿𝑖 [0], · · · , 𝐿𝑖 [^𝑖 − 1]. Each layer 𝐿𝑖 has 𝑛𝑖 counters, where 𝑛𝑖+1 = ⌈𝑛𝑖/^𝑖⌉. In addition, each counter

𝐿𝑖 [𝑗] (except the counters in the highest layer) uses a 1-bit indicator 𝐼𝑖 [𝑗] to record whether it

overflows.

Compression: To compress a small array
¤A𝑖 of𝑤 counters, we build an empty HierarchicalTree

that has 𝑛1 = 𝑤 counters in the first layer. Then we sequentially insert each counter in
¤A𝑖 into the

HierarchicalTree. To insert the 𝑗𝑡ℎ counter
¤A𝑖 [𝑗], we increment 𝐿1 [𝑗] by ¤A𝑖 [𝑗]. If 𝐿1 [𝑗] overflows,

i.e., ¤A𝑖 [𝑗] ⩾ 2
𝛿1
, we perform the following carry-in operation: we set the overflowed counter

𝐿1 [𝑗] to ¤A𝑖 [𝑗]%2𝛿1 , set its 1-bit indicator 𝐼1 [𝑗] to true, and then increment its parent counter

by ⌊ ¤A𝑖 [𝑗]/2𝛿1⌋. In this way, the parent counter merges its child counters by summing up their

overflowed values, which is a lossy process. If the parent counter does not overflow, the carry-

in operation ends; otherwise, we repeat the carry-in operation on the parent counter. In our

implementation, we use SIMD to accelerate the compression procedure (see § 6.3).

Best recovery: To recover a small array at best effort (using the entire HierarchicalTree), we
first build an auxiliary HierarchicalTree. The auxiliary HierarchicalTree has the same shape as the

compressed HierarchicalTree, but each of its counter contains 32 bits. We first set the 𝑙𝑡ℎ layer of

the auxiliary HierarchicalTree to 𝐿𝑙 , i.e., set 𝐿′𝑙 = 𝐿𝑙 . Next, we recover the counters of the auxiliary

HierarchicalTree layer by layer from 𝐿′
𝑙−1 to 𝐿

′
1
. To recover the 𝑗𝑡ℎ counter in 𝐿′𝑖 , i.e., 𝐿

′
𝑖 [𝑗], we first

set 𝐿′𝑖 [𝑗] to 𝐿𝑖 [𝑗]. Then we check the 1-bit indicator of 𝐿𝑖 [𝑗] to see whether it overflows. If so, we

add 𝐿′𝑖 [𝑗] by 𝐿′𝑖+1 [⌊ 𝑗/^𝑖⌋] × 2
𝛿𝑖
, where 𝐿′𝑖+1 [⌊ 𝑗/^𝑖⌋] is the parent counter of 𝐿′𝑖 [𝑗]. The recovery

process is repeated layer by layer. Finally, we get the recovered small array, which is 𝐿′
1
.

Approximate recovery: The recovery procedure of TreeEncoding can be flexible. We can just

use high layer(s) of HierarchicalTree to approximately recover the small array. To recover from a

partial HierarchicalTree, we just perform the basic recovery process above, and treat the values of

the counters in the missing layers as zero.

Discussion: TreeEncoding cannot guarantee exact recovery, but under good choice of parameters,

it can achieve nearly lossless recovery. For each parent counter, we define it as a pure counter if
it records the overflowed value of only one child counter. We can see that only when all parent

counters are pure can TreeEncoding achieve exact recovery. This is because each non-pure counter

merges the overflowed values of child counters by summing them up, which is a lossy process. For

2-layer HierarchicalTrees (𝑙 = 2), we can modify the merging method to take the maximum among

all overflowed values, so as to reduce the error. We will empirically analyze the compression error

of TreeEncoding in Table 3.

Example (Figure 2):We use an example to show how to use TreeEncoding to compress and recover

a small array. We use a HierarchicalTree consisting of 𝑙 = 2 layers, both of which use 2-bit counters

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:8 Zirui Liu et al.

2 0 1 5 0 9 11 3 5 0 3 9

HierarchicalTree

Compress

32-bit counters

2 0 1 1 0 1 3 3 1 0 3 1

0 0 0 1 0 1 1 0 1 0 0 1
1-bit indicators

2-bit counters
𝐿!

0 1 2 2 1 2
2-bit counters

𝐿"

𝐼!

Original Sketch

𝜅! = 2

Partial HierarchicalTree
0 0 0 1 0 1 1 0 1 0 0 1

0 1 2 2 1 2𝐿"

𝐼!

�̇�" 0 ~�̇�"[11]

Approximately Recover

0 0 0 4 0 8 8 0 4 0 0 8

0 1 2 2 1 2𝐿"#

𝐿!#

32-bit
counters

Auxiliary HierarchicalTree

approximately recovered sketch

Best Recover add 𝐿!

only use 𝐿#

2 0 1 5 0 9 11 3 5 0 3 9

Fig. 2. Example of the TreeEncoding Algorithm.

(𝛿1 = 𝛿2 = 2), and we set ^1 = 2. 1) Compression: To compress the small array
¤A𝑖 , we sequentially

insert each of its counter into the empty HierarchicalTree. Specifically, to insert
¤A𝑖 [0] = 2, we

increment 𝐿1 [0] by 2. To insert
¤A𝑖 [3] = 5, we increment 𝐿1 [3] by 5. Since 𝐿1 [3] overflows, we

perform the carry-in operation: we set 𝐿1 [3] = 5%4 = 1, set the 1-bit indicator of 𝐿1 [3] to true,
and increment the parent counter 𝐿2 [1] by ⌊5/4⌋ = 1. 2) Approximate recovery: We use 𝐿2
and the 1-bit indicator of 𝐿1 to approximately recover the small array. First, we build an auxiliary

HierarchicalTree with 32-bit counters, and set its second layer 𝐿′
2
to 𝐿2. Then we sequentially recover

each counter in 𝐿′
1
. Specifically, to recover 𝐿′

1
[0], we first set it to 𝐿1 [0]. As 𝐿1 is missing, we set

𝐿′
1
[0] = 0. As 𝐿1 [0] does not overflow, its recovered value is 0. To recover 𝐿′

1
[3], we first set

𝐿′
1
[3] = 0. As 𝐿1 [3] overflows, we add 𝐿′1 [3] by 𝐿′2 [1] × 4 to get 𝐿′

1
[3] = 4, where 𝐿′

2
[1] is the parent

counter. Finally, we get the approximately recovered array (𝐿′
1
). 3) Best recovery: We can use the

entire HierarchicalTree to recover the array at best effort. In this example, if we add 𝐿1 to 𝐿
′
1
, the

recovered array will be exactly the original array.

[Optional] ShiftBfEncoder optimization (Figure 3): We propose a smart technique, namely

ShiftBfEncoder (Shifting Bloom filter Encoder), to compress the 1-bit indicators by >10× (see

Figure 6(d)). We notice that in practice, only a few counters overflow, so the 1-bit indicators are

very sparse. As shown in Figure 3, ShiftBfEncoder is also a bit string. To encode a 1-bit indicator, we

first divide the indicator into many consecutive groups, each of which contains 𝑥 bits (𝑥 = 4 in our

example). For each group, we hash it to 𝛾 positions in the ShiftBfEncoder, which is implemented by

hashing the group ID 𝛾 times (𝛾 = 2 in our example). We insert this group into ShiftBfEncoder by

performing bitwise OR operation in the 𝛾 positions. To recover a 1-bit indicator, we query each

group in ShiftBfEncoder: We recover this group by performing bitwise AND operation on its 𝛾

hashed values. As shown in Figure 3, to encode a group 0100, we locate its two hashed positions

0010 and 0000, and perform bitwise OR operation on them: 0100|0010 = 0110 and 0100|0000 = 0100.

To recover this group, we perform bitwise AND operation on its two hashed positions to get

0110&0100 = 0100.

ShiftBfEncoder can be further optimized. Notice that ShiftBfEncoder has false positive error

incurred by hash collisions: Consider a given group with true value 0000, if the values of its two

hashed positions are 1010 and 1000, its recovered value will be 1010&1000 = 1000, where an error

occurs at the first bit. We can reduce this error by adding more hashes, but this will reduce the

sparsity of ShiftBfEncoder, degrading overall accuracy. We observe that an error that occurs at

higher layer of HierarchicalTree has more serious impact than an error occurs at lower layer, because

higher layer records higher significant bits of the original counters. Thus, we propose to use more

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:9

Decoding

··· 0000 0100 ?? ···

Encoding 1-bit indicator
··· 0000 0100 0001 ···

Group

0 0010 001000 0000 0

Hash

OR OR
0 0110 001000 0100 0

ShiftBfEncoder

··· 0000 ?? ?? ···
Group

0 0110 001100 0100 0
Hash

AND

1-bit indicator

Fig. 3. Example of the ShiftBfEncoder algorithm.

hashes for the groups in higher layer, and use fewer hashes for the groups in lower layer. In our

implementation, each group in the 𝑖𝑡ℎ layer uses 𝑖+1 hashed positions. In this way, the groups in

higher layer will have fewer errors.

Linear property: TreeEncoding keeps the linear property. In our implementation, instead of

building 𝑑 HierarchicalTrees with 𝑛1 = 𝑤 to compress each array
¤A𝑖 , we build one HierarchicalTree

with 𝑛1 = 𝑑 ×𝑤 to compress the 𝑑 arrays
¤A1, · · · , ¤A𝑑 . Let𝐶𝑇 (𝑆) be the HierarchicalTree of sketch 𝑆 .

To aggregate two HierarchicalTrees 𝐶𝑇 (𝑆1) and 𝐶𝑇 (𝑆2), we sum up every two counters in the same

position, during which if a resulted counter overflows, we perform the carry-in operation to update

the parent counter and set the indicator/ShiftBfEncoder. We merge the indicators/ShiftBfEncoders

of 𝐶𝑇 (𝑆1) and 𝐶𝑇 (𝑆2) by performing bitwise OR operation. The resulted HierarchicalTree 𝐶𝑇 (𝑆1) +
𝐶𝑇 (𝑆2) is exactly the HierarchicalTree built from 𝑆1 + 𝑆2, namely 𝐶𝑇 (𝑆1) +𝐶𝑇 (𝑆2) = 𝐶𝑇 (𝑆1 + 𝑆2).

3.3 The SketchSensing Algorithm
Compression: To compress a large array

¥A𝑖 of𝑤 counters, we first round all counters down to the

multiple of one predefined parameter 𝑟 (called rounding parameter). For example, if 𝑟 = 4, a counter

with the value of 69will be rounded to 68. This process reduces the information of the original array.

Next, we evenly split
¥A𝑖 into 𝑓 fragments (called original fragments), each of which has𝑚 = 𝑤

𝑓

counters. We generate the sensing matrix 𝜙 in compressive sensing from a random seed. Given a

predefined compressing ratio _, the size of 𝜙 should be𝑚 ×𝑚′
where𝑚′ = 𝑚

_
. Finally, we compress

the 𝑓 original fragments into 𝑓 smaller fragments (called sensing fragments) by multiplying each

original fragment with 𝜙 . In this way, each original fragment is compressed by _ times, and thus

the original array is compressed by _ times.

SketchSensing

Compress

32-bit countersOriginal Sketch Sensing Fragments

�̈�! 0 ~�̈�! 11

Approximately Recover

0 80 0 0 65 0 0 0 0 71 0 0

0 80 0 0 64 0 0 0 0 68 0 0
Round down r = 4

×× ×

sensing fragments
64 640 80 0 68

𝜙

0 80 1 0 1 1
1 1 0 0

sensing matrix

64 64 Missing

64 640 80

0 80 0 0 64 0 0 0
Minimize 𝐿"Decode

Splice

A part of sensing fragments

𝜙 𝜙

1 1
0 1
1 0
1 0

1 1
0 1
1 0
1 0

1 1
0 1
1 0
1 0

sensing
matrix

𝜙T

estimated freq. = 68Query

0 80 0 0 64 0 0 0 ∞ ∞ ∞ ∞

0 80 0 0 64 0 0 0 ∞ ∞ ∞ ∞
0 0 68 0 ∞ ∞ ∞ ∞ 0 0 0 76

e

�̈�!

�̈�"
�̈�#

Fig. 4. Example of the SketchSensing Algorithm.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:10 Zirui Liu et al.

Recovery: To recover a large array, we first decode each original fragment from the sensing

fragment and sensing matrix. As described in § 2.3, this can be done by solving an 𝐿1 optimization

problem. Compressive sensing guarantees that the original fragment can be perfectly recovered if

it is sparse enough. Finally, we assemble the decoded fragments into a complete array.

Approximate recovery: The recovery procedure of SketchSensing can be flexible. We can just use

a partial set of sensing fragments to approximately recover a sketch. An approximately recovered

sketch consisting of 𝑑 incomplete arrays can also answer queries: For each query, it accesses 𝑑

hashed counters, some of which might be missing. We consider the value of the missing counters as

invalid, and report the minimum value among other valid counters. As long as one of the 𝑑 hashed

counters is valid, the recovered sketch can report a valid result. Our theoretical and experimental

results show that a sketch recovered from 70% sensing fragments can report 95% valid results and

provide accurate estimation (ARE < 0.1).

Example (Figure 4): We use an example to show how to use SketchSensing to compress and

approximately recover a large array, and how to query an approximately recovered sketch. We set

𝑟 = 4, 𝑓 = 3, and _ = 2. 1) Compression: To compress the large array
¥A𝑖 , we first round all of its

counters down to the multiple of the rounding parameters (𝑟 = 4), and then evenly split
¥A𝑖 into

𝑓 = 3 original fragments, each of which has
𝑛
𝑓
= 4 counters. We generate a 4 × 2 sensing matrix

𝜙 , and multiply each fragment with 𝜙 to get the sensing fragments. 2) Approximate recovery:
We use the first two sensing fragments to approximately recover the large array. We decode each

original fragment by solving 𝐿1 optimization, and assemble the decoded fragments into one array.

As the third sensing fragment is missing, we treat the counters in the third original fragment as

invalid. 3) Query an approximately recovered sketch: Suppose we have an approximately

recovered sketch with two arrays. To query item 𝑒 , we locate its two hashed counters, where the

first counter is invalid, so we return the value of the second hashed counter 68 as the estimated

frequency.

Linear property: SketchSensing keeps the linear property. Let 𝐶𝑆 (𝑆) be the concatenation of all

sensing fragments of sketch 𝑆 . Since the compression operation of SketchSensing is just matrix

multiplication, which satisfies the distributive law. Therefore, we naturally have 𝐶𝑆 (𝑆1) +𝐶𝑆 (𝑆2) =
𝐶𝑆 (𝑆1 + 𝑆2).

3.4 Compressing Other Sketches
In addition to CM, TreeSensing can also compress other sketches, such as CU [40], Count [49],

CMM [41], CML [42], CSM [43], and etc. We briefly explain how to use TreeSensing to compress

them.

Count [37]: Count sketch can provide unbiased estimation, which uses the same data structure

as CM. Besides, it has 𝑑 hash functions 𝑠1 (·), · · · , 𝑠𝑑 (·), each of which maps an item to +1 or −1
uniformly. To insert item 𝑒 , Count adds each hashed counter A𝑖 [ℎ𝑖 (𝑒)] by 𝑠𝑖 (𝑒). To compress the

Count sketch, we modify the separating strategy by separating counters according to their absolute

values. In TreeEncoding, a counter of HierarchicalTree can overflow positively or negatively, in

which cases we just perform the carry-in operation by adding or decreasing its parent counter. In

SketchSensing, we modify the rounding down operation to round each counter towards zero. For

example, if the rounding parameter 𝑟 = 4, a counter with the value of −63 will be rounded to −60.
The other procedures of TreeSensing remain unchanged.

CU [40], CMM [41], CML [42], and CSM [43]: These sketches devise many smart techniques to

improve accuracy. They all use the same data structure as CM. For example, CU sketch introduces

a conservative update (CU) strategy by only incrementing the smallest counter(s) in insertion. We

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:11

can directly use TreeSensing to compress these sketches, where we use smaller 𝜏 and 𝑟 because

the counters in these sketches are generally smaller than in CM.

0.5 1.0 1.5 2.0
Memory Usage(MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

 R
at

e

Exp. Tree
Theo. Tree
S-Theo. Tree
Exp. CM
Theo. CM

(a) TE correct rate (Thm. 4.1)

0 50 100 150 200
εV

0.0

0.2

0.4

0.6

0.8

1.0

G
ua

ra
nt

ee
d

Pr
ob

ab
ili

ty
Exp. Tree
Theo. Tree
S-Theo. Tree
Exp. CM
Theo. CM

(b) TE error bound (Thm. 4.2)

0.0 0.2 0.4 0.6 0.8 1.0
μ

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

 Q
ue

ry
 R

at
e

(
)

Experimental
Theoretical

(c) SS valid query (Thm. 4.3)

0 100 200 300 400
εV

0.0

0.2

0.4

0.6

0.8

1.0

G
ua

ra
nt

ee
d

Pr
ob

ab
ili

ty

Exp. μ=0.8
Theo. μ=0.8
Exp. μ=0.6
Theo. μ=0.6

(d) SS error bound (Thm. 4.4)

Fig. 5. Evaluation of theoretical results (“S-Theo.” refers to the simplified theorems using ˆ\𝑖).

4 MATHEMATICAL ANALYSIS
4.1 Analyses of TreeEncoding
We first derive the correct rate of a CM sketch recovered using TreeEncoding in Theorem 4.1. Then

we derive the error bound of a recovered CM sketch in Theorem 4.2.

Consider a data stream with 𝑁 distinct items 𝑒1, · · · , 𝑒𝑁 . Consider the 𝑗𝑡ℎ array of a CM sketch

and its HierarchicalTree 𝑇𝑗 , which is a sub-part of the entire HierarchicalTree. Let \𝑖, 𝑗 be the ratio
of distinct items whose carry-in operations end at the 𝑖𝑡ℎ layer in 𝑇𝑗 . We have

∑𝑙
𝑖=1 \𝑖, 𝑗 = 1. Note

that for two different arrays of a CM sketch: A 𝑗1 and A 𝑗2 , \𝑖, 𝑗1 might not be equal to \𝑖, 𝑗2 . This is

because for an item, where its carry-in operation stops will also depend on the counts of other

distinct items hashed to the same or nearby counters. In other words, \𝑖, 𝑗 is decided by not only

the data distribution, but also the hash function ℎ 𝑗 (·) of the 𝑗𝑡ℎ array.

Theorem 4.1. The correctness rate of the estimation for an arbitrary item satisfies C = 1 −∏𝑑
𝑗=1

(
1 − P𝑗

)
, where P𝑗 =

∑𝑙
𝑖=1

(
\𝑖, 𝑗 ·

∏𝑖
𝑘=1

𝑃𝑘,𝑗
)
and 𝑃𝑖, 𝑗 =

(
1 − 1

𝑛𝑖

)𝑁 ∑𝑙
𝑘=𝑖

\𝑘,𝑗−1
.

Proof. Let 𝑃𝑖, 𝑗 denote the probability that one arbitrary counter at the 𝑖𝑡ℎ layer of the Hierar-
chicalTree 𝑇𝑗 records the exact value, i.e., no hash collisions occur in this counter. Note that only the
items whose carry-in operations end at the 𝑖𝑡ℎ layer or above the 𝑖𝑡ℎ layer can have hash collisions
with this counter. The number of items whose carry-in operations reach the 𝑖𝑡ℎ layer is 𝑁 · ∑𝑙

𝑘=𝑖
\𝑘,𝑗 .

As each of these items is uniformly hashed into one of the 𝑛𝑖 counters in the 𝑖𝑡ℎ layer, we have

𝑃𝑖, 𝑗 =

(
1 − 1

𝑛𝑖

)𝑁 ∑𝑙
𝑘=𝑖

\𝑘,𝑗−1
.

Let P𝑗 denote the expectation of the probability that an arbitrary counter in the 𝑗𝑡ℎ array of the
recovered CM sketch reports the exact frequency of one item. For an item whose carry-in operation
ends at the 𝑖𝑡ℎ layer, its reported frequency is exact iff no hash collisions occur in its counters in layer
𝐿1, · · · , 𝐿𝑖 . Thus, we have P𝑗 =

∑𝑙
𝑖=1

(
\𝑖, 𝑗 ·

∏𝑖
𝑘=1

𝑃𝑘,𝑗
)
.

Let C denote the correctness rate of the estimation for one arbitrary item. Since this item has an
error iff there are collisions in all of its 𝑑 hashed counters, we have C = 1 − ∏𝑑

𝑗=1 (1 − P𝑗). □

Theorem 4.2. Given an item 𝑒𝑘 , its estimated frequency 𝑓𝑘 reported by a recovered HierarchicalTree
has the following error bound:

Pr

{���𝑓𝑘 − 𝑓𝑘

��� ⩽ 𝜖𝑉

}
⩾ 1 −

𝑑∏
𝑗=1

(
1

𝜖

𝑙∑︁
𝑖=1

\𝑖, 𝑗

𝑛𝑖

)
where 𝜖 is a small variable, 𝑓𝑘 is the real frequency of 𝑒𝑘 , and 𝑉 is the size of the data stream, i.e.,
𝑉 =

∑𝑁
𝑢=1 𝑓𝑢 .

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:12 Zirui Liu et al.

Proof. For HierarchicalTree 𝑇𝑗 , each of its layers 𝐿𝑖 can be considered to correspond with one

virtual hash function ℎ𝑖𝑗 (·) (1 ⩽ ℎ𝑖𝑗 (·) ⩽ 𝑛𝑖) that maps item into a counter in 𝐿𝑖 , which is determined

by the initial hash function ℎ 𝑗 (·) and the carry-in operations.

Let 𝐼𝑖, 𝑗,𝑘,𝑢 be an indicator variable, which is 1 if ℎ𝑖𝑗 (𝑒𝑘) = ℎ𝑖𝑗 (𝑒𝑢). Due to the pairwise independent
property of hash functions, we have E

(
𝐼𝑖, 𝑗,𝑘,𝑢

)
= 1

𝑛𝑖
.

Then we define a non-negative variable 𝑋𝑘,𝑗 as follows:

𝑋𝑘,𝑗 =

𝑙∑︁
𝑖=1

[
\𝑖, 𝑗 ·

𝑁∑︁
𝑢=1

(
𝑓𝑢 · 𝐼𝑖, 𝑗,𝑘,𝑢

)]
Note that if there is a collision between 𝑒𝑘 and 𝑒𝑢 in some layer, then the overestimation error of

𝑓𝑘 caused by 𝑒𝑢 because of this collision is at most 𝑓𝑢 . Therefore, 𝑋𝑘,𝑗 reflects an upper bound of

the expectation of the error caused by collisions happening at all the layers when querying an

arbitrary counter in the recovered sketch. Then we have 𝑓𝑘 ⩽ 𝑓𝑘 +min
𝑑
𝑗=1

(
𝑋𝑘,𝑗

)
.

The expectation of 𝑋𝑘,𝑗 can be calculated as follows:

E
(
𝑋𝑘,𝑗

)
=

𝑙∑︁
𝑖=1

[
\𝑖, 𝑗 ·

𝑁∑︁
𝑢=1

(
𝑓𝑢 · E

(
𝐼𝑖, 𝑗,𝑘,𝑢

))]
=

𝑙∑︁
𝑖=1

[
\𝑖, 𝑗 ·

𝑁∑︁
𝑢=1

𝑓𝑢 · 1

𝑛𝑖

]
=

𝑙∑︁
𝑖=1

[
\𝑖, 𝑗

𝑛𝑖
·𝑉

]
= 𝑉 ·

𝑙∑︁
𝑖=1

\𝑖, 𝑗

𝑛𝑖

According to the Markov inequality, we have:

Pr

{���𝑓𝑘 − 𝑓𝑘

��� ⩾ 𝜖𝑉

}
⩽ Pr

{(
𝑑

min

𝑗=1
𝑋𝑘,𝑗

)
⩾ 𝜖𝑉

}
=

𝑑∏
𝑗=1

Pr

{
𝑋𝑘,𝑗 ⩾ 𝜖𝑉

}
⩽

𝑑∏
𝑗=1

[
1

𝜖𝑉
· E

(
𝑋𝑘,𝑗

)]
=

𝑑∏
𝑗=1

(
1

𝜖

𝑙∑︁
𝑖=1

\𝑖, 𝑗

𝑛𝑖

)
□

Discussion: 1) In Theorem 4.1 and Theorem 4.2, \𝑖, 𝑗 is jointly determined by data distribution and

hash functions. We can simplify the form of \𝑖, 𝑗 by ignoring the effect of hash collisions. Specifically,

given an arbitrary item 𝑒𝑢 , suppose its frequency satisfies that 2

∑𝑙𝑢 −1
𝑖=1

𝛿𝑖 ⩽ 𝑓𝑢 < 2

∑𝑙𝑢
𝑖=1

𝛿𝑖
. Then we

assume all the 𝑑 carry-in operations of 𝑒𝑢 ends at the 𝑙𝑡ℎ𝑢 layer. In this way, for ∀𝑖 ∈ [1, 𝑙], we have
\𝑖,1 = · · · = \𝑖,𝑑 = ˆ\𝑖 , where ˆ\𝑖 is the ratio of distinct items whose carry-in operations end at the 𝑖𝑡ℎ

layer. Finally, we can simplify the two theorems by replacing \𝑖, 𝑗 with ˆ\𝑖 . 2) To get the theoretical

results of non-compressed CM sketch, we can set 𝑙 = 1 (in such case \1, 𝑗 = 1 for ∀𝑗) in Theorem 4.1

and Theorem 4.2. Afterwards, the two theorems will degenerate into the corresponding correct

rate and error bound of the non-compressed CM sketch.

Experimental analysis (Figure 5(a)-5(b)): We conduct experiments to validate Theorem 4.1

and Theorem 4.2, and compare HierarchicalTree with non-compressed CM sketch. To evaluate the

worst-case performance of TreeEncoding, we use Zipf dataset with the skewness of 0 (see details in

§ 6.1). We set 𝑑 = 3 and 𝑙 = 3. Figure 5(a) shows the experimental and theoretical correct rate of

HierarchicalTree and CM sketch.We can see that the theoretical results are highly consistent with the

experimental results for bothHierarchicalTree and non-compressed CM, andHierarchicalTree always
outperforms CM experimentally and theoretically. Figure 5(b) shows the guaranteed probability

(error bound). We can see that when 𝜖𝑉 > 30, the experimental results of HierarchicalTree are

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:13

close to the theoretical results, and HierarchicalTree also always outperforms CM experimentally
and theoretically. In addition, from Figure 5(a)-5(b), we observe that the simplified theorems of

TreeEncoding are almost the same as the original theorems, meaning that our assumption on
ˆ\𝑖 is

reasonable.

4.2 Analyses of SketchSensing
We derive the valid query rate of the approximate recovery process of SketchSensing in Theorem 4.3,

and derive the error bound of an approximately recovered CM sketch in Theorem 4.4.

Theorem 4.3. After decoding sensing fragments with a ratio of `, SketchSensing can report valid
results for an arbitrary item 𝑒𝑘 with a ratio of P = 1 − (1 − `)𝑑 , where 𝑑 is the number of arrays in a
sketch.

Proof. Let 𝐼𝑖 , · · · , 𝐼𝑑 be 𝑑 indicating variables where 𝐼𝑖 = 1 if the 𝑖𝑡ℎ hashed counter of 𝑒𝑘
A𝑖 [ℎ𝑖 (𝑒𝑘)] is valid. The approximately recovered sketch reports valid result for 𝑒𝑘 if and only if at

least one hashed counter is valid. Therefore, we have

P = Pr

{
𝑑∨
𝑖=1

(𝐼𝑖 = 1)
}
= 1 −

𝑑∏
𝑖=1

Pr {𝐼𝑖 = 0} = 1 − (1 − `)𝑑

□

Theorem 4.4. For an approximately recovered CM sketch using sensing fragments with a ratio of `,
when it reports a valid result for item 𝑒𝑘 , the estimated frequency 𝑓𝑘 has the following error bound:

Pr

{���𝑓𝑘 − 𝑓𝑘

��� ⩽ 𝜖𝑉

}
⩾ 1 −

(`

𝑤𝜖
+ 1 − `)𝑑 − (1 − `)𝑑

1 − (1 − `)𝑑
,

where 𝑓𝑘 is the real frequency of 𝑒𝑘 (suppose 𝑓𝑘 > 𝜏), 𝑉 is the size of the data stream, i.e., the number
of items in the data stream, and𝑤 is the number of counters in each array of the CM sketch.

Proof. Let A𝑖 [ℎ𝑖 (𝑒𝑘)] be the value of the 𝑖𝑡ℎ hashed counter of 𝑒𝑘 before performing the

rounding down operation. The expected number of items mapped to the 𝑖𝑡ℎ hashed counter is at

most 𝑓𝑘 + 𝑉
𝑤
. Thus, we have E (A𝑖 [ℎ𝑖 (𝑒𝑘)]) ⩽ E

(
A𝑖 [ℎ𝑖 (𝑒𝑘)]

)
⩽ 𝑓𝑘 + 𝑉

𝑤
.

According to the Markov inequality, we have

Pr {|A𝑖 [ℎ𝑖 (𝑒𝑘)] − 𝑓𝑘 | ⩾ 𝜖𝑉 } ⩽ E (A𝑖 [ℎ𝑖 (𝑒𝑘)]) − 𝑓𝑘

𝜖𝑉
⩽

1

𝜖𝑤

Next, according to the law of total probability and the Binomial theorem, we have

Pr

{���𝑓𝑘 − 𝑓𝑘

��� ⩾ 𝜖𝑉

}
=

𝑑∑︁
𝑖=1

Pr {𝜓𝑖 } · Pr
{���𝑓𝑘 − 𝑓𝑘

��� ⩾ 𝜖𝑉 | 𝜓𝑖

}
<

𝑑∑︁
𝑖=1

(
𝑑
𝑖

)
`𝑖 (1 − `)𝑑−𝑖

1 − (1 − `)𝑑
·
(
1

𝜖𝑤

)𝑖
=

(`

𝑤𝜖
+ 1 − `)𝑑 − (1 − `)𝑑

1 − (1 − `)𝑑

where𝜓𝑖 denotes the event that there are 𝑖 valid counters among the 𝑑 hashed counters of 𝑒𝑘 . □

Experimental analysis (Figure 5(c)-5(d)): We conduct experiments to validate Theorem 4.3

and Theorem 4.4. We use the Zipf dataset with the skewness of 0 and set 𝑑 = 3 (see details in

§ 6.1). Figure 5(c) shows the experimental and theoretical valid query rate of SketchSensing under

different fragment decoding ratio `. We can see that the theoretical results are highly consistent

with the experimental results. Figure 5(d) shows the guaranteed probability (error bound). We can

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:14 Zirui Liu et al.

see that higher decoding ratio ` goes with higher guaranteed probability, and when 𝜖𝑉 > 55, the

experimental results of SketchSensing are close to the theoretical results.

5 APPLICATIONS
5.1 Distributed Measurement
Consider a distributed measurement system with 𝑛 measurement nodes and one central analyzer.

In each measurement period, each node 𝑁𝑖 builds a local sketch 𝑆𝑖 . At the end of each measurement

period, each node 𝑁𝑖 uses TreeSensing to compress its local sketch to 𝐶 (𝑆𝑖), and then sends

the compressed sketch to the analyzer. The analyzer aggregates the 𝑛 compressed sketches into

one

∑𝑛
𝑖=1𝐶 (𝑆𝑖). As TreeSensing keeps the linear property, we have

∑𝑛
𝑖=1𝐶 (𝑆𝑖) = 𝐶 (∑𝑛

𝑖=1 𝑆𝑖).
Afterwards, the analyzer performs once recovery operation to get

∑𝑛
𝑖=1 𝑆𝑖 , and uses this aggregated

sketch to answer queries. In this scenario, we can flexibly choose to use the two components of

TreeSensing. For applications that only care about the accuracy of frequent items, we can only use

SketchSensing. We can also dynamically choose appropriate compression ratio of SketchSensing and

number of transmitted layers of TreeEncoding to strike a balance between bandwidth and accuracy.

Privacy-preserving distributed measurement: In the above scenario, an attacker inside the

network may eavesdrop on the compressed sketches, making the measurement process not secure.

This problem is significantly severe in mobile scenarios such as wireless sensor network (WSN)

data aggregation [69, 70], smart meter data collection [71, 72], and mobile users data collection

[31, 73] because of the open wireless medium. Next, we leverage the linear property to combine

TreeSensing with homomorphic encryption to achieve efficient privacy-preserving distributed

measurement. Homomorphic encryption is a kind of encryption method that allows operations

on plaintext to be performed by operating on corresponding ciphertext: Let 𝐸 (𝑥) denote the

encryption of the message 𝑥 using a public-key. 𝐸 (𝑥) satisfies that 𝐸 (𝑥 + 𝑦) = 𝐸 (𝑥) · 𝐸 (𝑦). Typical
homomorphic cryptosystems include Benaloh [74], Paillier [75], and more [76]. In our design, each

node first encrypts the compressed sketch 𝐶 (𝑆𝑖) into 𝐸 (𝐶 (𝑆𝑖)) using a public-key, and then sends

the encrypted message to the central analyzer. To guarantee efficiency, we only encrypt a small

part of the compressed sketch, e.g., several counters in each sensing fragment
4
, or some counters

in high layers of HierarchicalTree. Note that we do not encrypt the ShiftBfEncoder. The central

analyzer multiplies the 𝑛 received messages to get

∏𝑛
𝑖=1 𝐸 (𝐶 (𝑆𝑖)), and then decrypts this ciphertext

using the secret-key and recovers the aggregated sketch. From the properties of homomorphic

encryption, we have

∏𝑛
𝑖=1 𝐸 (𝐶 (𝑆𝑖)) = 𝐸 (∑𝑛

𝑖=1𝐶 (𝑆𝑖)). As TreeSensing keeps the linear property,

we have

∑𝑛
𝑖=1𝐶 (𝑆𝑖) = 𝐶 (∑𝑛

𝑖=1 𝑆𝑖). And thus, we have

∏𝑛
𝑖=1 𝐸 (𝐶 (𝑆𝑖)) = 𝐸 (𝐶 (∑𝑛

𝑖=1 𝑆𝑖)). Therefore,
the central analyzer just performs one decryption and one recovery operation.

5.2 Distributed Machine Learning
Typical distributed machine learning (DML) system consists of multiple workers and one parameter

server. Each worker proposes gradient based on its own data shard, and then the parameter server

aggregates gradients from all workers and broadcasts model update. To speedup DML, people try to

compress the gradients using some low-precision methods, so as to reduce the communication time

[25, 77–83]. SketchML [25] uses a Quantile sketch [84] to encode each gradient value into an integer

within a range ([0,𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒]), and uses a MinMax sketch to compactly record these integers.

With TreeSensing, we can build a larger MinMax sketch on each worker, and then compress it into

small size to send. In real-world DML systems, we have the following two observations: 1) Most

counters of a MinMax sketch are either unused or have small values. This is because the gradient

values usually conform to a nonuniform distribution, where most of the values are close to 0 [25].

4
A sensing fragment cannot be decoded if some of its counters are missing.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:15

2) Small gradients are less important than large gradients for model convergence, so small counters

in MinMax sketch are less important than large counters. Based on the two observations, we only

use SketchSensing to compress the large sketch, and discard the small counters. Before compression,

we not only set the counters with small values to zero, but also set the unused counters to zero.
This is because the unused counters are not hashed by any key, and thus will never be accessed in

query, so we can simply ignore them to improve sparsity.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
Platform: We conduct experiments on a CPU platform (§ 6.2-§ 6.6) and an FPGA platform (§ 6.7).

The CPU platform is an 18-core 4.2GHz CPU server (Intel i9-10980XE) with 128GB 3200MHz

DDR4 memory and 24.75MB L3 cache. The FPGA platform (Virtex-7 VC709) is integrated with

XC7VX690T-2FFG1761I
5
with 433200 Slice LUTs, 866400 Slice Register, 1470 Block RAM Tile (i.e.,

52.9Mb on-chip memory), 850 Bonded IOB, and 32 BUFGCTRL.

Implementation and settings: On CPU, we implement TreeSensing with C++ and build it

with g++ 7.5.0. We use 32-bit Murmur Hash [86] and BOB Hash [87] with different seeds. For

TreeEncoding, we list three recommended shapes of HierarchicalTree in Table 2. We also implement

three existing sketch compression algorithms: Cluster-Reduce [26], Hokusai [35], and Elastic [36].

We apply TreeSensing and existing algorithms on six sketches: CM [1], CU [40], Count [37], CMM

[41], CML [42], and CSM [43]. In addition, we use C++ to simulate a distributed machine learning

system and deploy SketchML [25] in it, where we use TreeSensing and Cluster-Reduce [26] to

compress the MinMax sketch [25].

Table 2. Parameters of three shapes of HierarchicalTree.

Shape 𝑙 𝛿1 𝛿2 𝛿3 ^1 ^2 SIMD Ratio
#1 2 4 8 − 4 − × 5.0

#2 3 4 4 4 2 2 × 5.0

#3 2 8 16 − 8 − ✓ 3.0

Datasets: For experiments on data streams, we use two real-world datasets and one synthetic

dataset. 1) CAIDA [88]: IP trace datasets collected on backbone links by CAIDA 2018. We use two

traces of different sizes: a small-scale 1-minute trace containing about 30M items, and a large-scale

1-hour trace containing about 1.5G items. 2) Criteo [89]: An online advertising click data stream

consisting of about 45M ad impressions. 3) Zipf: We use Web Polygraph [90] to generate multiple

datasets according to Zipf distribution [48] with different skewness. Each dataset has 32M items. For

experiments on machine learning (§ 6.6), we use the Twin gas sensor arrays dataset download
from UCI Machine Learning Repository [91], which contains 640 instances and 10

5
features.

Metrics: 1) Average Relative Error (ARE): 1

|𝛹 |
∑

𝑒𝑖 ∈𝛹 |𝑓𝑖 − ˆ𝑓𝑖 |/𝑓𝑖 , where 𝑓𝑖 is the real frequency of

item 𝑒𝑖 , �̂�𝑖 is the estimated frequency, and𝛹 is the query set. For Top-𝑘 ARE,𝛹 consists of the top-𝑘

frequent items (𝑘 = 500 by default). For Full ARE,𝛹 consists of all items. 2) Compression Error
(CE): 1

𝑑×𝑤
∑𝑑

𝑖=1

∑𝑤
𝑗=1

���Â𝑖 [𝑗] − A𝑖 [𝑗]
���, where Â𝑖 is the 𝑖

𝑡ℎ
array of the recovered sketch. 3) Loss:

For classification (using logistic regression), we use cross entropy. For linear regression, we use

L2-norm.

5
“XC7VX690T-2FFG1761I” is the manufacturer part number of a Xilinx FPGA [85].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:16 Zirui Liu et al.

6.2 Impact of Algorithm Parameters
By default, we use CM sketch and the 1-minute CAIDA dataset, and set 𝜏 = 4096 and 𝑟 = 4.

For experiments reporting top-𝑘 ARE, we only use SketchSensing. For experiments reporting full

ARE, we use both TreeEncoding and SketchSensing, where we use the HierarchicalTree of Shape #1
(without SIMD) and set _ = 10.

Performance of three recommended HierarchicalTrees (Figure 6(a)): We find that all the

three shapes achieve similar accuracy as the non-compressed sketch. When compressing a 13.2KB

sketch, the ARE of the three shapes are 0.0113, 0.01012, and 0.0100, while that of the non-compressed

sketch is 0.0100.

Impact of HierarchicalTree shape (Figure 6(b)): We find that a HierarchicalTree with smaller 𝑙

and^ has smaller error. This is because larger 𝑙 and^ go with more collisions at high layer. We fix the

memory of HierarchicalTree to be about 1.4MB, and vary the shape of HierarchicalTree by changing

𝑙 , ^, and 𝛿 (suppose all layers use the same ^). We can see when 𝑙 = 2 and ^ = 4, TreeEncoding has

< 1 compression error. In practice, we recommend to use a 2-layer HierarchicalTree with ^ < 8.

Impact of TreeEncoding compression ratio (Figure 6(c)):We find that the compression ratio

of TreeEncoding can be roughly tuned by varying the shape of HierarchicalTree. We set 𝑙 = 2,

^1 = 4, and change 𝛿1 and 𝛿2 from 2 to 8 to achieve a compression ratio from 2.8 to 8.0. We can see

that in general, smaller compression ratio goes with smaller ARE, and when compression ratio is

<5.4, TreeEncoding achieves nearly lossless recovery. More finer-grained compression ratios can be

achieved by further changing 𝑙 and ^.

2.4 6.0 9.6 13.2
Memory (MB)

10
−2

10
−1

10
0

Fu
ll

A
R

E

Shape #1
Shape #2
Shape #3
Non-compress

(a) Shapes

2 3 4 5 6 7 8
κ

10
−1

10
0

10
1

10
2

10
3

 C
om

pr
es

si
on

 E
rr

or Layer = 2
Layer = 3

Layer = 4

(b) Shapes (𝑙 and ^)

3 4 5 6 7 8
Ratio

10
−3

10
−2

10
−1

10
0

Fu
ll

A
R

E

4.8 MB
9.6 MB

14.4 MB
19.2 MB

(c) Compression ratio

10 20 30 40 50 60
ShiftBfEncoder Memory (KB)

10
−2

10
−1

10
0

Fu
ll

A
R

E

6.0 MB
8.4 MB

10.8 MB
13.2 MB

(d) ShiftBfEncoder

2.4 6.0 9.6 13.2
Memory (MB)

10
−4

10
−3

10
−2

10
−1

10
0

A
R

E

L3
L2+L3

L1+L2+L3

(e) Flexibility

Fig. 6. Accuracy of TreeEncoding.

2 4 6 8 10
Compression Ratio (λ)

0.0

0.5

1.0

1.5

To
p-

k
A

R
E

(×
10

−3
) 0.72 MB

0.96 MB
1.2 MB
1.44 MB

(a) Compression ratio

0.72 0.96 1.20 1.44
Memory (MB)

0.0

0.5

1.0

1.5

To
p-

k
A

R
E

(×
10

−3
) r = 1

r = 2
r = 4
r = 8

(b) Rounding Param.

0.85 0.90 0.95 1.00
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

D
ec

od
in

g
Su

cc
es

s
R

at
e

L1
OMP
IRLS

(c) Recovery Algos.

50 60 70 80 90 100
Reconstruction rate (%)

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

 Q
ue

ry
 R

at
e

d = 2
d = 3

d = 4
d = 5

(d) Flexibility

50 60 70 80 90 100
Reconstruction rate (%)

10
−3

10
−2

10
−1

10
0

10
1

To
p-

k
A

R
E

d = 2
d = 3
d = 4
d = 5

(e) Flexibility

Fig. 7. Accuracy of SketchSensing.

Impact of the memory of ShiftBfEncoder (Figure 6(d)):We find that the memory of ShiftBfEn-

coder is negligible. We can see that to compress a 13.2MB sketch, a 40KB ShiftBfEncoder suffices

for high accuracy. The ARE of a non-compressed 13.2MB sketch is 0.01 (see Figure 6(a)), while the

ARE of TreeEncoding using 40KB ShiftBfEncoder is 0.012. By contrast, the 1-bit indicators need

about 600KB memory, which is 15× larger than ShiftBfEncoder.

Flexibility of TreeEncoding (Figure 6(e)): We find that an approximately recovered sketch from

a partial HierarchicalTree can provide accurate estimation. We use the HierarchicalTree of Shape
#2, and recover the sketch using the highest layer (L3), the highest two layers (L2+L3), and the

entire HierarchicalTree (L1+L2+L3), respectively. Here, the query set consists of the items with real

frequencies larger than 256. We can see that the approximately recovered sketches using L3 and

L2+L3 achieve about 0.1 and 0.01 ARE, respectively.

Compression error of TreeEncoding (Table 3): We find that TreeEncoding has always <0.85 CE

and <0.03 ARE, meaning that although TreeEncoding is not lossless, the recovered sketch has small

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:17

Table 3. Compression error of TreeEncoding.

Shape Memory Merge Pure Ratio CE ARE

#1

(2 layers)

9MB sum 0.85 0.028

9MB max

98.08%

0.47 0.027

12MB sum 0.48 0.012

12MB max

98.89%

0.27 0.011

#2

(3 layers)

9MB sum 99.77% 0.30 0.026

12MB sum 99.87% 0.17 0.011

error and can provide very high accuracy. We can see that >98% parent counters are pure counters,

which is the reason why TreeEncoding achieves almost similar accuracy as lossless methods. We

also observe that the maximum merging method has smaller error than sum merging. Thus, when

using 2-layer HierarchicalTree (𝑙 = 2), we recommend to use the maximum merging method.

Impact of SketchSensing compression ratio (_) (Figure 7(a)):We find that SketchSensing always
achieves similar accuracy as the non-compressed sketch under different compression ratio. This

is because under current separating threshold, the large sketch is sparse enough for compressive

sensing to achieve lossless recovery.

Impact of rounding parameter (𝑟) (Figure 7(b)): We find that the optimal value of 𝑟 is 4. When

using small memory (<1.2MB), larger 𝑟 goes with smaller top-𝑘 ARE, because the rounding down

operation offsets the overestimation error of CM. When using large memory (1.44MB), the ARE of

𝑟 = 8 is larger than that of using small 𝑟 . This is because larger 𝑟 leads to more underestimation

error. In practice, we recommend to set 𝑟 to a small value, such as 4.

Table 4. Performance of SketchSensing (‘SR’ refers to the success rate of decoding each sensing fragment).

Matrix Algo. Top-𝑘 ARE (×10−3) CE
(×10−2) SR

𝑘=500 𝑘=1000 𝑘=1500

BM

L1 1.76 3.03 4.27 0.00 100%

IRLS 1.69 2.93 4.12 3.10 100%

OMP 1.74 3.29 4.50 1.23 99.2%

GM

L1 1.76 3.03 4.27 0.00 100%

IRLS 1.96 3.24 4.67 2.98 97.8%

OMP 2.28 3.69 3.69 1.22 95.8%

Impact of sensingmatrix and recovery algorithm (Table 4 and Figure 7(c)):We find Bernoulli

Matrix (BM) and L1 optimisation are the most suitable sensing matrix and recovery algorithm

for SketchSensing. We evaluate SketchSensing under different sensing matrices (BM [57], GM [56])

and recovery algorithms (L1 [61], OMP [62], IRLS [63]). We can see that SketchSensing has high

accuracy across all sensing matrices and recovery algorithms, where the combination of BM/GM

and L1 achieves lossless recovery. From Figure 7(c), we also observe that L1 is better than OMP and

IRLS. In practice, we recommend to use BM and L1 because they have relatively higher accuracy,

and BM only involves fast integer calculations (whereas GM involves float calculations).

Flexibility of SketchSensing (Figure 7(d)-7(e)):We find that an approximately recovered sketch

from a part of sensing fragments can also provide accurate estimation. We can see that when 𝑑 = 5,

a sketch recovered from 70%/90% sensing fragments can report >95%/>99.9% valid results with

<0.1/<0.005 top-𝑘 ARE.

Impact of separating threshold (𝜏) (Figure 8(a)):We find that the optimal value of the separating

threshold is from 256 to 2048. When 𝜏 is small, the large sketch is not sparse enough for compressive

sensing to achieve lossless recovery, and thus both top-𝑘 ARE and full ARE become large. When 𝜏

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:18 Zirui Liu et al.

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Separating Threshold (τ)
10

−7

10
−4

10
−1

10
2

10
5

A
R

E

Full
Top-500

Top-1K
Top-2K

(a) Separating TH. (𝜏)

k=100 k=500 k=5K k=50K Full
Query Set (Top-k / Full)

10
−3

10
−2

10
−1

10
0

A
R

E

SketchSensing
TE+SS

(b) TS over only SS

0.005 0.01 0.05 0.1 0.5
ARE Requirement

0

2

4

6

C
om

pr
es

se
d

M
em

. (
M

B
)

Full
Top-500

(c) Compressed size

Murmur1 Murmur2 BOB1 BOB2
Hash Functions

10
−6

10
−5

10
−4

10
−3

10
−2

A
R

E

Full Top-500

(d) Hash functions

2600

2800

Ti
m

e
(m

s)

2.4 6.0 9.6 13.2
Memory (MB)

0

50

100

Shape #1
Shape #2

Shape #3
Build

(e) TE comp. speed

2.4 6.0 9.6 13.2
Memory (MB)

0

5

10

15

20

25

Ti
m

e
(m

s)

Shape #1
Shape #2

Shape #3

(f) TE recovery speed

2500

2700

Ti
m

e
(m

s)

0.72 0.96 1.20 1.44
Memory (MB)

0

5

10

λ=4
λ=6

λ=8
λ=10

Build

(g) SS comp. speed

0.72 0.96 1.20 1.44
Memory (MB)

20

30

40

50

60

70

Ti
m

e
(m

s)

λ = 4
λ = 6

λ = 8
λ = 10

(h) SS recovery speed

48 120 192 264
Memory (MB)

0

5

10

15

20

C
om

pr
es

si
on

 E
rr

or

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

Compression Time
Recovery Time

(i) Perf. on large dataset

48 120 192 264
Memory (MB)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

A
R

E

Full
Top-5K

Top-10K
Top-20K

(j) ARE on large dataset

Fig. 8. Performance of TreeSensing (‘TS’, ‘TE’, and ‘SS’ refer to ‘TreeSensing’, ‘TreeEncoding’, and ‘Sketch-
Sensing’, respectively).

is large, top-500 ARE remains unchanged because compressive sensing always achieves lossless

recovery. But as 𝜏 grows larger, top-1000 and top-2000 ARE become larger. This is because when

𝜏 is larger than the frequency of the 𝑘𝑡ℎ largest item, some items in the top-𝑘 query set will

be compressed using TreeEncoding, which has larger error than SketchSensing. In practice, we

recommend setting 𝜏 to the minimum value that can make the large sketch sparse enough for

compressive sensing to achieve lossless recovery, e.g., the 95𝑡ℎ-percentile of all counters.
TreeSensing over only using SketchSensing (Figure 8(b)):We find that TreeSensing suits for

the tasks of full ARE, and SketchSensing suits for the tasks of top-𝑘 ARE. For tasks reporting top-100

ARE, TreeSensing and SketchSensing have the same accuracy. As 𝑘 increases, the ARE gap between

TreeSensing and SketchSensing becomes larger. For tasks reporting full ARE, TreeSensing has
100× lower ARE than SketchSensing. Thus, for applications that only care about the accuracy

of frequent items, we recommend using just SketchSensing. Otherwise, we recommend using

TreeSensing.
Minimum size of the compressed sketch (Figure 8(c)): We find that as the required ARE goes

larger, the minimum size of the compressed sketch goes smaller. And in the tasks of reporting

top-𝑘 ARE, the compressed sketch can be significantly smaller than that in the tasks of reporting

full ARE. We use TreeSensing to compress a 15MB sketch, and report the minimum size of the

compressed sketch at different ARE requirements. When the required full/top-𝑘 ARE is 0.5, we can

compress the sketch by 30.5×/49.6×.
Impact of different hash functions (Figure 8(d)): We find that TreeSensing has almost the

same accuracy across different hash functions, meaning that TreeSensing can be applied to the

sketch using any hash function that has uniformly distributed outputs.

Efficiency of TreeEncoding (Figure 8(e)-8(f)): We find that the compression/recovery speed

of TreeEncoding reaches up to 1.38Gbps/7.04Gbps. TreeEncoding only takes 78ms/20ms to com-

press/recover a 13.2MB sketch. By contrast, it takes 2.71s to build a 13.2MB sketch, which is 34.7×
larger than the compression time.

Efficiency of SketchSensing (Figure 8(g)-8(h)):We find that larger compression ratio _ goes with

faster compression/recovery speed of SketchSensing, which reaches up to 2.51Gbps and 0.32Gbps,

respectively. This is because larger _ goes with smaller sensing matrix, and thus leads to smaller

computation overhead. We can see that SketchSensing only takes 4.5 milliseconds to compress a

1.44MB sketch by 10 times, and takes 36 milliseconds to recover it. By contrast, it takes 2.59 seconds

to build a 1.44MB sketch, which is 575.6× larger than the compression time.

Performance of TreeSensing on large-scale dataset (Figure 8(i)-8(j)):We find that on large-

scale datasets, TreeSensing also has fast speed and high accuracy. We use the large-scale CAIDA

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:19

dataset with 1.5G items, where we build larger sketches and use TreeSensing to compress them.

We can see that for a 264MB sketch, it only takes 1.5s and 0.76s for TreeSensing to compress and

recover it, respectively. The Compression Error is smaller than 2, and the full/top-5K ARE is smaller

than 10
−2
/10

−7
, respectively.

Parameter setup methods: 1) For TreeEncoding, we recommend using a HierarchicalTree with
𝑙 = 2 and ^ < 8 (Figure 6(b)), and using a small-sized ShiftBfEncoder, such as 0.3% of the sketch size

(Figure 6(d)). We can dynamically tune 𝛿 to balance between accuracy and compression ratio, and

in general, TreeEncoding can achieve lossless recovery under <5.4 compression ratio (Figure 6(c)).

For example, we recommend using Shape #1 in Table 2, which can compress the sketch by 5

times and achieve nearly lossless recovery (CE<0.85). If user wants to use SIMD acceleration, we

recommend Shape #3 because it satisfies the alignment requirement of 256-bit AVX2 register. 2)

For SketchSensing, we recommend using a small 𝑟 , such as 4 (Figure 7(b)), and using Bernoulli

Matrix [57] and L1 optimization [61] (Table 4 and Figure 7(c)). We can dynamically tune _ to

balance between accuracy and compression ratio, and in general, SketchSensing can achieve lossless

recovery when _ < 8 (Figure 7(a)). We recommend setting the fragment size𝑚 to 256 or 512. 3)

Finally, we recommend setting the separating threshold 𝜏 to the minimum value that can make the

large sketch satisfy the sparsity requirement of compressive sensing (Table 8(a)). In practice, we

can set 𝜏 to the 95
𝑡ℎ
-percentile of the values of all counters.

10
0

10
1

10
2

2 4 6 8 10
Compression Ratio (λ)

0.1

0.2

To
p-

k
A

R
E

(×
10

−2
) TS (ours)

Hokusai
Elastic
CR

(a) CM sketch

2 4 6 8 10
Compression Ratio (λ)

10
−6

10
−4

10
−2

10
0

To
p-

k
A

R
E

TS (ours)
Hokusai

Elastic
CR

(b) CU sketch

2 4 6 8 10
Compression Ratio (λ)

10
−2

10
−1

10
0

To
p-

k
A

R
E

TS (ours)
Hokusai

Elastic
CR

(c) CMM sketch

2 4 6 8 10
Compression Ratio (λ)

10
−2

10
−1

10
0

To
p-

k
A

R
E

TS (ours)
Hokusai

Elastic
CR

(d) CML sketch

2 4 6 8 10
Compression Ratio (λ)

0.0

0.5

1.0

1.5

2.0

To
p-

k
A

R
E

(×
10

−1
) TS (ours)

Hokusai
Elastic
CR

(e) CSM sketch

Fig. 9. Comparison of top-𝑘 ARE (red line indicates the ARE of non-compressed sketch).

2.4 6.0 9.6 13.2
Memory (MB)

10
−2

10
−1

10
0

10
1

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(a) CM sketch

2.4 6.0 9.6 13.2
Memory (MB)

10
−2

10
−1

10
0

10
1

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(b) CU sketch

2.4 6.0 9.6 13.2
Memory (MB)

10
0

10
1

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(c) CMM sketch

2.4 6.0 9.6 13.2
Memory (MB)

10
−2

10
−1

10
0

10
1

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(d) CML sketch

2.4 6.0 9.6 13.2
Memory (MB)

0

25

50

75

100

125

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(e) CSM sketch

Fig. 10. Comparison of full ARE (red line indicates the ARE of non-compressed sketch).

6.3 Comparison with Prior Art
We compare TreeSensing (TS) with Hokusai [35], Elastic [36], and Cluster-Reduce (CR) [26] on

five sketches with only positive counters (CM [1], CU [40], CMM [41], CML [41], and CSM [43]) and

one sketch with both positive and negative counters (Count [37]). By default, we use the 1-minute

CAIDA and set 𝜏 = 4096. For tasks reporting top-𝑘 ARE, we only use SketchSensing to compress

a 0.78MB sketch. For tasks reporting full ARE, we use both TreeEncoding (Shape #4, with SIMD

acceleration) and SketchSensing (with _ = 6). We set the memory of the compressed sketch to be

the same across all algorithms, which is
1

2
of the original memory.

Top-𝑘 ARE on the sketches with only positive counters (Figure 9): We find that for all of the

five sketches, the top-𝑘 ARE of TreeSensing is almost the same as the non-compressed sketch,

meaning that SketchSensing achieves nearly lossless recovery. In particular, on CU sketch, the top-𝑘

ARE of TreeSensing is at least 100× lower than CR and Hokusai. We observe that the top-𝑘 ARE

of TreeSensing is sometimes lower than non-compressed sketch. This is because the rounding

technique fortunately offsets the overestimation error. We notice that on CU and CML, Elastic also

achieves similar top-𝑘 ARE as the non-compressed sketch. This is because the maximum merge

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:20 Zirui Liu et al.

operation of Elastic tends to protect large counters. However, as will be described later, Elastic is

unfriendly to small counters and thus have poor full ARE.

Full ARE on the sketches with only positive counters (Figure 10): We find that for all

of the five sketches, the full ARE of TreeSensing is almost the same as the non-compressed

sketch, meaning that TreeSensing achieves nearly lossless recovery. In addition, we can see that

TreeSensing always outperforms other algorithms on all the five sketches. Specifically, on CM

sketch, TreeSensing achieves at least 6.2×, 4.3×, and 1.7× smaller full ARE than Hokusai, Elastic,

and Cluster-Reduce. In particular, we notice that the full ARE of Elastic is significantly higher than

TreeSensing and CR. This is because the merging operation of Elastic inevitably loses information

of the infrequent items.

2 4 6 8 10
Compression Ratio (λ)

10
−3

10
−2

10
−1

To
p-

k
A

R
E

TS (ours)
Hokusai

CR

(a) Top-𝑘 ARE

2.4 6.0 9.6 13.2
Memory (MB)

10
−1

10
0

10
1

Fu
ll

A
R

E

TS (ours)
Hokusai

CR

(b) Full ARE

Fig. 11. Comparison of accuracy on Count sketch (red line indicates the ARE of non-compressed sketch).

Accuracy on Count sketch (Figure 11):We find that compared to the non-compressed sketch,

TreeSensing has slightly higher top-𝑘 ARE and almost the same full ARE. We can see that

TreeSensing significantly outperforms other algorithms on both top-𝑘 ARE and full ARE. Specifi-

cally, TreeSensing achieves up to 8.2× smaller top-𝑘 ARE and up to 6.4× smaller full ARE than

other algorithms. Note that Elastic cannot compress the sketch with negative counters.

Compression efficiency (Figure 12): We find that TreeSensing is 3∼6 times faster than Cluster-

Reduce, but is slower than Hokusai and Elastic. In Figure 12(a), we only use SketchSensing. We can

see that to compress a 1.44MB sketch, it takes 10.0ms, 0.7ms, 2.4ms, and 50.0ms for TreeSensing,
Hokusai, Elastic, and CR. In Figure 12(b), we use both TreeEncoding and SketchSensing. We can see

that to compress a 13.2MB sketch, it takes 69.1ms, 6.7ms, 17.0ms, and 353.1ms for TreeSensing,
Hokusai, Elastic, and CR.

0.72 0.96 1.20 1.44
Memory (MB)

0

20

40

60

Ti
m

e
(m

s)

TS (ours)
Hokusai

Elastic
CR

(a) Compress the large sketch

2.4 6.0 9.6 13.2
Memory (MB)

0

100

200

300

400

Ti
m

e
(m

s)

TS (ours)
Hokusai

Elastic
CR

(b) Compress the entire sketch

Fig. 12. Comparison of compression efficiency.

Evaluation on other datasets (Figure 13): We find that TreeSensing also outperforms other

algorithms on other datasets. For example, on Zipf2.4 dataset, the top-𝑘/full ARE of TreeSensing is
8.4×/4.8×, 1.1×/3.0×, and 1.1×/1.7× lower than Hokusai, Elastic, and Cluster-Reduce, respectively.

Summary (Table 5): We first summarize the trade-off of prior art. 1) Linearity: Elastic and CR

do not satisfy the linear property, and thus they cannot achieve fast aggregation in distributed

measurement. 2) Generality: Elastic cannot compress the sketch with negative counters, so it cannot

compress Count sketch. 3) Top-𝑘 accuracy: As a whole, Elastic has better top-𝑘 ARE than CR and

Hokusai. On CM, CU, and CML, Elastic has almost the same top-𝑘 ARE as non-compressed sketch.

But on CMM and CSM, its top-𝑘 ARE is the worst. 4) Full accuracy: As a whole, CR has better full

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:21

Criteo Zipf0.3 Zipf2.4
Dataset

10
−2

10
−1

10
0

To
p-

k
A

R
E

TS (ours)
Hokusai

Elastic
CR

(a) Top-𝑘 ARE

Criteo Zipf0.3 Zipf2.4
Dataset

10
−2

10
−1

10
0

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(b) Full ARE

Fig. 13. Experiments on other datasets.

ARE than Elastic and Hokusai. But on CMM, its full ARE is the worst. We notice that none of prior

art achieve nearly the same full ARE as non-compressed sketch. 5) Speed: Hokusai and Elastic are

very fast. But CR is very slow due to its large computation complexity.

By contrast, TreeSensing satisfies the linear property and is general to the sketch with negative

counters. TreeSensing has almost the same top-𝑘 ARE and full ARE as non-compressed sketch,

meaning that it can achieve nearly lossless recovery. In addition, TreeSensing achieves consistently
high accuracy across all the six sketches, whereas none of prior art has stable ARE across all sketches.

Finally, TreeSensing is significantly faster than CR but slightly slower than Hokusai and Elastic.

Table 5. Summary of empirical comparison with prior art.

Algorithm Linearity Generality Top-𝑘 ACC. Full ACC. Speed

Hokusai ✓ ✓ Low Low Very fast

Elastic × × High Low Very fast

CR × ✓ Medium Medium Slow

TS (ours) ✓ ✓ High High Fast

6.4 Application in Distributed Measurement
We apply TreeSensing to a distributed measurement system and compare it with Hokusai [35],

Elastic [36], and Cluster-Reduce (CR) [26] on CM [1]. By default, there are eight measurement

nodes in our system. For tasks reporting top-𝑘 ARE, we only use SketchSensing. For tasks reporting
full ARE, we use both TreeEncoding and SketchSensing. We set the memory of the compressed

sketches to be the same across all algorithms, which is
1

2
of the original memory. We use Paillier

cryptosystem [75] to encrypt 5% counters in each sensing fragment, achieving privacy-preserving

measurement.

0.12 0.48 0.84 1.20
Memory (MB)

10
−4

10
−3

10
−2

10
−1

10
0

To
p-

k
A

R
E

TS (ours)
Hokusai

Elastic
CR

(a) Top-𝑘 ARE

1.2 3.0 4.8 6.6
Memory (MB)

10
−3

10
−2

10
−1

10
0

10
1

Fu
ll

A
R

E

TS (ours)
Hokusai

Elastic
CR

(b) Full ARE

0.12 0.48 0.84 1.20
Memory (MB)

0

5

10

15

Ti
m

e
(m

s)

Encryption Decryption

(c) Encrypt/decrypt

2 4 6 8 10
Number of Nodes

0

2

4

6

Ti
m

e
(s

)

Non-linear Aggregation
Linear Aggregation

(d) Aggregation time

2 4 6 8 10
Number of Nodes

0

2

4

6

Ti
m

e
(s

)

Non-linear Decrypt+Agg.
Linear Decrypt+Agg.

(e) Decrypt+aggregate

Fig. 14. Experiments in distributed measurement (red line indicates the ARE of non-compressed sketch).

Accuracy in distributed measurement (Figure 14(a)-14(b)): We find that TreeSensing always

outperforms other algorithms on both top-𝑘 ARE and full ARE, and TreeSensing achieves almost

the same accuracy as non-compressed sketch. From Figure 14(a), we can see that when using local

sketches of 0.6MB, the top-𝑘 ARE of TreeSensing is 48.83×, 3.74×, and 2.44× lower than Hokusai,

Elastic, and Cluster-Reduce, respectively. From Figure 14(b), we can see that when using local

sketches of 6.6MB, the full ARE of TreeSensing is 6.58×, 6.18×, and 2.90× lower than than Hokusai,

Elastic, and Cluster-Reduce, respectively.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:22 Zirui Liu et al.

Efficiency of privacy-preserving distributed measurement (Figure 14(c)):We find that the

time cost of homomorphic encryption and decryption is very small. We can see that it only takes

13.9ms/4.7ms to encrypt/decrypt a 1.2MB sketch, respectively.

Comparison between linear and non-linear aggregation (Figure 14(d)-14(e)):We find that

linear aggregation is significantly faster than non-linear aggregation. In Figure 14(d), we compare

the aggregation time between linear and non-linear modes of TreeSensing. We can see that when

there are 8 nodes, linear aggregation is 4.9× faster than non-linear aggregation. As the system scale

grows, this gap will become larger. This is because in linear mode, we just perform one recovery

operation, while in non-linear mode, we need to recover all local sketches. In Figure 14(e), we

compare the decryption+aggregation time in privacy-preserving measurement between the two

modes. The results are similar as in Figure 14(d). In linear mode, we just perform one decryption

and one recovery operation, whereas in non-linear mode, we must decrypt and recover all local

sketches.

10 20 30 40 50 60 70 80
Memory Usage (KB)

0

1

2

3

4

R
E

(×
10

−2
)

TS (ours)
FAGMS

Skimmed

(a) Join (CAIDA)

10 20 30 40 50 60 70 80
Memory Usage (KB)

0

5

10

15

R
E

(×
10

−3
)

TS (ours)
FAGMS

Skimmed

(b) Join (Zipf)

0.0 0.2 0.4 0.6 0.8 1.0
Skewness

10
−3

10
−2

10
−1

R
E

TS (ours)
FAGMS
Skimmed

(c) Join (Zipf)

2.4 4.8 7.2 9.6 12.0 14.4
Memory (MB)

0

100

200

300

C
om

pr
es

si
on

 T
im

e
(m

s) TreeSensing
SketchSensing

(d) Comp. time in Redis

2.4 4.8 7.2 9.6 12.0 14.4
Memory (MB)

0

100

200

300

400

500

R
ec

ov
er

y
Ti

m
e

(m
s)

TreeSensing
SketchSensing

(e) Rec. time in Redis

Fig. 15. Experiments in data management scenes.

6.5 Application in Data Management Scenes
To better show the benefit of TreeSensing to data management community, we apply TreeSensing
to the task of join-aggregate estimation [92], and integrate TreeSensing into Redis [93].

Join-aggregate estimation (Figure 15(a)-15(c)): Given two data streams 𝐹 and𝐺 with 𝑁 distinct

items. Let 𝑓𝑖 and 𝑔𝑖 denote the frequencies of an item 𝑒𝑖 in 𝐹 and𝐺 . The result of the join-aggregate

query is defined as 𝐽 =
∑𝑁

𝑖=1 𝑓𝑖 · 𝑔𝑖 . Join-aggregate estimation is the base of many data management

applications, such as query optimizer in DBMS [7, 94, 95], traffic analyzer in DSMS [96, 97], andmore

[98]. For example, consider the case of distributed multi-way join in DBMS, we want to perform the

join operation on multiple tables distributed on different nodes. A good join-aggregate estimation

algorithm can guide us to devise an optimal join plan, which minimizes the volume of intermediate

relations and the communication time. Sketches are widely used for join-aggregate estimation.

Typical sketches include AGMS [92], Fast-AGMS (FAGMS) [17], Skimmed sketch [97], and more

[99–102]. Specifically, Skimmed sketch [97] proposes to separate frequent and infrequent items

to reduce the estimation variance. This separation idea is similar to TreeSensing. But skimmed

sketch is designed specifically for join-aggregate estimation, whereas our aim is to design a general

framework to accurately and flexibly compress all sketches.

We conduct experiments of join-aggregate estimation on CAIDA and Zipf datasets, where we

use TreeSensing to compress a Count sketch [37], and compare its accuracy with non-compressed

FAGMS and Skimmed sketch.We control the compressedmemory of the Count sketch to be the same

as the memory of non-compressed FAGMS and Skimmed sketch. We use the metric of relative error

(RE), which is defined as

∑ |𝐽 − 𝐽 |/𝐽 . From Figure 15(a)-15(c), we can see that TreeSensing always

outperforms Skimmed sketch and FAGMS on the two datasets. The accuracy of Skimmed sketch

is always inferior than TreeSensing and sometimes even inferior than FAGMS. This is because

under small separating threshold, the separated frequent items by Skimmed sketch have large error,

which degrades the accuracy. On the other hand, under large separating threshold, Skimmed sketch

will degenerate into plain Count sketch. In conclusion, in the task of join-aggregate estimation

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:23

(especially in distributed scenario), besides devising smart data structures, another promising

direction is to use TreeSensing or other compression algorithms to efficiently compress sketches,

so that we can build larger sketches to improve accuracy.

TreeSensing in Redis (Figure 15(d)-15(e)): Redis is a widely used in-memory data structure

store. We integrate TreeSensing into Redis as a persistence tool to reduce the storage overhead

of sketches. We first implement a CM sketch using Redis Module, which supports basic insertion

and query commands. Then we implement TreeSensing by adding four commands to the CM

sketch: TreeSensing compression/recovery, and SketchSensing compression/recovery. We evaluate

the compression/recovery speed of TreeSensing and SketchSensing with Redis 5.0.7. All experiments

are repeated 30 times and the average (±std) time is plotted. We can see that TreeSensing can

smoothly work on top of Redis, where TreeSensing only takes less than 0.24/0.41 seconds to

compress/recover a 14.4MB sketch.

0 10 20 30
Epoch

50

60

70

80

90

Tr
ai

ni
ng

 A
C

C
 (%

) TS (ours)
CR
SketchML

(a) Train ACC. on classification

0 100 200 300
Epoch

500

1000

1500

2000

2500

3000

Tr
ai

ni
ng

 L
os

s

TS (ours)
CR
SketchML

(b) Train loss on regression

Fig. 16. Experiments in distributed ML.

6.6 Application in Distributed ML
We apply TreeSensing to a distributed machine learning system and compare it with Cluster-

Reduce (CR) [26] and SketchML [25] on two tasks: classification (using logistic regression) and

regression (using linear regression). In our system, there are eight workers and one parameter server.

We fix the available transmission bandwidth of the three algorithms to be about
1

6
of the exact

gradients. As described in § 5.2, for TreeSensing and Cluster-Reduce, we build larger MinMax

sketches to encode gradients, and use SketchSensing to compress it into small memory before

transmission.

Classification (Figure 16(a)): We find that the training accuracy of TreeSensing always out-

performs CR and SketchML. TreeSensing improves the training accuracy by up to 6%/12% than

CR/SketchML. After 30 epochs, the accuracy of TreeSensing reaches 83.8%, while that of CR and

SketchML are 78.1% and 72.5%.

Regression (Figure 16(b)): We find that the training speed of TreeSensing is 1.7× faster than

CR and 3× faster than SketchML. Here, training faster means achieving higher accuracy using the

same time. When training loss reaches 1450, TreeSensing uses 100 epochs, CR uses 170 epochs,

and SketchML uses 300 epochs.

Summary and analysis: The results show that TreeSensing can improve the training accuracy

and speed in distributed ML. This is because under fixed transmission bandwidth, by compressing

the sketches into small memory, we can build larger local sketches to encode gradients more

accurately. Therefore, the parameter server can recover gradients more accurately and update

parameters more precisely, making the training process faster and more accurate.

6.7 Evaluation on FPGA Platform
We implement TreeSensing on an FPGA network platform (Virtex-7 VC709). For TreeEncoding, we
use Shape #3 without ShiftBfEncoder. The implementation of TreeEncoding consists of 4 modules:

separating small sketch, setting 1-bit indicators, setting 𝐿1, and setting 𝐿2. For SketchSensing, the
implementation consists of𝑚′

+1 modules (𝑚′
is the # column of the sensing matrix 𝜙): separating

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:24 Zirui Liu et al.

the large sketch and rounding down, and multiplying a counter with a corresponding counter in

the 𝑗𝑡ℎ column of the sensing matrix (multiplying_j). For example, in the multiplying_j module, the

𝑖𝑡ℎ counter is multiplied with 𝜙 [𝑖] [𝑗]. In this way, each counter participates in the calculation of

each column, which fully utilizes hardware parallelism. In addition, as each element in Bernoulli

Matrix is 0/1, we use conditional operations to further accelerate the computation speed. Both

TreeEncoding and SketchSensing are fully pipelined, which process one 32-bit counter in each clock

cycle.

Table 6 shows the clock frequency and all hardware resources used by TreeSensing. We can see

that TreeEncoding and SketchSensing achieve 526MHz and 316MHz clock frequency, meaning that

TreeSensing has 316MHz throughput. The LUT (Look-Up-Table), Register and Block Tile resource

usage are all <0.5%, which is nearly negligible. In summary, on FPGA, TreeSensing has negligible

resource overhead and fast compression speed, which is at least 11.4× higher than that on CPU

platform. Therefore, it is lucrative to further speed up TreeSensing with FPGA.

Table 6. Performance on FPGA Platform.

Module Resource Overhead Frequency
(MHz)LUTs Register Block Tile IOB BUFGCTRL

TE 0.02% 0.01% 0.10% 4.24% 3.12% 526

SS 0.16% 0.04% 0.20% 4.24% 0.00% 316

TE+SS 0.17% 0.05% 0.31% 4.24% 3.12% 316

7 CONCLUSION
This paper proposes TreeSensing, an accurate, efficient, and flexible framework to linearly com-

press sketches. In TreeSensing, we first separate the original sketch into two partial sketches, and

then compress the two partial sketches with two key techniques, namely TreeEncoding and Sketch-
Sensing. Theoretical analyses of TreeSensing are provided. We use TreeSensing to compress 7

sketches, and conduct two end-to-end experiments: distributed measurement and distributed ML.

We also implement TreeSensing on FPGA and integrate it into Redis. Experimental results show

that TreeSensing significantly outperforms existing solutions.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable suggestions. This work is supported by

Key-Area Research and Development Program of Guangdong Province 2020B0101390001, and

National Natural Science Foundation of China (NSFC) (No. U20A20179).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

TreeSensing: Linearly Compressing Sketches with Flexibility 56:25

REFERENCES

[1] GrahamCormode and SMuthukrishnan. An improved data stream summary: the count-min sketch and its applications.

Journal of Algorithms, 2005.
[2] Graham Cormode and Minos Garofalakis. Sketching probabilistic data streams. In Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, pages 281–292, 2007.
[3] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent data sketching. In SIGMOD, 2015.
[4] Rui Zhu, Bin Wang, Xiaochun Yang, Baihua Zheng, and Guoren Wang. Sap: Improving continuous top-k queries over

streaming data. IEEE Transactions on Knowledge and Data Engineering, 29(6):1310–1328, 2017.
[5] Qiyu Liu, Libin Zheng, Yanyan Shen, and Lei Chen. Stable learned bloom filters for data streams. Proceedings of the

VLDB Endowment, 13(12):2355–2367, 2020.
[6] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. Online sketch-based query optimization. arXiv

preprint arXiv:2102.02440, 2021.
[7] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. Compass: Online sketch-based query optimization

for in-memory databases. In Proceedings of the 2021 International Conference on Management of Data, pages 804–816,
2021.

[8] Asoke Datta, Yesdaulet Izenov, Brian Tsan, and Florin Rusu. Simpli-squared: A very simple yet unexpectedly powerful

join ordering algorithm without cardinality estimates. arXiv preprint arXiv:2111.00163, 2021.
[9] Benwei Shi, Zhuoyue Zhao, Yanqing Peng, Feifei Li, and Jeff M Phillips. At-the-time and back-in-time persistent

sketches. In Proceedings of the 2021 International Conference on Management of Data, pages 1623–1636, 2021.
[10] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias. Spatio-temporal aggregation using

sketches. In Proceedings. 20th International Conference on Data Engineering, pages 214–225. IEEE, 2004.
[11] Monica Chiosa, Thomas B Preußer, and Gustavo Alonso. Skt: A one-pass multi-sketch data analytics accelerator.

Proceedings of the VLDB Endowment, 14(11):2369–2382, 2021.
[12] Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim, and Ke Wang. Topicsketch: Real-time bursty topic detection from twitter.

TKDE, 2016.
[13] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. A learned sketch for subgraph counting. In

Proceedings of the 2021 International Conference on Management of Data, pages 2142–2155, 2021.
[14] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El Abbadi. Kll±approximate quantile

sketches over dynamic datasets. Proceedings of the VLDB Endowment, 14(7):1215–1227, 2021.
[15] Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. Spacesaving ±: An optimal algorithm for

frequency estimation and frequent items in the bounded deletion model. arXiv preprint arXiv:2112.03462, 2021.
[16] Graham Cormode and Shanmugavelayutham Muthukrishnan. What’s new: Finding significant differences in network

data streams. IEEE/ACM Transactions on Networking, 2005.
[17] Graham Cormode and Minos Garofalakis. Sketching streams through the net: Distributed approximate query tracking.

In Proceedings of the 31st international conference on Very large data bases, pages 13–24, 2005.
[18] Graham Cormode, Samuel Maddock, and Carsten Maple. Frequency estimation under local differential privacy.

Proceedings of the VLDB Endowment, 14(11):2046–2058, 2021.
[19] Andreas Kipf, Dimitri Vorona, JonasMüller, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, Thomas Neumann,

and Alfons Kemper. Estimating cardinalities with deep sketches. In Proceedings of the 2019 International Conference
on Management of Data, pages 1937–1940, 2019.

[20] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items in data streams. The VLDB
Journal, 19(1):3–20, 2010.

[21] Ankush Mandal, He Jiang, Anshumali Shrivastava, and Vivek Sarkar. Topkapi: parallel and fast sketches for finding

top-k frequent elements. Advances in Neural Information Processing Systems, 31, 2018.
[22] Graham Cormode. Data summarization and distributed computation. In Proceedings of the 2018 ACM Symposium on

Principles of Distributed Computing, pages 167–168, 2018.
[23] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and Yu-Xiang Wang. Differentially

private linear sketches: Efficient implementations and applications. Advances in Neural Information Processing Systems,
35:12691–12704, 2022.

[24] Fuheng Zhao, Punnal Ismail Khan, Divyakant Agrawal, Amr El Abbadi, Arpit Gupta, and Zaoxing Liu. Panakos:

Chasing the tails for multidimensional data streams.

[25] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating distributed machine learning with data

sketches. In Proceedings of the 2018 International Conference on Management of Data (SIGMOD), pages 1269–1284,
2018.

[26] Yikai Zhao, Zheng Zhong, Yuanpeng Li, Yi Zhou, Yifan Zhu, Li Chen, Yi Wang, and Tong Yang. Cluster-reduce:

Compressing sketches for distributed data streams. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2316–2326, 2021.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:26 Zirui Liu et al.

[27] Ahmed S Abdelhamid, Ahmed R Mahmood, Anas Daghistani, and Walid G Aref. Prompt: Dynamic data-partitioning

for distributed micro-batch stream processing systems. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 2455–2469, 2020.

[28] Nicolas Kourtellis, Herodotos Herodotou, Maciej Grzenda, Piotr Wawrzyniak, and Albert Bifet. S2ce: a hybrid cloud

and edge orchestrator for mining exascale distributed streams. In Proceedings of the 15th ACM International Conference
on Distributed and Event-based Systems, pages 103–113, 2021.

[29] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, and Volker Markl. Bench-

marking distributed stream data processing systems. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 1507–1518. IEEE, 2018.

[30] Ahmed R Mahmood, Ahmed M Aly, Thamir Qadah, El Kindi Rezig, Anas Daghistani, Amgad Madkour, Ahmed S

Abdelhamid, Mohamed S Hassan, Walid G Aref, and Saleh Basalamah. Tornado: A distributed spatio-textual stream

processing system. Proceedings of the VLDB Endowment, 8(12):2020–2023, 2015.
[31] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel

Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In

proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1175–1191, 2017.
[32] Kalikinkar Mandal and Guang Gong. Privfl: Practical privacy-preserving federated regressions on high-dimensional

data over mobile networks. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
pages 57–68, 2019.

[33] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, pages 1310–1321, 2015.

[34] KalikinkarMandal, Guang Gong, and Chuyi Liu. Nike-based fast privacy-preserving highdimensional data aggregation

for mobile devices. IEEE T Depend Secure; Technical Report; University of Waterloo: Waterloo, ON, Canada, pages
142–149, 2018.

[35] Sergiy Matusevych, Alex Smola, and Amr Ahmed. Hokusai-sketching streams in real time. arXiv preprint
arXiv:1210.4891, 2012.

[36] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic

sketch: Adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM), pages 561–575, 2018.

[37] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In Automata,
Languages and Programming. 2002.

[38] Richard G Baraniuk. Compressive sensing [lecture notes]. IEEE signal processing magazine, 24(4):118–121, 2007.
[39] Treesensing related codes. https://github.com/TowerSensing/TowerSensing.

[40] Cristian Estan and George Varghese. New directions in traffic measurement and accounting. ACM SIGMCOMM CCR,
2002.

[41] Fan Deng and Davood Rafiei. New estimation algorithms for streaming data: Count-min can do more. Webdocs. Cs.
Ualberta. Ca, 2007.

[42] Guillaume Pitel and Geoffroy Fouquier. Count-min-log sketch: Approximately counting with approximate counters.

arXiv preprint arXiv:1502.04885, 2015.
[43] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic measurement through randomized counter sharing. IEEE/ACM

Transactions on Networking, 20(5):1622–1634, 2012.
[44] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. Salsa: self-adjusting lean streaming analytics.

In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 864–875. IEEE, 2021.
[45] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and more accurate stream processing. In

SIGMOD, 2016.
[46] Florin Rusu and Alin Dobra. Sketching sampled data streams. In 2009 IEEE 25th International Conference on Data

Engineering, pages 381–392. IEEE, 2009.
[47] Lada A Adamic and Bernardo A Huberman. Power-law distribution of the world wide web. science, 287(5461):2115–

2115, 2000.

[48] DavidMWPowers. Applications and explanations of Zipf’s law. In Proc. EMNLP-CoNLL. Association for Computational

Linguistics, 1998.

[49] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul Kabbani. Counter braids: a novel

counter architecture for per-flow measurement. Proc. ACM SIGMETRICS, 36(1):121–132, 2008.
[50] Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and Shigang Chen. Pyramid family: Generic

frameworks for accurate and fast flow size measurement. IEEE/ACM Transactions on Networking, 30(2):586–600, 2021.
[51] Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and Xiaoming Li. Diamond sketch: Accurate per-flow

measurement for big streaming data. IEEE Transactions on Parallel and Distributed Systems, 30(12):2650–2662, 2019.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

https://github.com/TowerSensing/TowerSensing

TreeSensing: Linearly Compressing Sketches with Flexibility 56:27

[52] David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098–
1101, 1952.

[53] Peter Deutsch. Rfc1951: Deflate compressed data format specification version 1.3, 1996.

[54] Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM Journal of research and development, 23(2):149–162,
1979.

[55] Fabian Mentzer, Luc Van Gool, and Michael Tschannen. Learning better lossless compression using lossy compression.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6638–6647, 2020.
[56] Stanislaw J Szarek. Condition numbers of random matrices. Journal of Complexity, 7(2):131–149, 1991.
[57] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal encoding

strategies? IEEE transactions on information theory, 52(12):5406–5425, 2006.
[58] Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. IEEE signal processing magazine,

25(2):21–30, 2008.

[59] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306, 2006.
[60] Graham Cormode and S Muthukrishnan. Combinatorial algorithms for compressed sensing. In International

colloquium on structural information and communication complexity, pages 280–294. Springer, 2006.
[61] George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method for minimizing a linear form

under linear inequality restraints. Pacific Journal of Mathematics, 5(2):183–195, 1955.
[62] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Orthogonal matching pursuit:

Recursive function approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar
conference on signals, systems and computers, pages 40–44. IEEE, 1993.

[63] Peter J Green. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant

alternatives. Journal of the Royal Statistical Society: Series B (Methodological), 46(2):149–170, 1984.
[64] Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Applied

and computational harmonic analysis, 26(3):301–321, 2009.
[65] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations. Journal of Fourier analysis

and Applications, 14(5):629–654, 2008.
[66] Irena Orović, Vladan Papić, Cornel Ioana, Xiumei Li, and Srdjan Stanković. Compressive sensing in signal processing:

algorithms and transform domain formulations. Mathematical Problems in Engineering, 2016, 2016.
[67] Haipeng Peng, Ye Tian, Jürgen Kurths, Lixiang Li, Yixian Yang, and Daoshun Wang. Secure and energy-efficient

data transmission system based on chaotic compressive sensing in body-to-body networks. IEEE transactions on
biomedical circuits and systems, 11(3):558–573, 2017.

[68] Linghe Kong, Liang He, Xiao-Yang Liu, Yu Gu, Min-You Wu, and Xue Liu. Privacy-preserving compressive sensing

for crowdsensing based trajectory recovery. In 2015 IEEE 35th International Conference on Distributed Computing
Systems, pages 31–40. IEEE, 2015.

[69] Bartosz Przydatek, Dawn Song, and Adrian Perrig. Sia: Secure information aggregation in sensor networks. In

Proceedings of the 1st international conference on Embedded networked sensor systems, pages 255–265, 2003.
[70] Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical in-network aggregation in sensor networks. In

Proceedings of the 13th ACM conference on Computer and communications security, pages 278–287, 2006.
[71] Gergely Ács and Claude Castelluccia. I have a dream!(differentially private smart metering). In International Workshop

on Information Hiding, pages 118–132. Springer, 2011.
[72] Fengjun Li, Bo Luo, and Peng Liu. Secure information aggregation for smart grids using homomorphic encryption.

In 2010 first IEEE international conference on smart grid communications, pages 327–332. IEEE, 2010.
[73] Slawomir Goryczka and Li Xiong. A comprehensive comparison of multiparty secure additions with differential

privacy. IEEE transactions on dependable and secure computing, 14(5):463–477, 2015.
[74] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the workshop on selected areas of cryptography, pages

120–128, 1994.

[75] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In International conference
on the theory and applications of cryptographic techniques, pages 223–238. Springer, 1999.

[76] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transactions
on information theory, 31(4):469–472, 1985.

[77] Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. Difacto: Distributed factorization machines. In Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining, pages 377–386, 2016.

[78] Ahmed Elgohary, Matthias Boehm, Peter J Haas, Frederick R Reiss, and Berthold Reinwald. Compressed linear algebra

for large-scale machine learning. Proceedings of the VLDB Endowment, 9(12):960–971, 2016.
[79] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient distributed

optimization. Advances in Neural Information Processing Systems, 31, 2018.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

56:28 Zirui Liu et al.

[80] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed

gradient differences. arXiv preprint arXiv:1901.09269, 2019.
[81] Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos Karatsenidis, Marco

Canini, and Panos Kalnis. Grace: A compressed communication framework for distributed machine learning. In 2021
IEEE 41st international conference on distributed computing systems (ICDCS), pages 561–572. IEEE, 2021.

[82] Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos Kalnis. Rethinking

gradient sparsification as total error minimization. Advances in Neural Information Processing Systems, 34:8133–8146,
2021.

[83] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd: Compressed

optimisation for non-convex problems. In International Conference on Machine Learning, pages 560–569. PMLR, 2018.

[84] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile summaries. ACM SIGMOD
Record, 30(2):58–66, 2001.

[85] Fpga xc7vx690t-2ffg1761i specifications. https://dir.heisener.com/specification-pdf/en/XC7VX690T-2FFG1761I.pdf.

[86] Murmur hashing source codes. https://github.com/aappleby/smhasher.

[87] Hash website. http://burtleburtle.net/bob/hash/evahash.html.

[88] The caida anonymized internet traces. https://www.caida.org/catalog/datasets/passive_dataset.

[89] The criteo dataset. Available: https://ailab.criteo.com/ressources/.

[90] Alex Rousskov and Duane Wessels. High-performance benchmarking with web polygraph. Software: Practice and
Experience, 34(2):187–211, 2004.

[91] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[92] Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. Tracking join and self-join sizes in limited storage.

In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
10–20, 1999.

[93] The redis in-memory data store. https://redis.io.

[94] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. How good are

query optimizers, really? Proceedings of the VLDB Endowment, 9(3):204–215, 2015.
[95] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.

Query optimization through the looking glass, and what we found running the join order benchmark. The VLDB
Journal, 27(5):643–668, 2018.

[96] Konstantin Kutzkov, Mohamed Ahmed, and Sofia Nikitaki. Weighted similarity estimation in data streams. In

Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pages 1051–1060,
2015.

[97] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Processing data-stream join aggregates using skimmed

sketches. In International Conference on Extending Database Technology, pages 569–586. Springer, 2004.
[98] Yilei Wang and Ke Yi. Secure yannakakis: Join-aggregate queries over private data. In Proceedings of the 2021

International Conference on Management of Data, pages 1969–1981, 2021.
[99] Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Practical algorithms for tracking database join sizes. In

International Conference on Foundations of Software Technology and Theoretical Computer Science, pages 297–309.
Springer, 2005.

[100] Florin Rusu and Alin Dobra. Sketches for size of join estimation. ACM Transactions on Database Systems (TODS),
33(3):1–46, 2008.

[101] Florin Rusu and Alin Dobra. Statistical analysis of sketch estimators. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 187–198, 2007.

[102] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality estimation: Tighter upper bounds for

intermediate join cardinalities. In Proceedings of the 2019 International Conference on Management of Data, pages
18–35, 2019.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 56. Publication date: May 2023.

https://dir.heisener.com/specification-pdf/en/XC7VX690T-2FFG1761I.pdf
https://github.com/aappleby/smhasher
http://burtleburtle.net/bob/hash/evahash.html
 https://www.caida.org/catalog/datasets/passive_dataset
https://ailab.criteo.com/ressources/
https://redis.io

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Sketches for Data Stream Measurement
	2.2 Related Work on Sketch Compression
	2.3 Preliminary of Compressive Sensing

	3 The TreeSensing Algorithm
	3.1 TreeSensing Overview
	3.2 The TreeEncoding Algorithm
	3.3 The SketchSensing Algorithm
	3.4 Compressing Other Sketches

	4 Mathematical Analysis
	4.1 Analyses of TreeEncoding
	4.2 Analyses of SketchSensing

	5 Applications
	5.1 Distributed Measurement
	5.2 Distributed Machine Learning

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Impact of Algorithm Parameters
	6.3 Comparison with Prior Art
	6.4 Application in Distributed Measurement
	6.5 Application in Data Management Scenes
	6.6 Application in Distributed ML
	6.7 Evaluation on FPGA Platform

	7 Conclusion
	Acknowledgments
	References

