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SketchINT: Empowering INT With TowerSketch for
Per-Flow Per-Switch Measurement

Kaicheng Yang , Sheng Long , Qilong Shi , Yuanpeng Li , Zirui Liu , Yuhan Wu , Tong Yang ,
and Zhengyi Jia

Abstract—Network measurement is indispensable to network
operations. INT solutions that can provide fine-grained per-switch
per-packet information serve as promising solutions for per-flow
per-switch measurement. The main shortcoming of INT is its high
network overhead incurred by collecting INT information, making
INT impractical for production deployment. Sketches that can
compactly record per-flow information with small memory foot-
print, are a promising choice for compressing INT information to
reduce INT overhead. An ideal sketch for efficiently compressing
INT information in practice should achieve both simplicity and
accuracy, but no existing sketch achieves both. Motivated by this,
we first design SketchINT to combine INT and sketches, aiming
to obtain all per-flow per-switch information with low network
overhead. Second, we design a new sketch for SketchINT, namely
TowerSketch, which achieves both simplicity and accuracy. The
key idea of TowerSketch is to use different-sized counters for
different arrays under the property that the number of bits used
for different arrays stays the same. TowerSketch can automat-
ically record larger flows in larger counters and smaller flows
in smaller counters. To further ease the configuration and give
network operators more confidence on performance of TowerS-
ketch, we propose a method for precise error bound estimation.
We have fully implemented our SketchINT prototype on a testbed
consisting of 10 switches. We also implement our TowerSketch on
P4, single-core CPU, multi-core CPU, and FPGA platforms to verify
its deployment flexibility. Extensive experimental results verify that
1) TowerSketch achieves better accuracy than prior art on various
tasks, outperforming the state-of-the-art ElasticSketch up to 27.7
times in terms of error; 2) Compared to INT, SketchINT reduces
the number of packets belonging to the control plane overhead by
3 ∼ 4 orders of magnitude with an error smaller than 5%; 3) The
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estimated error bound of TowerSketch can almost match the actual
error bound.

Index Terms—In-band Network Telemetry (INT), network
measurement, sketch.

I. INTRODUCTION

A. Background and Motivation

N ETWORK measurement is essential to various network
operations, including traffic engineering [2], [3], anomaly

detection [4], [5], [6], failure troubleshooting [7], [8], network
accounting and billing [9], flow scheduling [10], [11], and
congestion control [12]. Nowadays, measuring per-switch in-
formation at flow-level granularity has become the community
consensus [13].

In recent years, INT solutions [14], [15], [16], [17] that can
provide fine-grained per-switch per-packet information have
been widely accepted as promising solutions for per-flow per-
switch measurement. INT solutions obtain per-switch informa-
tion by configuring the switches to insert predefined packet-level
information, i.e., INT information, into each incoming packet. To
perform per-flow per-switch measurement, current solution for
collecting INT information is to mirror the header of each packet
with the INT information to a global analyzer in each switch
(postcard mode/INT-XD [16]), or only the INT-sink switches
(passport mode/INT-MD [14]).

However, the main shortcoming of INT is its high network
overhead incurred by collecting INT information: 1) many
additional packets, and 2) large additional bandwidth usage.
Specifically, the network overhead has two dimensions: (1)
control plane overhead, i.e., the overhead of sending INT infor-
mation to the collector from INT-capable switches; (2) data plane
overhead, i.e., the increase in packet size due to piggybacking
switch internal state on live network traffic. While postcard
mode/INT-XD eliminates the data plane overhead, it magnifies
the control plane overhead of passport mode/INT-MD several
times as it reports at each switch. In order to make INT practical
for production deployment, it is strongly desired to reduce the
network overhead of INT, and the first design goal of this paper
is to design a practical INT-based system that supports per-flow
per-switch measurement with low network overhead.

Sketches [18], [19], [20], [21], [22], [23], [24], a kind of
probabilistic data structures that can compactly record per-flow
information with small memory overhead, are a promising
choice for compressing INT information. The development of
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sketches undergoes two phases: 1) simple sketches which are
inaccurate, and 2) sophisticated sketches which are accurate. In
the first phase, typical sketches include sketches of Count-Min
(CM) [18], Conservative Update (CU) [9], and Count [25]. These
sketches simply consist of counters, and are therefore simple and
easy to use. However, they suffer from poor accuracy because
they do not match the practical network traffic which is often
highly skewed: most flows are small and a small amount of
large flows contribute to most traffic [9], [26], [27].

In the second phase, typical sketches include ElasticS-
ketch [20], PyramidSketch [28], and ASketch [24]. These
sketches improve accuracy at the cost of additional data struc-
tures for recording additional information such as flow IDs
and flags. Specifically, the state-of-the-art solution, ElasticS-
ketch [20] uses a voting technique to separate large flows from
small flows, and ASketch [24] maintains the top-k flows by
checking their sizes during each insertion operation.

Compared with simple sketches, sophisticated sketches have
two shortcomings: 1) they have additional data structures other
than counters and corresponding additional operations other
than incrementing counters; 2) they have many more parameters
which need to be carefully tuned. These two shortcomings
hinder their implementation in practice, especially in hardware,
such as FPGA and P4-capable switches [29]. For example, in
Tofino switches [30], the workflow of a classic 3-array CM
sketch only consists of three addition operations, and therefore
can be implemented within just one stage and three stateful
ALUs (SALUs), where SALU is a kind of primary processing
units. In contrast, the workflow of ElasticSketch1 consists of
nine addition operations, four substitution operations, and many
comparisons, and therefore consumes nine SALUs and more
than twelve stages.

However, an ideal sketch for efficiently compressing INT
information in practice should achieve both simplicity and accu-
racy. Simplicity allows the sketch for flexible deployment on var-
ious hardware and software platforms, dealing with a variety of
real-world network architectures. Accuracy allows the sketch to
satisfy accuracy requirements within strict memory/bandwidth
constraints. As discussed above, existing sketches can hardly
achieve both simplicity and accuracy, and the second design
goal of this paper is to design a simple and accurate sketch.

B. Our Proposed Solution

Towards the first design goal, our first contribution is to design
SketchINT system to support per-flow per-switch measurement
while reducing the control plane overhead of INT through
combining INT and sketches. Towards the second design goal,
our second contribution is to design a new sketch, namely
TowerSketch, which is as simple as simple sketches, while as
accurate as sophisticated sketches. Our third contribution is to
build a prototype to verify the effectiveness and efficiency of our
proposed solutions.

Contribution I: combining INT and sketches. We design
SketchINT, which achieves per-flow per-switch measurement

1The source P4 code of ElasticSketch. https://github.com/BlockLiu/
ElasticSketchCode/blob/master/src/P4_cpu_implementation/elastic.p4

Fig. 1. TowerSketch example.

and low network overhead at the same time. The key design of
SketchINT is to first compress all INT information into compact
sketches for collection, rather than directly transmit them to
the global analyzer as INT does. Specifically, SketchINT first
aggregates the per-packet INT information into a small amount
of per-flow information, then further encodes the per-flow in-
formation into compact sketches. In this way, the bandwidth
usage and the number of packets belonging to the control plane
overhead are significantly reduced. Finally, SketchINT transmits
these sketches to the global analyzer with jumbo frames to
further reduce the number of packets.

SketchINT has 3 working modes, where the sketches are de-
ployed in different places. First, SketchINT can deploy sketches
on sink node switches, i.e., edge switches. Second, considering
that the memory resources of switches are relatively limited,
SketchINT can deploy sketches on end-hosts for achieving
higher measurement accuracy. Third, SketchINT can offload the
sketches to FPGA-based SmartNICs, so as to save the expensive
CPU resources in end-hosts for economic benefits. To support
all the above three working modes, our sketch should be simple
enough to be deployed on the three platforms: P4, CPU, and
FPGA.

Contribution II: designing a simple and accurate sketch –
TowerSketch. To be simple, TowerSketch just consists of sev-
eral counter arrays and hash functions. To be accurate under
the skewed network traffic, TowerSketch uses different-sized
counters for different arrays while allocating the same amount
of memory for each array. In this way, TowerSketch can au-
tomatically record larger flows in larger counters and smaller
flows in smaller counters. As shown in Fig. 1, TowerSketch
organizes the counters into a tower shape consisting of d arrays.
For every two adjacent arrays, the array at the higher level has
fewer counters and its counters are larger in size. The property of
TowerSketch is that the numbers of bits used for different arrays
are the same. TowerSketch has three insertion strategies: 1) CM
insertion similar to that of the CM sketch, 2) CU insertion similar
to that of the CU sketch, and 3) approximate CU insertion similar
to that of the SuMax sketch [13] (see Section IV-C). The query
operation of TowerSketch is also similar to that of the CM sketch.
In this way, TowerSketch can approach a state that every bit is
counting. To further ease the configuration of TowerSketch and
give network operators more confidence on sketch performance,
inspired by SketchError [31], we extend its theory of posterior
error bound estimation to be applicable to TowerSketch, so
as to provide precise error bound estimation with theoretical
guarantees (see Section V-B). Thanks to the simplicity of our
TowerSketch, TowerSketch can be easily extended to support a
wide range of measurement tasks, and can be implemented on

https://github.com/BlockLiu/ElasticSketchCode/blob/master/src/P4_cpu_implementation/elastic.p4
https://github.com/BlockLiu/ElasticSketchCode/blob/master/src/P4_cpu_implementation/elastic.p4
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various software and hardware platforms, such as P4 [29], [30],
single-core CPU, multi-core CPU, and FPGA.

Contribution III: building a SketchINT prototype. To verify
the effectiveness of our combination of INT and sketches, and
evaluate the performance of our proposed sketch, we have fully
implemented a SketchINT prototype on a testbed consisting of
10 programmable switches and 8 end-hosts in a FatTree topol-
ogy. This prototype verifies that our solution well achieves the
design goal of measuring per-flow per-switch network informa-
tion with high accuracy and low network overhead using simple
operations. Further, our experimental results on this prototype
system show that 1) TowerSketch achieves higher accuracy than
ElasticSketch on various tasks. The error of TowerSketch is up
to 27.7 times lower than ElasticSketch; 2) SketchINT can reduce
the number of packets belonging to the control plane overhead by
3 ∼ 4 orders of magnitude compared to INT with error smaller
than 5%; 3) The estimated error bound of TowerSketch can
match the actual error bound in most cases. To make our results
easy to reproduce, we have released all related source codes and
datasets at Github.2

II. RELATED WORK

In this section, we summarize the in-band telemetry solutions
and the sketching solutions for network measurement. For other
solutions, please refer to reference [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51].

In-band Telemetry Solutions: These solutions insert packet-
level statistics into incoming packets in INT-compatible
switches. Typical in-band telemetry solutions include INT [14],
[15], [16], its successor PINT [17], DeltaINT [52], and Light-
Guardian [13]. INT has two collection strategies: passport/INT-
MD and postcard/INT-XD. In passport mode/INT-MD [14],
switches insert packet-level statistics into each passing packet.
Then sink switches mirror the packet headers and the desired
INT information into new packets and forward these packets
to the analyzer. In postcard mode/INT-XD [16], the mirroring
and forwarding process happens in each switch. Both of the two
modes at least double the number of packets in the network. As
collecting INT information incurs significantly network over-
head, PINT [17] chooses to insert packet-level statistics into
each packet with a certain probability, which reduces network
overhead at the cost of information missing. However, PINT
cannot support some measurement tasks, e.g., per-flow per-
switch inflated latency detection (see Section VI-B), and its
accuracy is also lower than INT. LightGuardian [13] compresses
per-flow information into sketches on programmable switches.
The switches periodically split their sketches into sketchlets
(sketch fragments) and send the sketchlets to the analyzers by
packet piggyback.

Sketching Solutions: There are a great number of sketching
solutions, which can be further divided into two categories: sim-
ple sketches and sophisticated sketches. Typical simple sketches
include CM [18], CU [9], Count [25], CMM [53] and CSM [54].

2https://github.com/SketchINT-code/SketchINT

These sketches often consist of multiple arrays. Each array
consists of many counters, and is associated with a hash function
that maps flows to a counter in it. Simple sketches are easy to
implement and transmit. However, as they equally treat large
flows and small flows, the accuracy of these sketches is poor
due to hash collisions. To address this problem, sophisticated
sketches devise many mechanisms to explicitly separate large
flows and small flows, incurring complicated data structures
and operations. Typical sophisticated sketches include Elas-
ticSketch [20], ASketch [24], SF-sketch [55], and more [21],
[22], [28], [56]. Specifically, SF-sketch maintains two separate
sketches: a large sketch, the Fat-subsketch, and a small sketch,
the Slim-subsketch. The Fat-subsketch is used for updating
and periodically producing the Slim-subsketch, which is then
transferred to the remote collector for answering queries quickly
and accurately. Besides, there are a kind of dedicated sketches
designed exclusively for specific measurement systems. Typical
dedicated sketches include FlowRadar [23], Cold Filter [57],
UnivMon [19], BeauCoup [58], OmniMon [59], and more [60],
[61], [62], [63], [64]. Among them, FlowRadar uses a variant
of Invertible Bloom filter [65] to record flow-level informa-
tion. Cold Filter uses two cascaded CU sketches consisting of
different-sized counters to filter small flows. UnivMon builds
several sketches on the data plane to perform many measurement
tasks, and uses a key method called universal streaming [66]
to sample packets. However, due to its sampling techniques,
UnivMon is inevitably not accurate in flow size estimation.
OmniMon builds hash tables in end-hosts to record the IDs
(5-tuple) of all flows. For different flows, a coordinator assigns
different counters in switches to these flows, so as to achieve full
accuracy. To give network operators more confidence on sketch
performance, SketchError [31] proposes precise error estima-
tion methods with theoretical guarantees for various sketches,
including CM, CU and Count.

Comparison with existing per-flow per-switch measurement
solutions: We compare SketchINT with existing measurement
solutions that can perform per-flow per-switch measurement
from five aspects. As shown in Table I, 1) for requirement on
switches, SketchINT and INT require much less. They only need
switches to support INT, which will be supported by future com-
modity switches.3 In contrast, OmniMon and LightGuardian
need to deploy dedicated data structures on programmable
switches. 2) For requirement on end-hosts, SketchINT inserts
packets into TowerSketch in end-hosts, which can be offloaded
to programmable edge-switches; INT has no requirement on
end-hosts; OmniMon builds hash tables in end-hosts to store
the active flows; LightGuardian collects sketch fragments from
packets, and uses them to reconstruct complete sketches in
end-hosts. 3) For requirement on coordinator, OmniMon needs
a coordinator to assign different counters in switches to differ-
ent flows, so as to avoid collisions and achieve full accuracy.
In contrast, SketchINT, INT and LightGuardian do not have
such requirement. 4) For bandwidth overhead, INT consumes
a large amount of bandwidth for transmitting and collecting

3We implement SketchINT prototype with Tofino switches, but actually it can
be replaced with INT-capable commodity switches.

https://github.com/SketchINT-code/SketchINT
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TABLE I
COMPARISON WITH EXISTING SOLUTIONS

Fig. 2. Architecture and workflow of SketchINT.

INT information; SketchINT consumes less bandwidth as it
reduces most bandwidth overhead in the collection; OmniMon
and LightGuardian consume the least as they only transmit their
data structures. 5) For accuracy, INT and OmniMon achieve full
accuracy; SketchINT achieves less accuracy because of hash
collisions; LightGuardian achieves the least accuracy because
of the limited memory in switches.

We further detail the pros and cons of SketchINT and Light-
Guardian because they are the most relevant. Compared to
LightGuardian, the major advantage of SketchINT is its ease
of deployment. LightGuardian requires each switch to be pro-
grammable, making it difficult to deploy. In contrast, given the
fact that more and more commodity switches are becoming
INT-capable [16], SketchINT only requires edge/ToR switches
to be programmable at most. Further, considering that many
works [67], [68], [69] are designed to optimize storage systems
with edge/ToR switches, SketchINT can coexist with these
works without additional changes to the network architecture.
The major advantage of LightGuardian is its accuracy and band-
width overhead when SketchINT cannot deploy TowerSketches
on end-hosts. It is reasonable as LightGuardian can compress
INT information into sketches on programmable switches as
soon as possible, and it has much more memory for measurement
as it has more programmable switches under control.

III. SKETCHINT DESIGN

As shown in Fig. 2, the SketchINT system comprises three
components. The first component is the SketchINT agent that
encodes the INT metadata into compact TowerSketches for

each incoming packet. Based on operator’s monitoring intents,
SketchINT agent can be flexibly deployed in three working
modes, i.e., the TowerSketch can be built in programmable edge
switches, end-host CPUs, or SmartNICs to compactly encode
per-flow per-switch information. The second component is the
INT-compatible switch which inserts the desired per-switch INT
metadata into packets. The last one is the global SketchINT an-
alyzer which is deployed in a commodity server collecting Tow-
erSketches from all SketchINT agents. The analyzer is designed
with high elasticity and scalability. We take SketchINT working
in end-host CPU as an example. Fig. 2 shows SketchINT’s
workflow, consisting of three phases. The remaining parts of
this section demonstrate the design details of each phase.

1) Piggyback packet-level statistics using INT: First,
SketchINT leverages the INT capability of switches to acquire
per-switch packet-level statistics. For resource efficiency and
compatibility, SketchINT customizes an INT-layer consisting of
an INT instruction header and several INT metadata fields. The
INT instruction header consists of a 16-bit hop-count indicating
the number of passing switches. The INT metadata fields record
the desired packet-level statistics in the passing switches. The
INT layer is designed to be between the transport layer and the
payload. For each packet, in each switch on its path, we insert an
INT metadata field into the packet and increment its hop-count
by one. In the switch at its first hop, we additionally insert the
INT instruction header into the packet, and modify the DSCP
field of IPV4 protocol to indicate this packet is an INT-packet.

2) Encode INT information into TowerSketches on end-hosts:
Owing to the flexibility and sufficient memory of end-hosts,
we build several TowerSketches (detailed in Section IV) in
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TABLE II
MAIN SYMBOLS USED IN THIS PAPER

each end-host to support a variety of measurement tasks. The
SketchINT agent in each end-host first reads the INT metadata
from the received packets, and then removes INT header and
metadata to prevent interference to upper protocols and applica-
tions. Then, the SketchINT agent inserts/encodes the informa-
tion carried by INT metadata (e.g., switch ID, internal latency)
into TowerSketches. Optionally, the SketchINT agent forwards
packets identified as belonging to large flows by TowerSketches
to subsequent data structures (e.g., Space Saving [70]) to im-
prove their accuracy.

3) Collect sketches and perform network-wide analysis: The
SketchINT agent in each end-host maintains two groups of
TowerSketches T0 and T1, a group of active sketches and a
group of idle sketches. The status of the two groups of sketches
is periodically exchanged, e.g., 5 seconds. For each incoming
packet, the SketchINT agent inserts/encodes the INT informa-
tion carried by its INT metadata into the active sketches. At
the same time, the agent forwards the idle sketches to the global
SketchINT analyzer. After forwarding, we clear the idle sketches
by setting all counters to 0. After collecting all local sketches,
the global SketchINT analyzer will have a complete view of the
whole network, and can then perform further analysis for each
flow in each switch.

IV. TOWERSKETCHES

In this section, we first introduce the well-known CM
sketch [18]. Then, we show the data structure and operations
of our TowerSketch. We list the main symbols in this paper and
their meanings in Table II.

A. The Classic CM Sketch

The CM sketch consists of d counter arraysA1, . . . ,Ad. Each
array Ai has w counters and it uses a hash function hi(.) to
randomly and uniformly map/hash a flow into a counter in it.
When a packet of flow f arrives, CM calculates hash functions
to find d counters: A1[h1(f)], . . . ,Ad[hd(f)], which are called
the d hashed counters for convenience. CM just increments the
d hashed counters by 1. To query the number of packets of flow
f , CM returns the minimum value among the d hashed counters.

Based on CM, the CU sketch slightly changes the insertion
operation: CU [9] only increments the smallest counter(s). We
use “counter(s)” because when there are multiple counters which
are considered as the smallest, CU needs to increment them all.
Compared with CM, CU significantly improves accuracy at the
cost of not supporting pipeline implementation. Both CM and
CU have no under-estimation errors.

Based on the above classic CM/CU sketch, our TowerSketch
makes small but non-trivial improvement, aiming to automati-
cally record larger flows in larger counters and small flows in
small counters.

B. Data Structure and Operations

Rationale of TowerSketch: The first key idea of our TowerS-
ketch is to use different-sized counters for different arrays, i.e.,
the array at the higher level has counters larger in size. In this
way, for large flows, their small counters at low levels will be
overflowed, and thus their frequencies will be kept in the large
counters at high levels; for small flows, since the large counters
at high levels are occupied by large flows, their frequencies will
be kept in small counters. Considering that the network traffic
is often highly skewed, i.e., most flows are small and a small
amount of large flows contribute to most traffic [9], [26], [27],
the second key idea of our TowerSketch is to allocate the same
amount of memory for each array, i.e., the array at the higher
level has fewer counters larger in size. In this way, the array at
high level has a few large counters to match a few large flows,
and the array at low level has many small counters to match many
small flows. Overall, TowerSketch automatically records larger
flows in larger counters and smaller flows in smaller counters.

Data Structure: As shown in Fig. 3, TowerSketch consists of
d arrays,A1, . . . ,Ad. Each arrayAi consists ofwi counters, and
is associated with a hash function hi(.). The size of each counter
in array Ai is δi bits. The key difference between our sketch and
the CM/CU sketch is: the lower arrays have more counters which
are smaller in size, while the higher arrays have fewer counters
which are larger in size. Under the property that the number of
bits used for different arrays is the same, we allocate the same
amount of memory to each array with different counter size.

Example: As shown in Fig. 3(a), the array at the bottom has
8 counters, each of which has 2 bits; the array at the top has 2
counters, each of which has 8 bits. All the three arrays have the
same size of memory: 16 bits.

CM insertion: To record a packet with flow ID f , TowerSketch
just increments the d hashed counters by 1. If a δ-bit counter
overflows after increment, we mark it as an overflowed counter
by setting its value to 2δ − 1. That is to say, for a δ-bit counter,
the maximum value it can record is 2δ − 2. We consider the value
of the overflowed counter as +∞, which cannot be incremented
or decremented any more.

Example: Fig. 3(a) shows an example to insert a packet. As
the counter A1[h1(f)] has overflowed (its value is 22 − 1 = 3),
we do not increment it.

CU insertion: TowerSketch can adopt the conservative update
strategy of CU [9] to greatly improve the accuracy. Instead



YANG et al.: SKETCHINT: EMPOWERING INT WITH TOWERSKETCH FOR PER-FLOW PER-SWITCH MEASUREMENT 2881

Fig. 3. Examples of TowerSketch (ACU refers to Approximate CU).

of incrementing all the d hashed counters, TowerSketch only
increments the smallest counter(s) that are not overflowed.

Query: The query process is the same for every insertion
strategy. The query for flow f returns the minimum value of the d
hashed counters. Recall that we treat the value of an overflowed
counter as +∞.

C. Approximate CU Insertion

Although the CU insertion can greatly improve the accuracy,
it does not follows a unidirectional workflow, and thus can
hardly be implemented in pipeline architecture, which hin-
ders it from being implemented in the prevalent P4-capable
switches (e.g., Tofino [30]). To improve the accuracy and support
pipeline implementation simultaneously, inspired by the SuMax
sketch [13], we design the approximate CU (ACU) insertion
specific for TowerSketch. To record a packet with flow ID f ,
TowerSketch maintains a current minimum value and initializes
it to +∞. For the d hashed counters, TowerSketch must access
them in a certain order. As shown in Fig. 3(b) & (c), there
are mainly two kinds of accessing order: 1) top-down access
and 2) bottom-up access. We choose the latter one: If and only
if the currently accessed counter is smaller than the current
minimum value, TowerSketch increments it by one, and updates
the current minimum value to its value. The reason behind is as
follows. Note that the number of counters decreases as the array
approaches the top, and thus the counters in higher array usually
suffer more overestimation. Therefore, bottom-up access can
usually obtain the real minimum value at the earliest time, and
therefore is accurate. In contrast, a completely opposite order
of access, i.e., top-down access, will lead to that the maintained
current minimum value is usually not the real minimum value,
and therefore is inaccurate. The experimental results (see Section
VIII-B) also prove our insight: The accuracy of ACU insertion
accessing counters in a bottom-up manner is much higher than
that accessing counters in a top-down manner, even comparable
with the CU insertion. Note that the query process for ACU
insertion is the same as that for CM and CU insertion.

Example: Fig. 3(b) and (c) illustrate the top-down access and
bottom-up access of ACU insertion, respectively. We let the
counters in higher array store larger values, so as to simulate a
general scenario. As shown in Fig. 3(b), in the top-down access,
the maintained current minimum value is always not the real
minimum value, and therefore all the d hashed counters are
incremented by one (d = 3). In contrast, as shown in Fig. 3(c), in
the bottom-up access, the current minimum value is always the

TABLE III
PROS AND CONS OF INSERTION STRATEGIES

real minimum value after the first access, and therefore merely
the counter in the bottom array is incremented by one. Compared
with the top-down access, obviously the bottom-up access incre-
ments less counters, and thus suffers from less overestimation
and achieves higher accuracy.

D. Discussion

Pros and cons of insertion strategies: We list the pros and cons
of each insertion strategy in Table III. For CM insertion, it is the
simplest, and also supports pipeline implementation. However, it
suffers from the lowest accuracy. For ACU insertion, it achieves
moderate accuracy and supports pipeline implementation with
moderate complexity. For CU insertion, it achieves the highest
accuracy. However, it is the most complex and unfriendly to
pipeline implementation. In summary, each insertion strategy
has its unique pros and cons, and the network operators could
choose the most appropriate one based on the actual situation.

Comparison to CM/CU sketches: For large flows, as fewer
counters are assigned to them, TowerSketch has slightly larger
overestimation error on large flows due to the limited volume of
small flows. For small flows, as much more counters are assigned
to them, the overestimation error is significantly reduced. There-
fore, the overall accuracy of TowerSketch is much higher than
CM/CU sketches. A potential optimization for CM/CU sketches
is to use different-sized counters for different arrays while the
number of counters in each array keeps the same. However, such
optimization is not enough because it ignores the skewness of
network traffic as we stated in the rationale of TowerSketch,
which is also verified by experiments in Section VIII-C.

V. ERROR BOUND ANALYSIS

Error bound estimation is of great importance for sketch
configuration, as network operators usually look forward to
satisfying the accuracy requirement with minimal memory over-
head. In this section, we first derive the prior error bound of
TowerSketch, which is independent on the network workload.
Then, we derive its posterior error bound, which is dependent
on the network workload and much tighter.
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A. Prior Error Bound Analysis

In this section, we derive the prior error bound without any
prior knowledge about the network workload, i.e., the worst-case
error bound. Let δ0 = 0. Note that δ0 < δ1 < · · · < δd. Given
an arbitrary flow fj , without loss of generality, we assume its
real size nj satisfies 2δt−1 − 1 � nj < 2δt − 1, where 1 � t �
d. Let m be the number of flows and n be the sum of the real
sizes of all flows, i.e., n =

∑m
l=1 nl.

Theorem 1 (Prior Error bound): For TowerSketch using CM
insertion, given an arbitrary positive number ε, the estimation
error of flow fj is bounded by

Pr {n̂j � nj + ε} � 1−
q−1∏
k=t

{
n

(2δk − nj − 1) · wk

}

×
d∏

k=q

{
n

ε · wk

}

where q satisfies that 2δq−1 − 1 � nj + ε < 2δq − 1.
Proof: We define an indicator variable Ij,k,l as

Ij,k,l =

{
1, hk(fj) = hk(fl) ∧ j �= l
0, otherwise

As the d hash functions are independent from each other, we
have

E(Ij,k,l) = Pr {hk(fj) = hk(fl)} =
1

wk

We define another variable Xj,k =
∑m

l=1 nl · Ij,k,l, indicat-
ing the estimation error caused by hash collisions in counter
Ak[hk(fj)]. Then, for ∀k � t, we have

Ak[hk(fj)] =

{
nj +Xj,k, nj +Xj,k < 2δk − 1
+∞, otherwise

And we have

E (Xj,k) = E

(
m∑
l=1

nl · Ij,k,l

)
=

m∑
l=1

nl · E (Ij,k,l) �
n

wk

Therefore, we have

Pr{n̂j � nj + ε}
= Pr {∀k � t,Ak[hk(fj)] � nj + ε}

= Pr
{
∀k, t � k < q, nj +Xj,k � 2δk − 1

}
·

Pr {∀k � q, nj +Xj,k � nj + ε}

= Pr
{
∀k, t � k < q,Xj,k � 2δk − nj − 1

}
·

Pr {∀k � q,Xj,k � ε}

According to the Markov inequality, we can derive that

Pr {n̂j � nj + ε}

�
q−1∏
k=t

{
E(Xj,k)

2δk − nj − 1

} d∏
k=q

{
E(Xj,k)

ε

}

�
q−1∏
k=t

{
n

(2δk − nj − 1) · wk

} d∏
k=q

{
n

ε · wk

}

Therefore, we have

Pr {n̂j � nj + ε}

� 1−
q−1∏
k=t

{
n

(2δk − nj − 1) · wk

} d∏
k=q

{
n

ε · wk

}

�
From Theorem 1, we can see that the smaller flow goes with

the smaller nj , as well as the smaller t, q. Therefore, we can
conclude that the prior error bound is dependent on the flow size,
and the smaller flows have the smaller error in TowerSketch.

B. Posterior Error Bound Analysis

Traditionally, network operators configure the sketch based
on the the worst-case error bound derived from traditional
workload-independent analysis [18]. However, the actual error
bound is strongly dependent on the network workload, and thus
could be much tighter than worst-case error bound, especially
when the workload is highly skewed [20], [24]. Compared
to the tighter actual error bound, the worst-case error bound
seriously undermines the confidence of network operators on
sketch accuracy, resulting in a large amount of meaningless
memory waste. To address this issue, the state-of-the-art work,
SketchError [31], has provided posterior, near-optimal, and uni-
fied error bound estimation at the query time for the classic
CM sketch with theoretical guarantees. We aim at extending its
theory and error bound estimation method to be applicable to
TowerSketch, so as to ease the configuration and give network
operators more confidence on the performance of TowerSketch.
Different from SketchError, our insight is that the posterior error
bound of TowerSketch should not be unified for all flows, but
strongly dependent on the flow size, because different-sized
flows are automatically recorded in different arrays consisting of
different-sized counters in TowerSketch. In this section, we first
derive the posterior error bound of TowerSketch, then propose
how to estimate the error bound for flows of arbitrary sizes.

Theorem 2 (Posterior Error bound): Given a TowerSketch
using CM insertion after the insertion process, an arbitrary
positive number ε, the estimation error of flow fj is bounded
by

Pr {n̂j � nj + ε} ≈ 1−
q−1∏
k=t

Fk(2
δk − 2− nj)

d∏
k=q

Fk(ε)

where q satisfies 2δq−1 − 1 � nj + ε < 2δq − 1, and Fk(R) de-
notes the ratio of counters whose value are larger than R in array
Ak.

Proof: For array Ak of TowerSketch, the value of each
counter in it could be viewed as a sample of the same random
variable Yk.

Yk =

{∑m
l=1 nlMk,l,

∑m
l=1 nlMk,l < 2δk − 1

+∞, otherwise
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Here, Mk,l denotes the probability that flow nl is hashed to a
certain counter in array Ak. Obviously, Mk,l is a 0/1 variable,
and Pr{Mk,l = 1} = 1

wk
.

Based on the counter size, We classify each array of TowerS-
ketch into three kinds.

The first kind of arrays are those whose counters are naturally
overflowed by nj . For any array Ak of the first kind (∀k <
t,Ak), Obviously, We have

Pr{Ak[hk(fj)] > nj + ε} = 1

The second kind of arrays are those whose counters are not
overflowed by nj , but overflowed by nj + ε. For any array
Ak of the second kind (∀k, t � k < q,Ak), considering that
each counter in it is a sample of the same random variable Yk,
according to Bernoulli’s law of large numbers, we have

Pr{Ak[hk(fj)] > nj + ε} = Pr{Yk > 2δk − 2− nj}

≈ Fk(2
δk − 2− nj)

The third kind of arrays are those whose counters are not
overflowed by nj + ε. For any array Ak of the third kind
(∀k, q � k � d,Ak), similarly, according to Bernoulli’s law of
large numbers, we have

Pr{Ak[hk(fj)] > nj + ε} = Pr{Yk > ε} ≈ Fk(ε)

Therefore, we can derive that

Pr {n̂j � nj + ε} = 1−
d∏

k=1

Pr{Ak[hk(fj)] > nj + ε}

≈ 1−
q−1∏
k=t

Fk(2
δk − 2− nj)

d∏
k=q

Fk(ε)

�
From Theorem 2, we can see that the smaller flow goes with

the smaller nj , as well as the smaller t, q, and Fk(2
δk − 2−

nj). Therefore, we can conclude that the posterior error bound
is dependent on the flow size, and the smaller flows have the
smaller error in TowerSketch.

Error bound estimation for TowerSketch using CM insertion:
For TowerSketch using CM insertion, we directly use the right-
hand side formula of Theorem 2 to estimate its posterior error
bound. The correctness of this method is guaranteed by Theorem
2, and we further verify its correctness with experiments (see
Section VIII-E).

C. Discussion

Both Theorems 1 and 2 apply to estimating the overestimation
error on large flows (also small flows). Indeed, TowerSketch uses
less counters to estimate the sizes of true large flows, and as
Theorems 1 and 2 demonstrate, it leads to larger overestimation
error on large flows than small flows. However, TowerSketch
prevents most small flows from being overestimated as fake large
flows because of its accurate estimation of small flows. There-
fore, TowerSketch achieves great performance on measurement
tasks that focus on large flows. As shown in Fig. 7(b)(c)(d)(h),
TowerSketch achieves higher accuracy than CM/CU sketches

and at least comparable accuracy with the state-of-the-art on
measurement tasks that focus on large flows.

VI. MEASUREMENT TASKS

In this section, we elaborate on how SketchINT performs
seven representative local measurement tasks and four represen-
tative global measurement tasks. We take SketchINT working
in end-host CPU as an example. Note that besides these tasks,
SketchINT also supports all other measurement tasks supported
by INT (e.g., path tracing). SketchINT is also perfectly compat-
ible with other INT-based mechanism (e.g., HPCC [12]).

A. Local Measurement Tasks

This subsection presents seven representative per-flow mea-
surement tasks of TowerSketch, including 1) flow size esti-
mation, 2) heavy hitter detection, 3) heavy change detection,
4) flow size distribution estimation, 5) entropy estimation, 6)
cardinality estimation, and 7) large flow marking. Although
existing network measurement solutions support these tasks,
TowerSketch significantly improves the accuracy for most of
them. To support these tasks, the SketchINT agent builds one
TowerSketch in each end-host, and inserts each incoming packet
with its flow ID as the key.

Flow size estimation: estimating the flow size for any flow
ID fj .4 Flow sizes characterize the flows and provide the basis
for advanced tasks, such as heavy hitter detection and heavy
change detection. TowerSketch directly estimates the flow size
by returning the minimum value of the d hashed counters.

Heavy hitter detection: reporting flows whose sizes are larger
than a threshold Δh. Heavy hitters can provide guidance for
traffic engineering and attack detection [71], [72]. We build a
tiny hash table to maintain the heavy hitters by recording their
flow IDs. For each incoming packet of flow fj , we insert it into
TowerSketch and query its flow size n̂j . If n̂j > Δh and n̂j is
not in the hash table, we insert fj to the hash table. To get all
heavy hitters, we report all flow IDs in the hash table.

Heavy change detection: reporting flows whose sizes drasti-
cally change beyond a predefined threshold Δc in two adjacent
time windows. Heavy changes are indications of traffic anoma-
lies [73]. We build one TowerSketch for each time window, and
also use the hash table described above to maintain the flows
whose sizes are larger than Δc. For each flow recorded in the
two hash tables, we calculate its flow size difference by querying
the two TowerSketches. If the difference exceeds Δc, we report
it as a heavy change.

Flow size distribution estimation: estimating the distribution
of flow sizes. Flow size distribution can provide guidance for
traffic engineering and attack detection [74]. The traditional flow
size distribution estimation algorithm is MRAC [74], which can
estimate the flow size distribution with a single counter array.
MRAC uses the Expectation Maximization (EM) algorithm [75]
to provide distribution estimation for flows of any size. To

4A flow ID can be any combination of 5-tuple: source IP address, source port,
destination IP address, destination port, and protocol type.
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estimate the flow size distribution for TowerSketch, a straightfor-
ward solution is to apply MRAC to the top array of TowerSketch.
However, MRAC is not applicable to the other counter arrays
with smaller counters, as counters in them could be overflowed.
This leads TowerSketch to lack accuracy in the estimation of
the distribution of small flows. To address this issue, we slightly
modify the basic MRAC algorithm to enable it to be applicable
to the other arrays besides the top array. Specifically, for array
Ai, instead of taking flows of any size into consideration as
the basic MRAC algorithm, we only divide the flows into 1)
flows with size in range [1, 2δi − 1) and 2) flows with size
reaching or exceeding 2δi − 1. In this way, we can apply the
modified MRAC algorithm to any array in TowerSketch. The
detailed workflow is as follows. We apply the modified MRAC
algorithm to all counter arrays of TowerSketch from bottom to
top. Each array Ai could provide the estimated distribution for
flows with size in range [1, 2δi − 1), and we use the estimated
distribution for flows with size in range [2δi−1 − 1, 2δi − 1) as
the input distribution for the higher arrays. The input distribu-
tion will not be recalculated in the process of EM. In other
words, array Ai+1 will estimate the distribution for flow size
in range [2δi − 1, 2δi+1 − 1) with the input distribution in range
[1, 2δi − 1). Here, we fix the flow distribution for small flows as
we believe lower arrays can provide more accurate distribution
for small flows than higher arrays, because lower arrays have
much more counters. After the workflow ends, we can finally
obtain the complete flow size distribution.

Entropy estimation: estimating the entropy of flow sizes.
Entropy can provide guidance for anomaly detection [76]. After
getting the estimation of flow size distribution, we can eas-
ily compute the entropy by the following formula: −

∑
(mi ·

i
M log i

M ), where mi is the number of flows with size of i, and
M =

∑
(i ·mi).

Cardinality estimation: estimating the number of flows. We
use the bottom array with the most counters to estimate car-
dinality, and calculate the results using the linear counting
algorithm [77].

Large flow Marking: identifying flows whose sizes are larger
than a threshold Δf , and marking their packets as belonging
to large flows. Note that there is a fundamental difference be-
tween large flow marking and heavy hitter detection: large flow
marking is at packet-level and needs to identify whether a packet
belongs to large flows at real time, while heavy hitter detection
is at flow level and reports heavy hitters after a measurement
window ends. Large flow marking is an important task in data
stream processing, as it can greatly improve the accuracy for
data structures focusing on large flows [57]. TowerSketch can
support large flow marking independently. For every incoming
packet, we query its flow size from TowerSketch. If the queried
flow size exceeds Δf , we mark this packet as belonging to large
flows.

B. Global Measurement Tasks

This subsection presents four global measurement tasks en-
abled by SketchINT, including 1) per-flow per-switch latency
estimation, 2) per-flow per-switch inflated latency detection,

3) per-switch heavy hitter detection, and 4) per-switch heavy
change detection. The first two tasks provide information of
latency, which can be used as the basis of flow scheduling,
load balancing, and congestion control. The remaining two tasks
provide information of large flows, which is useful to problem
diagnosis when a switch suffers problems (e.g., congestion,
packet drops, full Network Processing Unit (NPU) utilization).
Note that none of existing sketching solutions can support these
tasks, and compared with INT, SketchINT empowers these tasks
with great scalability. To support these tasks, the SketchINT
agent can reuse the TowerSketch built for local measurement
tasks in each host.

Per-flow per-switch latency estimation: reporting the average
internal latency in each switch for any given flow. For this
task, we configure the switches to insert the switch ID and the
internal latency into each incoming packet. In each end-host, the
SketchINT agent reuses the TowerSketch built for local tasks
(flow-size TowerSketch) and builds an additional TowerSketch
to record the latency information (latency TowerSketch). For
each incoming packet, we first insert it to flow-size TowerSketch
with its flow ID as the key. Then, we acquire its forwarding path,
i.e., the recorded switch IDs, and the per-switch internal latency
via INT. For each recorded switch Si, we concatenate the switch
ID Si and the flow ID to form a new key, which is used to locate
the d hashed counters in the latency TowerSketch. For each
hashed counter, we increment it by the internal latency inSi. The
global SketchINT analyzer periodically collects TowerSketches
from end-hosts. To acquire the latency of flow fj in its passing
switch Si, we query flow-size TowerSketch for its flow size with
its flow ID as the key, query latency TowerSketch for its total
latency with the concatenated key formed by its flow ID and Si,
and report the average latency as the total latency divided by the
frequency.

Per-flow per-switch inflated latency detection: reporting the
frequency of inflated latency in each switch for any given flow.
Inflated latency in switch Si is defined as the latency which
exceeds Δl times of the average latency in Si, where Δl is a
predefined threshold. We configure the switches as in latency
estimation, and we still use the TowerSketches in latency esti-
mation to perform this task. In addition, the SketchINT agent
builds a tiny hash table. For each incoming packet of fj , we
process it as described in latency estimation. Every time we find
that the latency of a packet in switch Si exceeds Δl times of its
estimated average latency, we insert a key consisting of the flow
ID and the switch ID into our hash table. The global SketchINT
analyzer periodically collects the hash tables and reports the
inflated latency.

Per-switch heavy hitter detection: detecting heavy hitters for
any switch. We configure the switches to insert the switch ID
into each incoming packet. In each end-host, the SketchINT
agent reuses the TowerSketch built for local tasks and builds
an additional tiny hash table. For each incoming packet, we
acquire the forwarding path via INT. The insertion process of
TowerSketch and the hash table is similar to local heavy hitter
detection. The only difference is that we insert the flow ID and
its forwarding path as a key-value pair to the hash table. The
global SketchINT analyzer periodically collects the hash tables.
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For any given switch Si, we check all hash tables. If a flow has
Si in its forwarding path, we report it as a heavy hitter in switch
Si.

Per-switch heavy change detection: detecting heavy changes
for any switch. In end-hosts and switches, we use the same data
structures and operations as in per-switch heavy hitter detection,
except the threshold is set to the heavy change threshold Δc.
For each flow ID recorded in the two adjacent hash tables,
we calculate its flow size difference by querying two adjacent
TowerSketches. If the difference exceeds Δc, we insert the flow
ID and its forwarding path into a list. The analyzer periodically
collects the lists. For any given switch Si, we check all lists. If a
flow has Si in its forwarding path, we report it as a heavy change
in switch Si.

VII. IMPLEMENTATION OF WORKING MODES

With the great simplicity, TowerSketch can be implemented
upon a diversity of platforms, giving operators great flexibility
of deploying SketchINT. We have completed three types of
TowerSketch implementations, corresponding to the three work-
ing modes, respectively. First, we present edge-switch-based
TowerSketch which runs on P4-programmable edge switches.
Second, considering the limited memory in switches, we present
the kernel-based TowerSketch which runs on end-hosts with
abundant memory resources. Third, to avoid consuming the
expensive CPU resources in end-hosts, we present the FPGA-
based TowerSketch which can run on FPGA-based SmartNIC
for economic benefits. This section demonstrates the details of
each implementation type.

A. TowerSketch on P4-Capable Switches

1) Standard Version: We have implemented our TowerS-
ketch on P4-capable Tofino switches, which can be used as edge
switches. Then, edge switches can collect INT metadata fields
and perform measurement tasks supported by TowerSketch. To
perform all measurement tasks in P4-capable switches, we need
the same number of TowerSketches as the maximum hop count
in data centers, which is usually 5. Since the Tofino switch
processes packets in a pipeline manner, TowerSketch cannot
support CU insertion in Tofino switches unless recirculating
most of the packets, which is quite expensive in terms of band-
width. Therefore, we only implement TowerSketch using CM
insertion and ACU insertion on Tofino switches through several
registers and Stateful ALUs (SALU). For each counter array
Ai consisting of wi δi-bit counters, we build a register with wi

register elements, where each element stores a corresponding
counter in Ai. Note that the registers in Tofino switch only
support 8-bit, 16-bit and 32-bit elements,5 we use the register
elements that are slightly larger than δi-bit to store the counters.
For each incoming packet, we use its 5-tuple flow ID to locate
the hashed element in each array with pairwise-independent hash
functions. Then, we use the SALU to execute the hashed element
in each array as described in Section IV.

5Tofino switch also supports 1-bit register elements. However, the capability
of 1-bit elements is limited to being set to 0 or 1, and thus cannot be used as
counters.

TABLE IV
RESOURCES USAGE OF TOWERSKETCH&SKETCHINT AGENT

2) Extension: Extension to 2-bit counters: We can also sup-
port 2-bit counters by using multiple register elements. Specif-
ically, we can use three cascaded 1-bit register elements to
simulate a 2-bit counter. For insertion, we set the the first zero
1-bit register element to one. For query, we report the sum
of the three 1-bit register elements as the value of the 2-bit
counter. Obviously, the three cascaded 1-bit register elements
are equivalent to a 2-bit counter in terms of function. The price
we pay for simulating 2-bit counters is mainly twofold: 1) 50%
additional memory overhead; 2) two more SALUs for accessing
the three 1-bit register elements compared to 8-bit counter that
only accesses one 8-bit register element. The extension to 2-bit
counters is of great value, especially when the network traffic
is highly skewed: recording flows of size one or two with 2-bit
counters is much more memory-efficient than 8-bit counters.
This extension is not only applicable for TowerSketch, but
also other sketches that rely on small-sized counters, such as
FCMSketch [78], PyramidSketch [79], and Cold Filter [57].

Extension to larger counters: We can also support counters
larger than 32-bit by using multiple register elements. Taking a
48-bit counter as an example, we simulate it with a pair of 32-bit
and 16-bit register elements. From the output of 32-bit element,
we can get the flow size and overflow information, then access
the 16-bit element. Combining two outputs from the elements,
we can simulate a 48-bit counter. Obviously, this basic idea could
be extended to support counters of any size that are larger than
32-bit.

3) Resource Usage: We compare the resource usage of our
standard-version TowerSketch with a baseline forwarding pro-
gram switch.p4. Table IV shows the additional resource
usage to build a TowerSketch with the following parameters:
d = 3, δi = 2i+2, and wi = 217−i. We find that compared with
switch.p4, the additional resource usage is less than 8%
across all resources except for SALU. The additional usage
percentage of SALU is naturally higher than other resources
because we need to use SALU to access the registers. Note that
the ASIC processing throughput does not decrease as long as
the resource usage can fit into the ASIC resource constraint.
There is almost no difference in resource usage between the
implementations of ACU insertion and CM insertion, except that
the SALUs for CM insertion can be placed in one stage, while
that for ACU insertion cannot, because there are dependencies
between arrays in ACU insertion. Both the implementations
of large counters and 2-bit counters will increase the usage of
SALUs, as they require more logic as well as SALUs to simulate
these counters.
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We further compare the resource usage of a P4-based
SketchINT agent that supports all global tasks to switch.p4.
Overall, to perform all global measurement tasks, we require
only two TowerSketches (one for storing flow size information
and one for storing latency information) and two hash tables
(one for storing flows suffering from inflated latency and one
for storing per-switch heavy-hitter). We show the resource usage
of a P4-based SketchINT agent in Table IV. The agent can
support a typical data center network that has at most five
hops. The parameters of the TowerSketch for recording flow
size information are: d = 3, δi = 2i+2, and wi = 217−i. The
parameters of the TowerSketch for recording latency infor-
mation are: d = 2, δi = 2i+3, and wi = 215−i × 5. Both the
two hash tables have 1024 table entries to record the entire
104-bit flow ID (5-tuple) and additional required information
(e.g., forwarding path). We find the additional usage of SALU
and Exact Crossbar is relatively high. This is because that the
TowerSketch for recording latency information requires to insert
the latency of each packet in its each passing switch (at most
five), and therefore involves a great number of register actions
and memory I/O, which are just related to these two kinds of
resources.

B. TowerSketch on Single/Multi-Core CPU

We implement TowerSketch in the user space on both single-
core and multi-core CPU platforms. We integrate TowerSketch
with a packet receiving program written in DPDK [80] to
perform per-flow per-switch measurement. For multi-core CPU
platform, we build TowerSketches shared by all cores and use the
lock mechanism for synchronization. To speed up the insertion,
we can also abandon the complicated lock mechanism. Our
experimental results show that the lock-free version of Tow-
erSketch achieves much higher throughput with almost no loss
in accuracy (see Section VIII-C).

C. TowerSketch on FPGA

To verify that our TowerSketch can be implemented on
FPGA-based SmartNIC, we have implemented our Towers-
ketch (using CM insertion) on Xilinx Virtex-7 VC709 with
the following parameters: d = 3, δi = 2i+2, and wi = 217−i.
CU insertion cannot be efficiently implemented because the
FPGA process packets in a pipeline manner. We use FPGA
device (model XC7VX690TFFG1761-2) as the target plat-
form, which has 433200 Slice LUTs, 866400 Slice Registers,
and 1470 Block RAM Tiles (i.e., 30.6Mb on-chip memory).
The resource usage information is as follows: 1) TowerS-
ketch uses 45.5 Block RAM Tile, 3.1% of the total on-chip
Block RAM; 2) TowerSketch uses 686 LUTs, less than 1%
of the 433200 total available. TowerSketch is fully pipelined,
which can process one packet in every clock, and update the
d hashed counters after eight clocks. The clock frequency
of our FPGA is 365 MHz, meaning an insertion speed of
365 Mpps.

VIII. EXPERIMENTAL RESULTS

We conduct extensive experiments in our SketchINT proto-
type. We focus on the following issues:
� Which access order achieves highest accuracy in ACU

insertion? We evaluate the accuracy of TowerSketch using
ACU insertion that accesses counters in top-down and
bottom-up manners on several well-known datasets.

� How accurate can TowerSketch perform the 7 local
measurement tasks? We implement TowerSketch using
C/C++ program, and evaluate the accuracy of TowerSketch
on single-core CPU and multi-core CPU platforms.

� How accurate can TowerSketch perform the 4 global
measurement tasks? We evaluate the accuracy of Tow-
erSketch in our SketchINT prototype.

� How much network overhead can SketchINT reduce
in the collection process? We compare the bandwidth
usage and the number of generated packets in the collection
process of SketchINT with the INT passport mode/INT-
MD [14].

� How the estimated error bound of TowerSketch match
the actual error bound? We evaluate our proposed error
estimation method of TowerSketch on several well-known
datasets.

Evaluation metrics:
� Average Absolute Error (AAE): 1

m

∑n
i=1 |ni − n̂i|, where

m is the number of flows, ni and n̂i are the actual and
estimated flow sizes respectively.

� Average Relative Error (ARE): 1
m

∑m
i=1

|ni−n̂i|
ni

.
� F1 Score: 2·PR·RR

PR+RR , where PR (Precision Rate) refers
to the ratio of the number of the correctly reported in-
stances to the number of all reported instances, and RR
(Recall Rate) refers to the ratio of the number of the
correctly reported instances to the number of all correct
instances.

� Relative Error (RE): |True−Est|
True , where True and Est are

the true and estimated values, respectively.
� Weighted Mean Relative Error (WMRE) :

∑z
i=1 |mi−m̂i|

∑z
i=1(

mi+m̂i
2 )

,

where mi and m̂i are the true and estimated numbers of
the flows of size i respectively, and z is the maximum flow
size [81].

� Throughput: Million packets per second (Mpps).
Datasets:
� CAIDA dataset: The CAIDA dataset is built from the

anonymized IP traces collected in 2018 from CAIDA [82],
which is widely used in prior work [81], [83]. We use the
32-bit source IP address as the flow ID. Each trace contains
about 2.3 M packets of 170 K flows, with a monitoring time
interval of 5 s.

� Webpage dataset: The Webpage dataset is built from a col-
lection of web pages [84], and so called Webpage dataset.
The dataset contains about 2 M packets of 130 K flows.

� Synthetic datasets: The synthetic datasets are generated
following the widely recognized Zipf distribution [85].
The skewness of the two datasets are 0.5 and 1.0, and so
called Zipf_0.5 dataset and Zipf_1.0 dataset, respectively.
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Fig. 4. Testbed.

Zipf_0.5 dataset contains about 2 M packets of 900 K flows,
and Zipf_1.0 dataset contains about 2 M packets of 350 K
flows.

A. Testbed Setup

As shown in Fig. 4, we implement the SketchINT prototype on
a testbed consisting of 10 Tofino switches and 8 end-hosts with
40GbE links in a FatTree topology. The MTU of the network
interface cards (NIC) is set to 9000B. In each switch, we insert
an INT metadata field consisting of a 16-bit predefined switch ID
and a 32-bit internal latency into each incoming packet. The pe-
riod that active and idle sketches exchange their status is set to 5
seconds, implying that the global analyzer collects sketches from
end-hosts in every 5 seconds. In INT passport mode/INT-MD,
the mirrored packets at sink switches are considered without
payload.

B. Experimental Results on ACU Insertion

Experimental setup: For TowerSketch, we evaluate the accu-
racy of the two main access orders of ACU insertion, i.e., bottom-
up access and top-down access, on the most basic measurement
task, flow size estimation, so as to determine the better one.
We also compare them with TowerSketch using CM insertion
and CU insertion, regarding their accuracy as references. For
TowerSketch, we set d = 5, and δi = 2i for ∀i ∈ [1, 5]. We
allocate the same amount of memory for each array with dif-
ferent counter size. The experiments are conducted on CAIDA,
Webpage, Zipf_0.5, and Zipf_1.0 datasets to demonstrate the
generality of the results. All experiments are repeated 100 times
and the average results are reported.

Flow size estimation (Fig. 5(a)–(d)): We find that the average
ARE of TowerACU-BU is 1.68 times lower than TowerACU-
TD. The results show that when using 900 KB of memory,
TowerACU-BU achieves at least 1.56 times lower ARE than
TowerACU-TD, at least 2.45 times lower ARE than TowerCM,
and up to 1.24 times higher ARE than TowerCU.

Summary: The experimental results on the four datasets
demonstrate that TowerACU-BU outperforms TowerACU-TD
and approaches the accuracy of TowerCU. The reason behind
is as follows. The number of counters decreases as the array
nears the top, so counters in higher arrays generally suffer more
overestimation. Thus, bottom-up access can often obtain real
minimum value at the earliest time, and thus achieve almost the

same accuracy as CU insertion. In contrast, top-down access can
hardly obtain real minimum value at the earliest time, and thus
cannot approach the accuracy of CU insertion. For the highest
accuracy, in the rest experiments, ACU insertion only accesses
counters in a bottom-up manner.

C. Experimental Results on Local Tasks

Experimental setup: We compare TowerSketch with the most
widely used CM and CU sketches, NitroSketch, UnivMon,
and the state-of-the-art ElasticSketch. In addition, we compare
TowerSketch with the variants of CM and CU sketches that
use different-sized counters for each array while the number
of counters in each array keeps the same, denoted by CM(O)
and CU(O), respectively. For TowerSketch, we set d = 5, and
δi = 2i for ∀i ∈ [1, 5]. We allocate the same amount of memory
for each array with different counter size. For CM(O) and
CU(O), their only difference from TowerSketch is that they
allocate the same number of counters for each array. For CM and
CU, we use 3 hash functions as recommended in literature [86].
For ElasticSketch and UnivMon, we set its parameters as the
original paper [19], [20] recommends. For NitroSketch, we set
depth d = 3 and geometry sampling rate p = 1.0 to achieve
highest accuracy [21]. We set the capacity of the hash table used
in heavy change detection and heavy hitter detection to 1024. We
use the famous BobHash [87] for all sketches. All experiments
are repeated 100 times on CAIDA dataset and the average results
are reported. We vary the memory usage to evaluate the accuracy
of different sketches. This is equivalent to evaluate the scalability
of different sketches with respect to the number of flows that can
be monitored concurrently under the same memory usage. The
remaining settings are as follows:
� Heavy hitter detection: We set the heavy hitter threshold
Δh = 500, about 0.02% of the total packets.

� Heavy change detection: We set the heavy change threshold
Δc = 250, about 0.01% of the total packets.

� Large flow marking: We set the large flow threshold
Δf = 500, about 0.02% of the total packets. Instead of
ElasticSketch, we compare TowerSketch with Cold Filter,
the state-of-the-art large flow marking algorithm. For Cold
Filter, we set it to consist of two cascading 3-layer CU
sketches, one of which consists of 4-bit counters, and the
other of which consists of 16-bit counters, as recommended
in literature [57]. We evaluate the performance of each
algorithm with a score which regards the performance of a
zero-error hash table as the baseline, i.e., the score is always
zero for the hash table. The hash table marks every packet
whose current flow size is larger than Δf as belonging to
large flows. Each algorithm marks a packet as belonging
to large flows if its estimated flow size exceeds Δf . If the
algorithm correctly marks a packet as belonging to large
flows, and this packet is not marked by the hash table, we
increment the score by one. If the algorithm wrongly marks
a packet as belonging to large flows, or misses a packet
marked as belonging to large flows by the hash table, we
decrement the score by one.
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Fig. 5. Performance (ARE) of TowerSketch using different insertion strategies on flow size estimation, where TowerCM represents the TowerSketch using CM
insertion, TowerCU represents the TowerSketch using CU insertion, TowerACU-BU represents the TowerSketch using ACU insertion that accesses counters in a
bottom-up manner, and TowerACU-TD represents the TowerSketch using ACU insertion that accesses counters in a top-down manner.

Fig. 6. Accuracy of TowerSketch on flow size estimation versus d under
150 KB of memory. We set δi = 2i+5−d for ∀i ∈ [1, d].

� Processing speed evaluation: We conduct the flow size
estimation experiments on single-core CPU and multi-core
CPU. We allocate 2 MB of memory to each algorithm. To
enlarge the subtle difference between different algorithms,
we use 5 hash functions for Tower, CM, CU and NitroS-
ketch. On multi-core CPU, we implement both the lock
version and the lock-free (LF) version of our TowerSketch.

Accuracy versus d (Fig. 6): For TowerSketch, as Fig. 6(a)–(b)
show, we measure its accuracy with different d on the most
fundamental task, i.e., flow size estimation, and we find that d =
5 works best. Here, d = 5 works best because a great number of
flows in CAIDA dataset have less than 3 or 15 packets, making
2-bit and 4-bit counters powerful.

Flow size estimation (Fig. 7(a)): We find that the average
AAE of TowerCU is much lower tahan all competitors. When
using 900 KB of memory, the AAE of TowerCU is 0.021, while
that of TowerCM, TowerACU, CM, CU, CM(O), CU(O), Ni-
troSketch, UnivMon and ElasticSketch are 0.296, 0.026, 2.482,
1.285, 0.558, 0.130, 9.370, 3.837, 0.576, respectively. TowerCU
achieves 27.3 times lower AAE than ElasticSketch. Note that
the AAE of CM(O) and CU(O) is larger than TowerCM and
TowerCU and better than CM and CU, respectively, which
demonstrates the rationale of TowerSketch.

Heavy hitter detection (Fig. 7(b)–(c)): We find that TowerCU
always achieves better F1 score and ARE than all competitors.
When using 300 KB of memory, the F1 score of TowerCU is
0.999, while that of TowerCM, TowerACU, CM, CU, CM(O),
CU(O), NitroSketch, UnivMon and ElasticSketch are 0.951,
0.998, 0.974, 0.997, 0.979, 0.999, 0.825, 0.947, 0.997, respec-
tively. And the ARE of TowerCU is 0.0003, while that of
TowerCM, TowerACU, CM, CU, CM(O), CU(O), NitroSketch,

UnivMon and ElasticSketch are 0.028, 0.0005, 0.015, 0.001,
0.012, 0.0006, 0.036, 0.019, 0.001, respectively.

Heavy change detection (Fig. 7(d)): We find that TowerCU
achieves better F1 score than all competitors. When using
300 KB of memory, the F1 score of TowerCU is 0.997, while
that of TowerCM, TowerACU, CM, CU, CM(O), CU(O), Ni-
troSketch, UnivMon and ElasticSketch are 0.961, 0.996, 0.959,
0.980, 0.979, 0.996, 0.528, 0.852, 0.990, respectively.

Entropy estimation (Fig. 7(e)): We find that the average RE of
TowerCU is much times lower than all competitors. When using
900 KB of memory, the RE of TowerCU is 0.0002, while that of
TowerCM, TowerACU, CM, CU, CM(O), CU(O), NitroSketch,
UnivMon and ElasticSketch are 0.003, 0.0002, 0.009, 0.007,
0.003, 0.001, 0.025, 0.01, 0.003, respectively.

Cardinality estimation (Fig. 7(f)): We find that Tower achieves
comparable accuracy with ElasticSketch and better accuracy
than other competitors. When using 900 KB of memory, the
RE of TowerCU is 0.0006, while that of TowerCM, TowerACU,
CM, CU, CM(O), CU(O), and ElasticSketch are 0.0006, 0.0005,
0.002, 0.001, 0.002, 0.002, 0.0006, respectively. We do not
compare with UnivMon and NitroSketch as they do not discuss
how to estimate cardinality.

Flow size distribution estimation (Fig. 7(g)): We find that the
average WMRE of TowerCM is 5.6 times lower than CM and
CU. When using 900 KB of memory, the WMRE of TowerCU
is 0.115, while that of TowerCM, TowerACU, CM, CU, CM(O),
CU(O), and ElasticSketch are 0.045, 0.098, 0.296, 0.246, 0.197,
0.223, 0.008, respectively. We do not compare with UnivMon
and NitroSketch as they do not discuss how to estimate flow size
distribution.

Large flow marking (Fig. 7(h)): We find that TowerCU and
TowerACU can achieve comparable score with the hash table
when using less memory than CF, CM, and CU. The results show
that when using 20 KB of memory, the scores of TowerCU and
TowerACU are 4418 and -4917, respectively, while those of CF,
CM, and CU are -78462, -471484, and -151300, respectively.

Speed on CPU (Fig. 8(a)–8(e)): We find that Tower achieves
comparable processing speed with CM and CU on single-
core CPU. The results show that the throughput of TowerCM
is 22.6Mpps, while that of CM and CU are 27.1Mpps and
21.7Mpps, respectively. Among the eight algorithms, ElasticS-
ketch achieves the fastest speed, but our Tower has higher
accuracy. On multi-core CPU, the lock-free version of Tower
achieves much higher insertion speed, and the accuracy loss
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Fig. 7. Performance on local measurement tasks, where TowerACU represents the TowerSketch using ACU insertion, CF represents Cold Filter.

Fig. 8. Processing speed on single-core CPU and multi-core CPU, where T represents Tower, L represents the lock version, and LF represents the lock-free
version.

incurred by concurrency is negligible. The results show that
when using 30 threads, the lock-free version of TowerCM can
reach a throughput of 277Mpps, which is 2.1 times higher than
the lock version. The reason behind is that the concurrency issues
caused by the lock-free version are actually not significant. We
evaluate the relative difference of the sum of all counters of
TowerSketch between the lock version and lock-free version,
denoted by difference in Fig. 8(e). As shown in Fig. 8(e), even
with forty threads, the relative difference is only 7×10−5, and
therefore has little impact on the accuracy. This is intuitively
reasonable as when real NIC works, it will automatically assign
packets to different cores/threads for load balancing according
to the hash value calculated from their 5-tuples, and therefore
the packets of the same flow will be naturally assigned to the
same core/thread. As a result, packets of the same flow do not
lead to concurrency issues because they are processed by the
same core/thread in order, and packets of different flows rarely
lead to concurrency issues because they are randomly hashed.
Our experiment simulates the workflow of NIC and therefore
leads to the similar result.

Summary: In summary, compared with prior arts (including
UnivMon, NitroSketch, CM(O), and CU(O)), our TowerCU
achieves better accuracy in most local measurement tasks. This is
because TowerSketch automatically stores large flows into large
counters and small flows into small counters, and thus make
full utilization of every bit. As for speed on CPU platform,

the throughput of TowerCM and TowerCU is slightly below
that of CM and CU, respectively. This is because building 2-bit
and 4-bit counters require bitwise operations, and thus consume
more CPU resources. TowerACU achieves moderate throughput
between TowerCM and TowerCU, and this is because its com-
plexity is between TowerCM and TowerCU. UnivMon is the
slowest because it needs to visit multiple levels (Count sketches)
for each insertion. The insertion speed of NitroSketch is similar
to CM because we set its sample rate to 1 that all packets
are processed by NitroSketch. But its query speed is slower
than CM because it requires an additional sorting operation.
The speeds of CM(O) and CU(O) are similar to TowerCM and
TowerCU respectively, which is easy to understand because their
insert/query operations are the same. While ElasticSketch seems
to have the most complicated workflow, it achieves the highest
throughput. The reason behind is two-fold. First, due to the
skewed network traffic, most packets belong to large flows, and
therefore their insertions end in the heavy part and do not go
through the whole workflow. Note that ElasticSketch uses heavy
part and light part to separately record large flows and small
flows. The insertion to the heavy part of ElasticSketch involves
the computation of only one hash function to locate the hashed
bucket in the heavy part, while the insertion of TowerSketch
involves the computation of five hash functions considering that
there are five counter arrays. Second, ElasticSketch uses SIMD
instructions to further accelerate the computation in the hashed
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Fig. 9. Accuracy of TowerSketch on per-switch heavy hitter/change detection
versus d under 20 KB of memory. We set δi = 2i+5−d for ∀i ∈ [1, d].

bucket. In addition, on multi-core CPU, the lock-free version
of TowerSketch achieves extremely high throughput without
compromising the accuracy, indicating that the complicated
locking mechanism can be abandoned.

D. Experimental Results on Global Tasks

Experimental setup: In our SketchINT system, we configure
the eight end-hosts to send and receive traffic at the same time,
and they use the Traffic Generator [88] to generate the traffic
under DCTCP [89] distribution. Each end-host independently
builds several TowerSketches to perform the measurement tasks.
An analyzer collects the sketches every 5 seconds and performs
further network-wide analysis. To provide ground-truth analysis,
we dump all packets in the network into a trace every 5 s.
Each trace contains about 16 M packets and 73 K flows, and
each packet passes 4.06 switches on average. For each packet,
we assume INT-MD mirrors its 64 B packet header and all its
carried INT information (16-bit switch ID and 32-bit latency
per switch) to the analyzer at INT-sink switches. The overall
bandwidth usage and packet number belonging to the control
plane overhead of INT-MD is 1.5 GB and 16 M, respectively.

Since ElasticSketch does not naturally support the global
tasks, we just compare TowerSketch with CM, CU, CM(O),
and CU(O). For TowerSketch, we set d = 3, and δi = 2i+2 for
∀i ∈ [1, 3], and allocate the same amount of memory for each
array with different counter size. For CM(O) and CU(O), their
only difference from TowerSketch is that they allocate the same
number of counters for each array. For CM and CU, we still
use 3 hash functions. For per-switch heavy hitter detection, we
set Δh = 1500. For per-switch heavy change detection, we set
Δc = 750. For per-flow per-switch inflated latency detection, we
set Δl = 5. To perform latency tasks, for each sketch, we build
an additional sketch of the same type with the same number of
arrays to record latency information. We allocate 3

4 of the total
memory to the additional sketch considering that each packet
could pass multiple switches and have multiple latency. For
the additional TowerSketch/CM(O)/CU(O), we set δi = 20 + 4i
for ∀i ∈ [1, 3]. For the additional CM/CU, we still use 32-bit
counters.

Accuracy versus d (Fig. 9): For TowerSketch, as Fig. 9(a)–(b)
show, we measure its accuracy with different d on per-switch
heavy hitter/change detection, and we find that d = 3 works
best. Here, d = 3 works better than d = 5 because flows in this
trace follow DCTCP distribution, and are relatively larger than
flows in CAIDA dataset, making 2-bit and 4-bit counters useless.

Per-switch heavy hitter detection (Fig. 10(a)): We find that
TowerCU is more accurate than CM, CU, CM(O), and CU(O).
When using 10 KB of memory, the F1 score of TowerCU is
0.726, while that of CM, CU, CM(O), and CU(O) are 0.438,
0.517, 0.607, and 0.680, respectively. The F1 score of TowerCU
reaches 0.99 under 50 KB of memory.

Per-switch heavy change detection (Fig. 10(b)): We find that
TowerCU is more accurate than CM, CU, CM(O), and CU(O).
Under 10 KB of memory, the F1 score of TowerCU is 0.708,
while that of CM, CU, CM(O), and CU(O) are 0.475, 0.548,
0.610, and 0.660, respectively. Under 50 KB of memory, the F1

score of TowerCU reaches 0.98.
Latency estimation (Fig. 10(c)): We find that TowerCU is

more accurate than CM, CU, CM(O), and CU(O). When using
3 MB of memory, the ARE of TowerCU is 0.1038, while that of
CM, CU, CM(O), and CU(O) are 0.1440, 0.1408, 0.1068, and
0.1049, respectively.

Inflated latency detection (Fig. 10(d)): We find that Tow-
erCU always achieves better F1 score than CM, CU, CM(O),
and CU(O). When using 100 KB of memory, the F1 score of
TowerCU is 0.814, while that of CM, CU, CM(O), and CU(O)
are 0.768, 0.769, 0.799, and 0.803, respectively.

Bandwidth overhead and packet number comparison
(Fig. 13(a)–(b)): We find that, SketchINT can achieve almost the
same accuracy as INT while reducing the bandwidth usage and
the number of packets that belong to the control plane overhead
to 3% and by 3 ∼ 4 orders of magnitude, respectively. We evalu-
ate the bandwidth overhead and the number of generated packets
of SketchINT on latency estimation task. We use Normalized
Bandwidth (NB) to represent the ratio of the bandwidth usage
belonging to the control plane overhead of SketchINT to that in
the standard INT passport mode/INT-MD. We use Normalized
Packet Number (NPN) to represent the ratio of the number of
packets belonging to the control plane overhead of SketchINT
to that in standard INT passport mode/INT-MD. The results
show that TowerSketch requires only 3% NB and 0.03% NPN
to achieve 1.5% ARE on the latency estimation task. In contrast,
CM/CU requires 4% NB and 0.04% NPN, indicating a 33%
additional overhead.

Summary: In summary, SketchINT achieves high accuracy
with low network overhead because TowerSketch can efficiently
encode per-flow information. While TowerSketch can achieve
best performance, normal CM/CU sketches are still realistic
choices when sketches are deployed on end-hosts with abundant
memory. However, when deployed on hardware platforms with
only limited memory, such as programmable switches, normal
CM/CU sketches may be not realistic as they may not satisfy
accuracy requirements when facing high-volume traffic under
strict memory constraints.

E. Experimental Results on Posterior Error Bound

Experimental setup: We evaluate the error estimation method
for TowerSketch using CM insertion. For TowerSketch, we
set d = 5, and δi = 2i for ∀i ∈ [1, 5]. We allocate the same
amount of memory for each array with different counter size.
The experiments are conducted on CAIDA, Webpage, Zipf_0.5,
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Fig. 10. Performance on global measurement tasks.

Fig. 11. Estimated error bound versus actual error bound for error of different sizes, where ACT_ERR_x and EST_ERR_x represent the actual and estimated
probability that the error is smaller than x, respectively.

Fig. 12. Estimated error bound versus actual error bound under different memory usage, where ACT_MEM_x and EST_MEM_x represent the actual and
estimated probability that the error is smaller than 25 when using xKB memory, respectively.

and Zipf_1.0 datasets to demonstrate the generality of the results.
All experiments are repeated 10 K times to make the actual error
bound stable.

Estimated error bound versus actual error bound for error of
different sizes (Fig. 11(a)–(d)): We find that the estimated error
bound can match the actual error bound for error of different
sizes on all the four datasets, and the larger flow suffers from
larger estimated error. We allocate 250 KB for TowerCM in the
experiments. On CAIDA dataset, for flows of size 1000, the
probabilities that its estimated error is less than 50 and 100 are
0.846 and 0.963, respectively.

Estimated error bound versus actual error bound under differ-
ent memory usage (Fig. 12(a)–(d)): We find that the estimated
error bound can match the actual error bound under different
memory usage on all the four datasets, and the larger flow
suffers from larger estimated error. We set the error to 25 in
the experiments. On CAIDA dataset, for flows of size 1000,
when using 500 KB memory, the probability that its estimated
error is less than 25 is 0.900; when using 1000 KB memory, the
probability is 0.979.

Summary: In summary, experimental results on the four
datasets demonstrate that the error bound estimation method

Fig. 13. Bandwidth and packet number overhead.

proposed in Section V-B can precisely estimate the actual error
bound for error of different sizes under different memory usage.

IX. CONCLUSION

In this paper, we present SketchINT, which empowers INT
with sketches to provide per-flow per-switch network measure-
ment with low network overhead. For deployment flexibility, a
simple and accurate sketch, namely TowerSketch, is designed
to support multiple local and global measurement tasks. We
have fully implemented a SketchINT prototype on a testbed
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consisting of 10 programmable switches and 8 end-hosts. We
also verify that our TowerSketch can be implemented on four
platforms: single-core CPU, multi-core CPU, FPGA and P4
switches. Extensive experimental results on the testbed ver-
ify that SketchINT provides per-flow per-switch measurement,
while achieving simplicity, accuracy and low network overhead
simultaneously.
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