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Abstract
This paper studies an unexplored attribute in data streams – item
freshness. The freshness of an item refers to the time interval be-

tween its last arrival and the present moment. The information

of item freshness is useful in various scenarios like cache, online

advertising, computer network, etc. Currently, there is no algorithm
tailored for estimating item freshness. We propose a theoretically

guaranteed sketch algorithm called RingSketch, which integrates

time-agnostic sketch algorithm with time-aware CLOCK algorithm

for real-time freshness measurement. With the key idea of trac-

ing the trajectory of the clock pointer, the estimation process of

RingSketch is akin to observing the length of the growth rings in a

tree trunk. We theoretically derive the average error of RingSketch

and validate it with extensive experiments. The results show that

RingSketch simultaneously achieves high accuracy (< 10
−3

average

relative error) and fast update speed (> 11.4𝑀/𝑠), outperforming

the baseline solutions by at least 13.3× and 1.5× respectively. All

codes are open-sourced at GitHub [1].
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1 Introduction
Data stream is an important model in many scenarios [2]. Besides

classic tasks like measuring item frequency [3] and finding frequent

items [4], recent years have witnessed a surge of interest in mea-

suring new attributes in data streams like cardinality [5], quantile

[6], entropy [7], This paper studies an unexplored attribute in data

streams: item freshness. We define the freshness of an item as the

interval between its last arrival time and the present time. This

paper aims at real-time estimating the freshness (or equivalently,

the last arrival time) of any item in a data stream.

The information of item freshness is important inmany scenarios.

1) In cache design, many studies have suggested that Least Recently

Used (LRU) cache performs best in most scenarios [8], while de-

vising an accurate and efficient LRU cache is notably challenging

[9]. The information of item freshness can help to determine which

items to evict when the cache is full, so as to guide the design of an

efficient LRU cache. 2) In online advertising, item freshness helps

in understanding user behavior, allowing for the timely delivery of

relevant advertisements based on the most recent user interactions,

such as clicks or purchases. For example, some users tend to fre-

quently visit certain kinds of products, leading their corresponding

freshness to stay small. Therefore, the ad system can recommend

similar products to these users. Based on item freshness, we can

also further investigate user’s periodic browsing or buying behavior

[10], so as to attain better-targeted recommendations and higher

engagement. 3) In computer networks, item freshness can improve

network measurement and management. Given that network traffic

consists of numerous packets from many flows, item freshness can

help identify active flows and estimate the number of current active

flows, whose increase may indicate potential attacks. Additionally,

item freshness can also aid in recognizing flowlets [11], which is

defined as a burst of packets from the same flow followed by an

idle interval, thereby further supporting network management and

load balancing [12, 13].

To our best knowledge, there is no existing work tailored for mea-

suring item freshness. A straightforward solution is to use a hash

table to store all item IDs and their last arrival time. This solution

is memory inefficient considering the large volume of data streams.

On the other hand, we can adapt the algorithms designed for other

problems [14–17] to freshness measurement. The most related prob-

lem is item batch detection [15], which is equivalent to determining

whether the freshness of each item exceeds a fixed threshold. As

item batch detection is essentially an existence detection problem,

its state-of-the-art (SOTA) solutions only need coarse-grained time

https://doi.org/10.1145/3711896.3737044
https://doi.org/10.1145/3711896.3737044
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information, while estimating the exact freshness for each item re-

quires fine-grained time information. Therefore, existing solutions

fall short in accuracy when directly applied to freshness estimation,

which will be further discussed in § 2.2. This paper aims at devising

a memory-efficient data structure that does not store item IDs while

enabling accurate freshness estimation.

In this paper, we propose a time-aware sketch algorithm, called

RingSketch, to accurately measure item freshness. The key idea of

RingSketch is the integration of time-agnostic sketch algorithms

with time-aware CLOCK [18] algorithm, and we further propose

the key technique called pointer tracing to enhance the estimation

granularity of CLOCK algorithm. Considering the large volume of

data streams, it is inefficient to accurately record the IDs and the last

arrival time for all items. Therefore, employing probabilistic data

structures (sketches) to approximately summarize the freshness

information is desirable. However, existing sketches mainly focus

on measuring item frequency and they are unable to capture tem-

poral information. To enable time-agnostic sketches to be aware of

time, we combine sketch algorithms with CLOCK [18] algorithms.

As shown in Figure 1, the basic data structure of RingSketch is

a circular counter array. Like existing sketches [3, 19, 20], each

incoming item is hashed into multiple counters within this array,

and the incoming item sets its hashed counters to the maximum

value. Here, larger counter value indicates that the item hashed

into the counter is fresher. A CLOCK pointer periodically sweeps

across the circular array and decreases each of its passing counter.

4
5

5
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h1(e)

h2(e)

h3(e)

h4(e)

Estimated pointer 
location at last arrival 

# Rings: 𝟐 + 𝟓
𝟏𝟔

Current 
pointer

Pointer 
trajectory

Figure 1: An estimation ex-
ample of RingSketch.

To estimate the freshness of an

item, RingSketch analyzes the

values of its hashed counters

to estimate the pointer posi-

tion at the item’s last arrival.

Then RingSketch traces the

trajectory that the pointer has

traveled since the item’s last

arrival, thereby calculating the

item’s freshness based on the

length of the trajectory and

the pointer’s sweeping speed.

As shown in Figure 1, the process of estimating item freshness with

RingSketch is akin to observing the length of growth rings in a tree

trunk. We calculate the freshness based on the length of the growth

rings and the growth speed (pointer sweeping speed). We theo-

retically analyze the estimation error of RingSketch and conduct

extensive experiments. The results show that RingSketch achieves

< 10
−3

average relative error and > 11.4𝑀/𝑠 update throughput,
outperforming the baseline solutions by at least 13.3× and 1.5×
respectively. All codes are open-sourced [1].

This paper makes the following key contributions.

• We are the first to formulate the attribute of item freshness.

• We propose RingSketch to accurately and efficiently measure

item freshness with theoretical guarantees.

• We extensively evaluate RingSketch, showing its accuracy and

speed outperform baselines by 13.3× and 1.5× respectively.

Table 1: Symbols frequently used in this paper.

Symbols Meaning

𝑛 Number of distinct items in data stream

𝑒𝑖 An item in data stream

𝐹𝑖 Freshness of item 𝑒𝑖

𝑑 Number of parts (hash functions) in RingSketch

𝑚 Number of counters in each part of RingSketch

𝑠 Each counter in RingSketch consists of 𝑠 bits

A𝑖 The 𝑖𝑡ℎ part (counter array) in RingSketch

ℎ𝑖 ( ·) The 𝑖𝑡ℎ hash function mapping items into A𝑖

V Scanning speed of pointer (counters per time unit)

T0 Time for pointer to complete one cycle (T0 = 𝑑𝑚/V)

T Time for pointer to complete 2
𝑠 − 1 cycles (T =

𝑑𝑚 · (2𝑠−1)
V )

2 Background and Related Work
2.1 Problem Statement
Data stream:A data stream 𝜎 is defined as an unbounded sequence

{𝑒𝑖 }𝑖=1,2,... of items drawn from the universe [𝑛] := {1, 2, . . . , 𝑛}.
Each item 𝑒𝑖 in 𝜎 is associated with a timestamp 𝑡𝑖 indicating its

arrival time.

Item freshness: Given an item 𝑒𝑖 ∈ [𝑛] with the last arrival time

𝑡𝑖 , we define its freshness as 𝐹𝑖 = |𝑡𝑛𝑜𝑤 − 𝑡𝑖 |, which is the time gap

between its last appearance and current moment. We aim at esti-

mating the freshness for any item, which is equivalent to estimating

the last arrival time.

2.2 Related Work
Although there is no specialized work for freshness estimation,

we can measure item freshness by adapting some algorithms for

sliding window measurement [14] and batch detection [15–17].

Below we introduce four algorithms and discuss how to adapt them

to measure item freshness.

1) SWAMP [14]: Sliding Window Approximate Measurement Pro-

tocol (SWAMP) is an algorithm designed for measuring various

attributes for recent items. It uses a cyclic array to record the fin-

gerprints of the items in current sliding window, and uses a hash

table called TinyTable to record the frequencies of these finger-

prints. To measure item freshness, we can record the last arrival

time of these fingerprints in the TinyTable. However, this solution

is memory inefficient because it stores metadata of fingerprints and

their frequencies.

2) TOBF [17]: Time-Out Bloom Filter (TOBF) is a variant of the

classic Bloom filter [21], which was initially proposed to improve

the sampling performance of small flows in network traffic. A TOBF

consists of an array of timestamps. For each incoming item, TOBF

hashes it into 𝑑 timestamps in the array, and sets the 𝑑 hashed

timestamps to the current time 𝑡𝑛𝑜𝑤 . To estimate the freshness of

an item, TOBF finds the oldest timestamp 𝑡𝑜𝑙𝑑 among its 𝑑 hashed

timestamps, and returns 𝐹 = |𝑡𝑛𝑜𝑤 − 𝑡𝑜𝑙𝑑 |. TOBF is also memory

inefficient because it stores the raw timestamps, which is typically

of 64-bit. By contrast, our RingSketch will use small counter (4-bit)

to approximately record time information.

3) HyperBF [16]: Hyper Bloom Filter (HyperBF) is another variant

of the Bloom filter algorithm, which was proposed to detect item

batches in data streams. A HyperBF cyclically divides the timeline
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into 2
𝑠 − 1 epochs of length 𝛿 , and it maintains an array of 𝑠-bit

cells to record temporal information of items. For each incoming

item, HyperBF first updates its 𝑑 hashed cells to the current epoch,

and then incidentally cleans some adjacent outdated cells. Similar

to TOBF, to estimate the freshness of an item, HyperBF checks

the 𝑑 hashed cells and finds the oldest one. Suppose there are 𝑥

epochs between the oldest cell and current moment, HyperBF esti-

mates the freshness of the item as 𝑥 × 𝛿 . Note that the estimation

granularity of HyperBF can only be the multiple of epoch length 𝛿 .

Thus, when directly applied to freshness estimation, its accuracy is

unsatisfactory.

4) ClockSketch [15]: ClockSketch is a recent algorithm proposed

to detect item batches, which is very similar to our RingSketch but

can only capture coarse-grained time information. It also consists

of an array of 𝑠-bits cells. Each incoming item sets its 𝑑 hashed cells

to the maximum value 2
𝑠 − 1. ClockSketch uses a separate thread

to cyclically sweep the cell array at a constant speed and decrease

each passing non-zero cell by one. To query the freshness of an

item, ClockSketch also looks for the oldest cell among the 𝑑 hashed

cells. Let 𝑥 be the value of the oldest hashed cell. ClockSketch

reports item freshness as (2𝑠 − 1− 𝑥) × 𝛿 , where 𝛿 is the time taken

by the pointer to complete one rotation. Similar to HyperBF, the

estimation granularity of ClockSketch can also only be the multiple

of epoch length 𝛿 . RingSketch aims at breaking the granularity

limitation of ClockSketch and HyperBF.

As a class of spatiotemporal efficient probabilistic data structures,

sketches are widely used in a variety of data stream mining tasks [3,

6, 7, 19, 20, 22–29]. Typical sketches work by compactly recording

the approximate statistics of data streams in a summary. However,

most existing sketches only focus on recording item frequency,

and they are unable to capture the temporal information of items.

This paper enables time-agnostic sketches to be aware of time, and

extends their application to a new task of freshness estimation.

3 The RingSketch Algorithm
Design rationale: For large-scale data streams, it is challenging to

accurately track the freshness of all items within limited memory.

Like many other sketches, RingSketch also uses sublinear space to

approximate the key temporal information of critical items. As the

temporal information of fresh items are more important than stale

items [9, 15], we prioritizes the accuracy of fresh items by allowing

the temporal data of stale items to be gradually overwritten. Specif-

ically, we use a sketch to record the temporal information of each

item, and use a pointer to cyclically scan the sketch according to

CLOCK algorithm [18]. To query the freshness of an item, we trace

the pointer trajectory since the item’s last arrival. We calculate the

item’s freshness based on the length of the pointer trajectory and

the pointer scanning speed.

Data structure: As shown in Figure 2, the data structure of RingS-

ketch consists of a cyclic array of 𝑠-bit counters. The cyclical ar-

ray is partitioned into 𝑑 parts A1, · · · ,A𝑑 , each of which has𝑚

counters. Each part of the counter array A𝑖 is associated with one

pairwise independent hash function ℎ𝑖 (·) that maps items into one

counter in it. A clock pointer cyclically sweeps the counters in a

clockwise direction at a velocity ofV (counters per time unit), and

decreases each passing counter by 1. Under such configuration, the

pointer sweeps a counter from its maximum value (2
𝑠 − 1) to 0 in

T =𝑚𝑑 · (2𝑠 − 1)/V time units. Therefore, for a stale item that has

not appeared for more than T time units, its temporal information

will be cleaned. In practice, we can arbitrarily set T by adjusting

the parameters 𝑠 andV .

Update: For item 𝑒𝑖 , we calculate hash functions to locate 𝑑 hashed

counters A1 [ℎ1 (𝑒𝑖 )], · · · ,A𝑑 [ℎ𝑑 (𝑒𝑖 )]. We update the 𝑑 hashed

counters to the maximum value 2
𝑠 − 1 to overwrite the temporal

information of stale items. The update procedure can be accelerated

with multi-threading by creating 𝑑 threads to update the counters

in the 𝑑 parts, and another thread for the clock pointer. We can also

use SIMD instructions to sweep multiple counters simultaneously.

Query: Given an item 𝑒𝑖 , we first identify which hashed counters

of 𝑒𝑖 are the invalid counters that have been overwritten (Step 1).

Afterwards, we estimate the pointer location at 𝑒𝑖 ’s last arrival (Step

2). Next, we trace the pointer trajectory since 𝑒𝑖 ’s last arrival based

on the estimated pointer position and the values of the hashed

counters (Step 3). We finally calculate the freshness of 𝑒𝑖 according

to the pointer trajectory length and the pointer sweeping speed

(Step 4). The overall design principle of our query operation is to

use the pointer’s rotation as an implicit clock, estimating elapsed

time by tracking its trajectory since an item’s last arrival. By fil-

tering out collision-corrupted counters and tracing the pointer’s

movement from the remaining valid hashed counters, RingSketch

converts spatial rotation into temporal duration without explicitly

storing timestamps, achieving high accuracy and minimal memory

overhead at the same time.

Below we elaborate on the four steps:

1) Collision Identification. We first identify the counters among

the 𝑑 hashed counters that are overwritten by fresher items. Specif-

ically, we find the counter with the smallest value𝑀𝑖𝑛 among the

𝑑 hashed counters, and we call this counter the baseline counter. If
there are multiple counters having the same smallest value, we se-

lect the one that is the farthest from the current pointer (in counter-

clockwise direction) to be the baseline counter. Subsequently, we
inspect all the hashed counters in a counter-clockwise manner. We

begin at current pointer position, proceed counter-clockwise to ex-

amine each hashed counter until the baseline counter (the counters

with purple background in Figure 2(b)-2(d)). If a hashed counter

in question is larger than𝑀𝑖𝑛, a hash collision is detected and the

counter will be marked invalid. Then, we continue to examine the

remaining hashed counters in the same direction (the counters with

red background in Figure 2(b)-2(d)), from the baseline counter back

to the current pointer, in which case any counter larger than𝑀𝑖𝑛+1
will be marked as invalid. In the following steps, we will consider

these overwritten counters as invalid.

2) Pointer Estimation. We use the remaining valid hashed coun-

ters to locate the pointer position at 𝑒𝑖 ’s last arrival. Starting from

the baseline counter, we find the next valid hashed counter in

counter-clockwise direction. We estimate the pointer position at

𝑒𝑖 ’s last arrival to be the midpoint between the baseline counter and

this valid counter. Note that when no other valid hashed counter

exists, the baseline counter itself serves as the next valid hashed

counter. In such case, we estimate the pointer position at the oppo-

site position of the baseline counter (180° apart).

3) Trajectory Tracing.Wedetermine the trajectory that the pointer

has traveled since 𝑒𝑖 ’s last arrival. This is done by rotating the
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Figure 2: Examples of RingSketch (𝑠 = 3, 𝑑 = 4,𝑚 = 4, T0 = 1 second).

pointer counter-clockwise from its current position, increment-

ing 1 to each valid hashed counter as the pointer passes them,

until the pointer finally stops at the estimated position and the

values of all valid hashed counters become 2
𝑠 − 1. Specifically,

in counter-clockwise direction, if current pointer is closer to the

baseline counter than the estimated pointer (Figure 2(b)-2(c)), we

estimate the number of rings to be R = 2
𝑠 − 2−𝑀𝑖𝑛 + 𝐶

𝑑𝑚
, where𝐶

is the distance between current pointer and the estimated pointer

(in the number of counters). Otherwise, if current pointer is closer

to the estimated pointer (Figure 2(d)), we estimate the number of

rings to be R = 2
𝑠 − 1 −𝑀𝑖𝑛 + 𝐶

𝑑𝑚
.

4) Freshness Calculation.We finally calculate the estimated fresh-

ness of item 𝑒𝑖 as 𝐹𝑖 = R · T0, where T0 = 𝑑𝑚
V is the time for the

pointer to complete one cycle.

Examples (Figure 2): Below we use four examples to illustrate

the update and query operations of RingSketch, where we set 𝑠 = 3,

𝑑 = 4, and T0 = 1 second.

Update example (Figure 2(a)): For the incoming item 𝑒1, we first

calculate hash functions to locate its 𝑑 hashed counters. Then we

update the value of the 𝑑 hashed counters to 7.

Query example 1 (Figure 2(b)): 1) Collision Identification: As there
are two hashed counters with the smallest value𝑀𝑖𝑛 = 3, we select

the counter that is farther from the current pointer in counter-

clockwise direction as baseline counter (A1 [ℎ1 (𝑒1)]). Next, start-
ing from the current pointer, we examine each hashed counter in

counter-clockwise direction. As A3 [ℎ3 (𝑒1)] > 𝑀𝑖𝑛 + 1, we mark

it as invalid. 2) Pointer Estimation: We estimate the pointer posi-

tion at 𝑒1’s last arrival to be the midpoint between baseline counter
A1 [ℎ1 (𝑒1)] and its next valid counter A4 [ℎ4 (𝑒1)]. 3) Trajectory
Tracing: As the current pointer is closer to the baseline counter than
the estimated pointer in counter-clockwise direction, we calculate

the number of rings as R = 2
𝑠 − 2−𝑀𝑖𝑛 + 𝐶

𝑑𝑚
= 3+ 7

16
. 4) Freshness

Calculation: We estimate freshness as 𝐹1 = R · T0 = 3 + 7

16
second.

Query example 2 (Figure 2(c)): 1) Collision Identification: As there
are three hashed counters with the smallest value 𝑀𝑖𝑛 = 4, we

select the counter that is farther from the current pointer as base-
line counter (A1 [ℎ1 (𝑒2)]). As A4 [ℎ4 (𝑒2)] is larger than 𝑀𝑖𝑛 + 1,

we consider it to have a hash collision. 2) Pointer Estimation: We

estimate the pointer position at 𝑒2’s last arrival to be the midpoint

betweenA1 [ℎ1 (𝑒2)] andA3 [ℎ3 (𝑒2)]. 3) Trajectory Tracing: As cur-
rent pointer is closer to A1 [ℎ1 (𝑒2)] than the estimated pointer, we

calculate the number of rings as R = 2
𝑠 −2−𝑀𝑖𝑛+ 𝐶

𝑑𝑚
= 2+ 12.5

16
. 4)

Freshness Calculation:We estimate freshness as 𝐹2 = R·T0 = 2+ 12.5
16

second.

Query example 3 (Figure 2(d)): 1) Collision Identification: We first

selectA4 [ℎ4 (𝑒3)] as baseline counter. AsA2 [ℎ2 (𝑒3)] is between the
current pointer and the baseline counter andA2 [ℎ2 (𝑒3)] > 𝑀𝑖𝑛, we

consider it as invalid. 2) Pointer Estimation:We estimate the pointer

position at 𝑒3’s last arrival to be the midpoint between A4 [ℎ4 (𝑒3)]
and A3 [ℎ3 (𝑒3)]. 3) Trajectory Tracing: As current pointer is closer
to the estimated pointer than A4 [ℎ4 (𝑒3)], we calculate the number

of rings as R = 2
𝑠 − 1−𝑀𝑖𝑛 + 𝐶

𝑑𝑚
= 2+ 1

16
. 4) Freshness Calculation:

We estimate freshness as 𝐹3 = R · T0 = 2 + 1

16
second.
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Figure 3: Memory allocation and average relative error for
items with different freshness.

Discussion: As discussed above, RingSketch aims at sacrificing

the accuracy of stale items in favor of fresh items. Specifically, in

RingSketch, the hashed counter(s) of a stale item can be overwritten

by fresher items. Furthermore, if a stale item has not arrived for T
time units, its freshness information will be cleaned. In this way,

RingSketch automatically allocates more memory to fresher items.

To better illustrate this behavior, we conduct experiments using

CAIDA dataset [30], where we use a 16KB RingSketch with 𝑑 = 4

and 𝑠 = 12 and we set T = 8192. In Figure 3, we plot the average

number of hashed counters (±2std) and the average relative error

(ARE) (±2std) for the items with different freshness. The results

show that for the freshest items, RingSketch allocates 𝑑 = 4 hashed

counters to them, achieving nearly 0 ARE. As an item becomes

stale (with larger freshness), RingSketch automatically reduces the

number of hashed counters allocated to it, resulting in an increase

in the ARE. This behavior is consistent with the design rationale of

RingSketch, showcasing its effectiveness in dynamically allocating

more memory resources to fresher items.

Task extension: We extend RingSketch to the following three

tasks to further demonstrate its versatility.
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Estimating fresh item cardinality: Fresh item cardinality refers

to the number of distinct items that have appeared in recent T𝑐 time

units. We aim at estimating the fresh item cardinality for any sliding

window size T𝑐 (T𝑐 < T ). This allows us to answer such questions

as “How many users have visited a website in the past hour?”, or

“How many connections (flows) have been in the network in the

past minute?” To our best knowledge, no prior work has addressed

the problem of estimating the cardinality of fresh items.

We combine RingSketch with the method of linear counting [31]

to give themaximum likelihood estimation for fresh item cardinality.

Given the sliding window size T𝑐 (T𝑐 < T ), we rotate the pointer

counter-clockwise from its current position at speed V for T𝑐 time

units, incrementing 1 to each scanned counter. Afterwards, we

count the number of counters with the values equal to or larger than

2
𝑠 − 1 in each part A𝑖 . Let 𝑥𝑖 be the number counters in A𝑖 whose

values are ⩾ 2
𝑠 −1. According to the method of linear counting [31],

𝐶𝑖 = −𝑚 · log(1− 𝑥𝑖
𝑚 ) gives a maximum likelihood estimation for the

fresh item cardinality 𝐶 in T𝑐 . Finally, we estimate the cardinality

in T𝑐 as the average of 𝐶𝑖 over the 𝑑 parts, i.e., 𝐶 = 1

𝑑

∑𝑑
𝑖=1𝐶𝑖 .

Mining batches with variable thresholds: Item batch is an im-

portant pattern in data streams, which is defined as a group of

identical items that arrive closely. Two adjacent batches of the same

item are spaced by a predefined time threshold T𝑏 . For each incom-

ing item 𝑒 , the goal of item batch detection is to report whether it is

the start of a new batch, which is equivalent to reporting whether

the interval between its last arrival time and the present moment

exceeds T𝑏 . Existing algorithms for batch detection require all items

to use the same time threshold T𝑏 , and this threshold should be

known in advance so as to configure the algorithm’s parameters.

For example, ClockSketch [15] uses T𝑏 to configure the pointer

speed, and HyperBF [16] uses T𝑏 to set the length of time epoch.

However, in many applications, different items call for different

batch threshold T𝑏 and this threshold can vary with time. For exam-

ple, in network traffic management, the operator might want to use

different T𝑏 for the flows with different service level (SLA), so as

to manage different flows at different granularity (e.g., performing

scheduling, load balancing, and measurement), and the threshold

should vary with current network load. We should use smaller

batch threshold to achieve finer-grained load balancing when the

network is under high load [32]. By acquiring the freshness of each

item with RingSketch, we can easily set different T𝑏 for different

items, which extends the definition and application of item batches.

Mining periodic items: Periodic items refer to the items that

arrive with a fixed time interval, which have wide applications

in networks [33, 34], financial markets [35], and recommendation

systems [10]. For a group of periodic items of item 𝑒𝑖 and time

interval 𝑉 , we define its frequency as the number of intervals of 𝑒𝑖
that falls in the range [𝑉 − Δ𝑉 ,𝑉 + Δ𝑉 ) where Δ𝑉 is the allowable

error. Top-𝑘 periodic items refer to 𝑘 groups of periodic items with

the 𝑘 largest frequencies. To mine top-𝑘 periodic items, for each

incoming item 𝑒𝑖 , we first query RingSketch to acquire its freshness

𝐹𝑖 , and then combine its ID and its interval 𝑉 = 𝐹𝑖 to form an

element 𝐸𝑖 = ⟨𝑒𝑖 ,𝑉 ⟩, where the interval 𝑉 is rounded according to

Δ𝑉 to tolerate allowable error. Then we insert 𝐸𝑖 into another top-𝑘

sketch (e.g., GSU sketch [36], Space-Saving [4]), which will report

the elements with top-𝑘 frequencies, i.e., top-𝑘 periodic items.

4 Mathematical Analysis
We mathematically analyze the average error of RingSketch, where

we focus on the fresh items that have appeared within recent T
time units. We first derive the approximate average absolute error

(AAE) under the assumption of no hash collision in Theorem 4.1.

Then we derive the upper bound of the estimation error for a cer-

tain item in Theorem 4.2. We derive the AAE upper bound for a

data stream following Zipf distribution and uniform distribution

in Theorem 4.3 and Theorem 4.4, respectively. We also conduct

experiments validating that our theoretical analyses are consistent

with the experimental results. The detailed proof can be found in

our supplementary materials [37].

Theorem 4.1. Let E be the average absolute error (AAE) for es-
timating the freshness of all items that have appeared within recent
T time units. Under the assumption of no hash collision, we have
E(E) ≈ T0

3𝑑
.

Theorem 4.2. Consider a certain item 𝑒𝑖 that has appeared within
recent T time units. Suppose there are 𝑤 distinct items in the data
stream between the last arrival time of 𝑒𝑖 and the present moment. Let
Δ𝐹𝑖 =

��𝐹𝑖 − 𝐹𝑖
�� be the estimated error of RingSketch for the freshness

of 𝑒𝑖 . We have

E (Δ𝐹𝑖 ) ⩽
T0
3𝑑

+ (1 − P) · 5T0
12𝑑

+ (1 − P)𝑑 · T
2

where P =

(
1 − 1

𝑚

)𝑤
≈ 𝑒−

𝑤
𝑚 is the probability that 𝑒𝑖 does not

collide with other item in any of the 𝑑 parts, and T0 = 𝑑𝑚
V is the time

for the pointer to complete one cycle.

Zipf distribution: We derive the AAE upper bound for a data

stream following Zipf distribution [38]. In a Zipf distribution with

𝑁 items derived from 𝑛 distinct items, the 𝑘𝑡ℎ most frequent item

shows up
𝑁

𝑘𝛼𝜁 (𝛼 ) times, where 𝛼 is the parameter of Zipf distribu-

tion and 𝜁 (𝛼) = ∑𝑛
𝑖=1

1

𝑖𝛼 .

Lemma 4.1. Consider a data stream following Zipf distribution
with 𝑁 items derived from 𝑛 distinct items and parameter 𝛼 . Let 𝑒𝑘
be the 𝑘𝑡ℎ most frequent item, and𝑤𝑘 be the number of distinct item
in data stream since 𝑒𝑘 ’s last arrival. We have

E (𝑤𝑘 ) =
𝑛∑︁
𝑗=1

𝑗−𝛼

𝑗−𝛼 + 𝑘−𝛼 − 1

2

.
In particular, let 𝑁T be the number of items that have appeared

within recent T time units. When 𝛼 = 1.0, we have E (𝑤𝑘 ) ⩽

min

(
𝑘 · ln

(
𝑛
𝑘
+ 1

)
− 1

2
,
𝑁T
2

)
. When 𝛼 = 1.5, we have E (𝑤𝑘 ) ⩽

min

(
2.42𝑘 − 1

2
,
𝑁T
2

)
.

Theorem 4.3. Consider a data stream following Zipf distribution
with 𝑁 items derived from 𝑛 distinct items and parameter 𝛼 . Let E
be the average absolute error (AAE) for estimating the freshness of
all items that have appeared within recent T time units. The upper
bound of E(E) satisfies

E(E) ⩽ T0
3𝑑

+
𝑛∑︁

𝑘=1

𝑘−𝛼

𝜁 (𝛼) ·
(
5T0𝑤𝑘

12𝑚𝑑
+
(𝑤𝑘

𝑚

)𝑑
· T
2

)
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where𝑤𝑘 is the number of distinct item in data stream since 𝑒𝑘 ’s last
arrival, which can be substituted by the expectation (or upper bound)
in Lemma 4.1 to attain an upper bound.

Uniform distribution:We further analyze the performance of our

RingSketch on uniform-distributed data streams. Although uniform

distribution is rare in real-world streaming data, we still derive

the algorithm’s error bound under this distribution in Theorem 4.4

(with the same form as Theorem 4.3). We can see that under uniform

distribution, RingSketch requires a larger size (𝑚 > 𝑛) to achieve

strong error guarantees.

Theorem 4.4. Consider a data stream following uniform distribu-
tion with 𝑁 items derived from 𝑛 distinct items and parameter 𝛼 . Let
E be the average absolute error (AAE) for estimating the freshness of
all items that have appeared within recent T time units. The upper
bound of E(E) satisfies

E(E) ⩽ T0
3𝑑

+ 5T0
24𝑑

· 𝑛 − 1

𝑚
+
(
𝑛 − 1

𝑚

)𝑑
· T
4

25 30 35 40 45
Memory (KB)

0

10

20

30

40

A
A

E

Experimental
Theoretical (no collision)
Theoretical (upper bound)

(a) Zipf 𝛼 = 1.0

25 30 35 40 45
Memory (KB)

1

2

3

4

5

6

A
A

E

Experimental
Theoretical (no collision)
Theoretical (upper bound)

(b) Zipf 𝛼 = 1.5

Figure 4: Comparison of theoretical and experimental AAE.
Experimental analysis (Figure 4):We conduct experiments to

validate the effectiveness of our theoretical AAE (Theorem 4.1) and

AAE upper bound (Theorem 4.3). The experiments are conducted

under two data streams following Zipf distribution with 𝛼 = 1.0

and 1.5, where the items arrive at a constant speed (1 item per

time unit). We set 𝑠 = 8, 𝑑 = 6, and T = 8192. We can see that

on both datasets, the experimental AAE is always bounded by

our theoretical upper bound. As the memory usage increases, the

gap between the experimental AAE and our two theoretical AAE

becomes smaller because of fewer hash collisions.When using 45KB

memory, the difference between the experimental and theoretical

AAE will be smaller than 1.85/0.4 time unit on the two datasets,

showing that our theoretical analyses are highly consistent with

the experimental results.

Note that in Figure 4(b), the experimental AAE consistently ex-

ceeds the theoretical bound. This is because our theoretical lower

bound in Theorem 4.1 is an approximate bound, where we use

“≈” instead of “=” to indicate the approximations made during the

integral-based derivation (proofs detailed in [37]). On Zipf 1.5 data

stream, RingSketch has so small empirical error that it may occasion-

ally surpass the approximate bound under certain configuration.

5 Experimental Results
5.1 Experimental Setup
Platform and implementation: We conducted all CPU experi-

ments on a server with one 18-core 4.2GHz CPU (Intel i9-10980XE),

128 GB 3200MHz DDR4 memory, and 24.75MB L3 cache. We use

32-bit Bob Hash [39] with different seeds as hash functions.

Baselines: We compare RingSketch with four algorithms: SWAMP

[14], TOBF [17], HyperBF [16], and ClockSketch [15]. We adapt

these algorithms to freshness estimation as described in § 2.2. We

manually tune their parameters so that they can achieve high accu-

racy. For RingSketch, we set 𝑑 = 4, 𝑠 = 16 by default.

Datasets:We use two real-world datasets (CAIDA [30], Criteo [40])

and one synthetic dataset (Zipf). CAIDA and Criteo exhibit highly

skewed distribution, where top-5% frequent items account for 71%

and 98% total occurrences, respectively. We assume the data stream

arrives at a constant speed, with one item arriving at each time

unit. We measure the freshness for the items that have appeared

within recent T = 8192 time units, and report the average results.

1) CAIDA dataset is a collection of IP trace datasets. We treat each

packet as one item, and use its 13-byte 5-tuple (src/dst IP, src/dst

port number, protocol type) as ID. We use a small-scale 1-minute

trace containing about 30M items (1.3M distinct items).

2) Criteo dataset is an advertising click data stream consisting of

feature values and click feedback for many ads. For each ad, we use

the hash value (8 bytes) of its categorical features as ID. We use a

dataset containing 48M items (2.4M distinct items).

3) Zipf dataset: We generate multiple datasets following Zipf distri-

bution [38] (described in § 4) with different 𝛼 , which reflects the

skewness degree. Each dataset has 32M items.

Metrics:
1) Average Relative Error (ARE): 1

|Ψ |
∑
𝑒𝑖 ∈Ψ

��𝐹𝑖 − 𝐹𝑖
�� /𝐹𝑖 . 𝐹𝑖 is the real

freshness of 𝑒𝑖 , 𝐹𝑖 is its estimated freshness, and Ψ is constructed by

randomly selecting items that have arrived in recent T time units.

2) Average Absolute Error (AAE): 1

|Ψ |
∑
𝑒𝑖 ∈Ψ

��𝐹𝑖 − 𝐹𝑖
��
.

3) Throughput: Million operations per second (𝑀/𝑠).

5.2 Impact of RingSketch Parameters
Wefirst evaluate the impact of RingSketch parameters and provide a

recommended setup for RingSketch. By default, we set 𝑠 = 16, 𝑑 = 4,

and enable the multi-threading acceleration and SIMD acceleration.

The experiments are conducted on CAIDA dataset.

Impact of counter size (𝑠) on accuracy (Figure 5(a)):We find

that the RingSketch using 𝑠 = 16 bit counters can achieve satisfac-

tory accuracy. The results show that larger counter size goes with

smaller relative error of RingSketch, and the absolute error is not

significantly affected by the counter size. When using 128KB mem-

ory, the RingSketch using 𝑠 = 16 bit counters achieves 4.4 × 10
−4

ARE, which is very accurate. In practice, we recommend to set

𝑠 = 16, so that RingSketch can achieve high accuracy while being

friendly to SIMD instructions.

Impact of hash number (𝑑) on accuracy (Figure 5(b)): We find

that the RingSketch using 𝑑 = 4 parts (or hash functions) can

achieve satisfactory accuracy. The results show that in general,

larger 𝑑 goes with smaller ARE. But when 𝑑 = 4, RingSketch can

already achieve quite small error. When using 128KB memory, the

RingSketch using𝑑 = 4 parts achieves 4.4×10−4 ARE, which is very
accurate. In practice, we recommend to set 𝑑 = 4 to simultaneously

achieve high accuracy and fast speed.

Impact of hash number (𝑑) on update throughput (Figure 5(c)):
We find that smaller 𝑑 goes with higher update throughput, and the

update throughput is nearly not affected by memory usage. The
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Figure 5: Impact of RingSketch parameters (CAIDA).
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Figure 6: Comparison of Average Absolute Error (AAE) with prior art.
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Figure 7: Comparison of Average Relative Error (ARE) with prior art.

update throughput of the RingSketch using 𝑑 = 4, 8, 12, 16 parts is

about 11.4, 5.9, 4.0, 3.0𝑀/𝑠 , respectively.
Impact of hash number (𝑑) on query throughput (Figure 5(d)):
We find that smaller 𝑑 goes with higher query throughput, and

the query throughput is nearly not affected by memory usage. The

query throughput of the RingSketch using 𝑑 = 4, 8, 12, 16 parts is

about 6.7, 4.0, 2.9, 2.2𝑀/𝑠 , respectively.
5.3 Comparison of RingSketch with Prior Art
Average Absolute Error (AAE) (Figure 6):We find that compared

to prior art, RingSketch achieve about 13.5× ∼ 131.9× smaller aver-

age absolute error. On CAIDA dataset, when using 128KB memory,

the AAE of RingSketch, ClockSketch, TOBF, HyperBF, SWAMP is

2.4, 64.7, 41.9, 32.3, 316.6, respectively. For RingSketch, ClockSketch,

TOBF, and SWAMP, larger memory usage goes with smaller abso-

lute error because larger memory leads to fewer hash collisions. For

HyperBF, its absolute error is not significantly affected by the mem-

ory usage because its coarse-grained estimation is more affected

by the epoch length than by hash collisions.

Average Relative Error (ARE) (Figure 7):We find that compared

to prior art, RingSketch achieves 13.3× ∼ 1899.1× smaller average

relative error. On CAIDA dataset, when using 128KB memory, the

ARE of RingSketch, ClockSketch, TOBF, HyperBF, SWAMP is 4.6 ×
10

−4, 1.6×10−2, 6.2×10−3, 8.8×10−1, 5.1×10−2, respectively. Similar

to AAE, except for HyperBF, larger memory goes with smaller

relative error. The relative error of HyperBF is not significantly

affected by the memory usage because its estimation accuracy is

limited by epoch length rahter than hash collisions.

Update throughput (Figure 8):We find that compared to prior

art, RingSketch achieves about 1.5× ∼ 57× higher update through-

put. The update throughputs of all algorithms are not significantly

affected by memory usage. On CAIDA dataset, when using 128KB

memory, the update throughput of RingSketch, ClockSketch, TOBF,

HyperBF, SWAMP is 11.4, 0.2, 3.1, 3.4, 7.4𝑀/𝑠 , respectively. ClockS-
ketch has low update throughput because in order to achieve sat-

isfactory accuracy, its pointer needs to scan a large number of

counters per time unit, which is time consuming.

Query throughput (Figure 9):We find that the query throughput

of RingSketch is 1.3× ∼ 1.9× slower than that of prior art. On

CAIDA dataset, when using 128KB memory, the query throughput

of RingSketch, ClockSketch, TOBF, HyperBF, SWAMP is 7.1, 9.8, 12.4,

10.0, 13.7𝑀/𝑠 , respectively. RingSketch has the lowest query through-
put because it requires complex computations for collision identifi-

cation and pointer tracing. By contrast, other algorithms are not

tailored for freshness estimation. When directly adapted to fresh-

ness estimation, their query operations do not involve complex

computations, resulting in faster speeds.
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Figure 8: Comparison of update throughput with prior art.
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Figure 9: Comparison of query throughput with prior art.
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Figure 10: Comparison of average error on fresh item cardinality estimation with prior art.

5.4 Performance on Extended Tasks
Estimating fresh item cardinality:We evaluate the performance

of RingSketch on estimating fresh item cardinality. As there are

no existing works designed for this task, following the idea of

RingSketch, we adapt HyperBF [16] and TOBF [17] to this task by

combining them with linear counting [31]. Specifically, to estimate

the cardinality for the items in sliding window T𝑐 , we count the
number of cells 𝑥 whose epochs are less than T𝑐 time units ahead

of the current moment, and estimate the cardinality as 𝐶𝑖 = −𝑚 ·
log(1 − 𝑥

𝑚 ), where𝑚 is the number of cells in HyperBF. For TOBF,

we count the number of timestamps 𝑥 within T𝑐 time units ahead

of the current moment, and estimate the cardinality as 𝐶𝑖 = −𝑚 ·
log(1 − 𝑥

𝑚 ), where𝑚 is the number of timestamps in TOBF. For

RingSketch, we set 𝑑 = 1 and 𝑠 = 16. To demonstrate the high

efficiency of our solution, we only use 5KB memory.

1) Absolute Error on cardinality estimation (Figure 10(a)-
10(b)): We find that compared to prior art, RingSketch achieves

up to about 100× smaller absolute error on cardinality estimation.

On CAIDA dataset, the absolute error of RingSketch, HyperBF,

and TOBF is 16.04, 49.72, 51.72 when window size T𝑐 = 4000 and

13.54, 21.77, 35.69 when window size T𝑐 = 3000. We can see that

larger window size goes with higher absolute error of TOBF and

HyperBF. This is because when using larger window size, the num-

ber of items within the window increases, resulting in more hash

collisions. By contrast, the Absolute Error of RingSketch is almost

unaffected by window size, which is significantly smaller than that

of HyperBF and TOBF.

2) Relative Error on cardinality estimation (Figure 10(c)-10(d)):
We find that compared to prior art, RingSketch achieves up to about

10
5× smaller relative error on cardinality estimation. On CAIDA

dataset, the relative error of RingSketch, HyperBF, and TOBF is

1.15 × 10
−2, 3.69 × 10

−2, 3.71 × 10
−2

when window size T𝑐 = 4000

and 1.25 × 10
−2, 2.08 × 10

−2, 3.29 × 10
−2

when window size T𝑐 =

3000. On Criteo dataset, the relative error of RingSketch, HyperBF,

and TOBF is 4.38 × 10
−4, 108.14, 3.83 × 10

−3
when T𝑐 = 4000 and

3.76×10−4, 96.15, 3.23×10−3 when T𝑐 = 3000. The error of HyperBF

fluctuates as the window size increases, because when the window

size happens to be an exact multiple of its time epoch length 𝛿 ,

HyperBF performs better with reduced error.

The results in Figure 10 show that RingSketch achieves up to

about 100× smaller absolute error and 10
5× smaller relative error

compared to prior works. In addition, existing works suffer larger

error as window size increases because of more hash collisions. By

contrast, the error of RingSketch is almost unaffected by window

size, which is significantly smaller than that of prior works.

Mining item batches with variable thresholds:We evaluate the

performance of RingSketch on detecting item batches with variable

thresholds. We adapt HyperBF [16], TOBF [17], and ClockSketch
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Figure 11: Performance onmining item batches with variable
thresholds.

[15] to this task by first using them to report item freshness as

described in § 2.2, and then check whether the reported freshness

exceeds current batch threshold T𝑏 . For RingSketch, we set 𝑠 = 8,

𝑑 = 4 by default. To demonstrate the high efficiency of our solution,

we only use 5 KB memory for all algorithms. The experiments are

conducted under CAIDA dataset, where we evaluate the F1 score

on detecting batches with different threshold T𝑏 .
As shown in Figure 11(a), RingSketch achieves nearly 100% F1

Score on finding batches with variable threshold, which is higher

than prior art. The F1 Score of RingSketch, ClockSketch, TOBF, Hy-

perBF on detecting batches with T𝑏 = 150 is 99.90%, 99.76%, 98.85%,

98.18%. For TOBF, larger batch threshold goes with smaller F1 Score

because of more hash collisions. The F1 Score of ClockSketch and

HyperBF fluctuates with batch threshold because when T𝑏 happens

to be an exact multiple of their epoch length 𝛿 , their freshness esti-

mation has minimal error. Figure 11(b) further illustrate the impact

of hash number 𝑑 in RingSketch on batch detection, showing that

larger 𝑑 goes with higher F1 Score.
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Figure 12: Performance on mining periodic items.

Mining periodic items:We evaluate the performance of RingS-

ketch on detecting periodic items in data streams. We first use

RingSketch to report item freshness, and then use a GSU sketch

[36] to report top-𝑘 periodic items (ID and interval pairs). We com-

pare our solution with PeriodicSketch [36], which is the SOTA

solution for finding periodic items. For RingSketch, we set 𝑠 = 8

and 𝑑 = 6 by default. The experiments are conducted under CAIDA

dataset, where we evaluate the Recall/Precision Rate on finding

top-3000 periodic items.

As shown in Figure 12(a), RingSketch achieves > 95% Recall Rate,

which is at most 40% higher than SOTA PeriodicSketch.When using

50KB memory, the Recall Rate of RingSketch and PeriodicSketch

is 95.44%, 89.99%. RingSketch has higher Recall Rate than SOTA

PeriodicSketch because its freshness estimation is more accurate,

thereby it sends more accurate elements to the top-𝑘 sketch. As

shown in Figure 12(b), RingSketch achieves > 95% Precision Rate,

which is at most 60% higher than SOTA PeriodicSketch.When using

50KB memory, the Precision Rate of RingSketch and PeriodicSketch

is 95.87%, 77.26%. RingSketch has higher Precision Rate because of

its more accurate freshness estimation.

6 Conclusion
Item freshness is an important attribute in data streams, which can

play an important role in many applications. This paper proposes

RingSketch, a time-aware sketch algorithm to real-time measuring

item freshness. As the first streaming algorithm tailored for mea-

suring item freshness, RingSketch simultaneously achieves high

accuracy and fast update speed. We mathematically derive the av-

erage error for RingSketch and validate the theoretical results with

experiments. Extensive experiments demonstrate that RingSketch

significantly outperforms the baseline solutions in terms of accuracy

and speed, and RingSketch also performs well in three extended

tasks. In the future, we plan to apply RingSketch to more scenarios

and use our results to improve the performance of recommendation

systems and network traffic management systems.
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A Additional Experimental Results
A.1 Performance on More Hash Functions
We evaluate the performance of RingSketch on more hash func-

tions in Table 2: BobHash [39], MurmurHash [41], CityHash [42],

and FarmHash [43]. The results show that ARE remains nearly un-

changed across different hash functions, and faster hash functions

lead to higher throughput.

Table 2: Performance of RingSketch on more hash functions.

Hashes ARE Throughput (M/s)
Update Query

BobHash 0.032 12.01 6.10

MurmurHash 0.036 15.91 7.05

CityHash 0.034 22.86 6.54

FarmHash 0.034 25.58 6.65

A.2 Performance on Different Pointer Speed
We conduct experiments evaluating the freshness measurement ac-

curacy under different pointer rotation speed (32K memory, 𝑠 = 16,

𝑑 = 4). The results in Table 3 show that higher rotation speed goes

with smaller error. This is because higher rotation speed correlates

with smaller measurement window size, thereby simplifying the

measurement problem.

Table 3: Performance of RingSketch under various pointer
scanning speed (number of counters per time unit).

Speed ARE AAE

64K 1.3 × 10
−2

162.29

128K 2.5 × 10
−3

15.36

256K 3.5 × 10
−4

1.13

512K 3.4 × 10
−5

0.053

1024K 5.2 × 10
−6

0.0050

A.3 Performance on Different Data Skewness
Like many other sketches, RingSketch also uses sublinear space

to approximate the key (temporal) information of hot items (fresh

items) in data stream. In RingSketch, hot items retain more valid

counters, enabling more accurate freshness estimation. By con-

trast, cold items retain fewer valid counters, and thus yield coarser-

grained estimation.When data stream contains more cold items (i.e.,

lower skewness), RingSketch’s overall accuracy decreases under

fixed memory usage.

In practice, Zipf distribution is widely used for modeling data

streams, which aligns with the heavy-tailed phenomena observed

in real-world scenarios. We evaluate the accuracy of RingSketch

(under fixed memory of 64KB) on Zipf data streams with varying

skewness in Table 4. The results confirm that cold items indeed

affect the accuracy of RingSketch.

Table 4: Performance of RingSketch on different data skew-
ness (𝛼 of Zipf distribution).

Skewness (𝛼) AAE ARE

Zipf 1.0 7.80 1.2 × 10
−3

Zipf 1.1 1.53 2.4 × 10
−4

Zipf 1.2 0.23 3.6 × 10
−5

Zipf 1.3 0.023 3.5 × 10
−6

Zipf 1.4 0.0017 3.9 × 10
−7

Zipf 1.5 5.9 × 10
−6

7.0 × 10
−10

Zipf 1.6 4.5 × 10
−6

6.0 × 10
−10

Zipf 1.7 3.6 × 10
−6

4.0 × 10
−10

Zipf 1.8 7.2 × 10
−7

1.0 × 10
−10

We also evaluate the accuracy of RingSketch and compare it

with prior art in uniform-distributed data streams. The results in

Table 5 show that RingSketch also outperforms other solutions

under uniform-distributed data.

Table 5: Comparison of accuracy on uniform distribution.

Methods AAE ARE

RingSketch 9.15 0.0013

ClockSketch 12.09 0.0014

TOBF 425.47 0.068

HyperBF 43.97 0.048

SWAMP 3141.23 0.62

A.4 Performance on End-to-end Applications
To better demonstrate RingSketch’s effectiveness in real-world ap-

plication scenarios, we use it to enhance the performance of two

end-to-end applications: caches and recommendation systems.

Cache: RingSketch enables a space-time efficient approximate-

LRU cache that uses freshness to guide LRU replacement, where

we directly implement the rotating-pointer in set-associative cache

lines. The results in Table 6 (4K cache, Zipf1.2) show our solution

achieves almost the same hit rates as standard LRU (implemented

with hash table and doubly-list), while delivering 3.2× faster update

and 5.9× space reduction.

Table 6: RingSketch in optimizing LRU cache (Zipf 1.2).

Methods Hit Rate Speed (M/s) Space (KB)

Standard LRU 83.93% 4.35 224

LRU w/ RingSketch 83.91% 14.02 38

We also evaluate the hit rate on varying Zipf skewness in Table 7.

The results confirm that our solution consistently achieves similar
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Table 7: Performance of RingSketch in optimizing LRU cache
(various Zipf skewness).

Skewness (𝛼) Standard LRU LRU w/ RingSketch

Zipf 0.5 1.25% 1.25%

Zipf 0.6 3.08% 3.03%

Zipf 0.7 7.63% 7.47%

Zipf 0.8 16.87% 16.61%

Zipf 0.9 32.01% 31.59%

Zipf 1.0 51.01% 50.70%

Zipf 1.1 69.90% 69.44%

Zipf 1.2 83.93% 83.91%

Zipf 1.3 92.17% 92.12%

Zipf 1.4 96.39% 96.24%

Zipf 1.5 98.38% 98.31%

hit rates as standard LRU across all skewness levels. Note that the

speed and space results do not vary with the skewness levels.

Recommendation system:We integrate RingSketch into a recent

deep learning recommendation model (DLRM) framework called

CAFE [44, 45].We use RingSketch to report the freshness of features,

and we periodically demote stale hot features and promote fresh

ones. This enables model to focus more on recent features and

adapt to real-time market dynamics. The results in Table 8 show

RingSketch improves test AUC by 0.108 (CriteoTB, 100x CR).

Table 8: Performance of RingSketch in optimizing deep learn-
ing recommendation systems.

Methods Test AUC Train Loss

Standard CAFE 72.123 0.12623

CAFE w/ RingSketch 72.231 0.12610

A.5 Comparison with More Baselines
Besides the four baselines in our paper, there are also some works

that use learning-based methods to evaluate the time gap between

the current and last occurrence of an item. For example, the Learned

Cuckoo Filter (LCF) [46] uses a pre-trained model (called learned

oracle) to predict items’ frequencies within a fixed timewindow, and

uses the predicted frequencies to infer last-arrival time. However, as

stated in its original paper, this approach assumes data distribution

remain stable over time. By contrast, our RingSketch does not rely

on this assumption.

Table 9: Comparison between the learned oracle in LCF [46].

Methods ARE

LCF 45.8945

RingSketch 1.2 × 10
−3

We have also evaluated LCF using its original code and configu-

ration, and compared it with our RingSketch on Zipf 1.0 data stream.

The results in Table 9 show that LCF’s freshness estimation errors

are notably large. This large error implies that such learning models

may face great challenges in practical applications. This is because

LCF and our RingSketch have different design goals. LCF targets

at the membership query problem, which only needs approximate

last-arrival time. By contrast, RingSketch aims at directly report

the accurate last-arrival time, which is more difficult.

B Additional Discussions
B.1 Distinction Between Item Freshness and

Item Batch Time Span
We discuss the distinction between the Item Freshness attribute pro-
posed in this paper and the Item Batch Time Span attribute proposed
in ClockSketch [15]. Actually, they are two completely distinct at-

tributes. 1) Item Freshness measures the time since an item’s last

arrival, requiring fine-grained last-arrival-time tracking. 2) Item
Batch Time Span measures the time since an item’s current batch

start. To estimate Item Batch Time Span, ClockSketch first detects

batches and then explicitly records batches’ start time. Detecting

batches only requires coarse-grained last-arrival-time. As RingS-

ketch also supports batch detection (Figure 11(a)), it can directly

extend to estimate Item Batch Time Span.

B.2 Distinction Between RingSketch and
ClockSketch

We discuss the distinction between RingSketch and ClockSketch

[15]. ClockSketch uses only counter values to get approximate last-

arrival-time and detect batch. By contrast, freshness estimation

requires exact per-item last arrival time, which is more challenging.

By leveraging sketch’s internal structure as an implicit clock, RingS-

ketch innovatively proposes pointer-tracking that converts spatial

rotation into temporal duration, achieving finer-grained time track-

ing. RingSketch is compatible with all use cases of ClockSketch,

and can attain higher accuracy.

To be more specific, RingSketch differs from ClockSketch for the

following two reasons. 1) RingSketch and ClockSketch have differ-

ent design goals. ClockSketch is designed for detecting batch with

approximate time information, while RingSketch aims at measuring

freshness with accurate time information, which is more difficult.

Actually, RingSketch is more general than ClockSketch. RingSketch

can replace ClockSketch in all its applications and achieve better

accuracy. 2) RingSketch’s algorithmic design is more sophisticated

than ClockSketch. ClockSketch only leverages the information of

counter values. By contrast, RingSketch fully exploits sketch’s in-

ternal structure as an implicit clock, converting spatial rotation

into temporal duration. This novel design fully unlocks the poten-

tial of circular sketches (e.g., ClockSketch), and we hope it could

inspire more new methods for recording temporal information in

streaming data.
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