PBSketch: Finding Periodic Burst Items in Data Streams

Zhuochen Fan Zhongxian Liang” Zirui Liuw*
Pengcheng Laboratory Harbin Institute of Technology Peking University
Shenzhen, China Shenzhen, China Beijing, China
fanzc@pku.edu.cn 24b951067 @stu.hit.edu.cn ziruiliu@pku.edu.cn
Dayu Wang Dong Wen Wenjun Li*
Nanyang Technological University National University of Defense Pengcheng Laboratory

Singapore, Singapore

Technology, Changsha, China

Shenzhen, China

dayu001@e.ntu.edu.sg wendong19@nudt.edu.cn wenjunli@pku.org.cn
Tong Yang Yuzhou Liu Weizhe Zhang
Peking University Jilin University Harbin Institute of Technology
Beijing, China Changchun, China Shenzhen, China
yangtong@pku.edu.cn liuyuzhou@jlu.edu.cn wzzhang@hit.edu.cn
Abstract Conference on Knowledge Discovery and Data Mining V.1 (KDD °26), Au-

Detecting periodic burst (PB) items in data streams is crucial for
applications like rate limiting but remains unexplored. While com-
bining existing sketch algorithms offers a baseline, it suffers from
significant inaccuracy and inefficiency. In this paper, we propose
PBSketch, the first dedicated sketch algorithm designed for detect-
ing PB items in real time. Its key techniques mainly include: 1) a
two-stage hierarchical structure that efficiently maintains potential
burst items and discards those without potential; 2) a fine-grained
PB selection mechanism during window processing, coupled with
the Window Smoothing Processing optimization to amortize per-
formance overhead and eliminate processing spikes. We provide its
error bounds through rigorous theoretical analysis. Our extensive
experiments show that PBSketch outperforms the baseline solu-
tion in accuracy and speed. By deploying it on an FPGA platform,
the throughput is further significantly improved. Moreover, it ef-
fectively optimizes a practical application of rate limiting, clearly
improving performance with almost negligible overhead.

CCS Concepts

« Information systems — Data stream mining; - Networks —
Network measurement.

Keywords
Data Streams; Sketch; Data Structure; Algorithm; Rate Limiting

ACM Reference Format:

Zhuochen Fan, Zhongxian Liang, Zirui Liu, Dayu Wang, Dong Wen, Wenjun
Li, Tong Yang, Yuzhou Liu, and Weizhe Zhang. 2026. PBSketch: Finding Pe-
riodic Burst Items in Data Streams. In Proceedings of the 32nd ACM SIGKDD

“Co-first authors. Zhongxian Liang is also with Pengcheng Laboratory.
 Corresponding author: Wenjun Li (Institutional email: liwj@pcl.ac.cn).

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD °26, Jeju Island, Republic of Korea

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2258-5/2026/08

https://doi.org/10.1145/3770854.3780188

gust 09-13, 2026, Jeju Island, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3770854.3780188

Resource Availability:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.17730917.

1 Introduction

1.1 Background and Motivations

Most data exist widely in the form of data streams. It has always
been a challenge to accurately extract the required information
from massive data streams. As probabilistic algorithms, sketches
[1-4] are fast and memory-saving. They always obtain target in-
formation in real time with only a small sacrifice of accuracy and
have been widely recognized by the research community in ad-
dressing the challenge. Among the diverse tasks of data stream
processing using sketches, targets include not only the tradition-
ally well-studied frequent items (including heavy hitters) [5-12]
and persistent items [13-17], but also burst items [18-20], periodic
items [21] and batches [22], PI items [23, 24], simplex items [25],
steady items [26, 27], and quadratic items [28], etc. that play crucial
roles in different application scenarios but remain understudied.
In this paper, we introduce and study periodic burst (PB) items,
a novel concept in the realm of data streams. PB items represent a
unique combination of periodic and burst items, where burst items
occur at fixed intervals. Despite their significance, PB items have not
been explored in prior research. However, they hold great promise
in many applications. For instance, in rate limiting, the predictability
of PB items enables proactive resource allocation to improve QoS
[29]; In LLM training, detecting periodic synchronization bursts
[30, 31] helps identify stragglers and prevent costly halts. PB items
also have important potential roles in intrusion detection [32-35],
IoT data management [36], and network failure localization [37-40].
A baseline solution for finding PB items is to combine existing
algorithms such as BurstSketch [20] and PeriodicSketch [21], which
are state-of-the-art (SOTA) sketches for detecting burst items and
periodic items, respectively. However, such a baseline solution is

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3770854.3780188
https://doi.org/10.1145/3770854.3780188
https://doi.org/10.5281/zenodo.17730917
https://doi.org/10.5281/zenodo.17730917

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

far from optimal in both accuracy and efficiency due to poor coop-
eration and redundant components. This highlights the need for a
purpose-built solution to accurately and efficiently detect PB items.

1.2 Our Proposed Solution

Towards the design goal, we propose a novel sketch algorithm,
called PBSketch, to find PB items in data streams in real time for
the first time. PBSketch is compact, requiring only 20KB of memory
overhead when processing 35M items; PBSketch is accurate, with
its F1 Score, Average Absolute Error (AAE), and Average Relative
Error (ARE) improved by up to 60.0%, 22.9%, 30.1X compared to the
baseline solution in finding PB items, respectively; PBSketch is fast,
with its throughput 1.43% faster than that of the baseline solution.

Compared with the four components of the above-mentioned
baseline solution, PBSketch consists of only two interconnected/-
collaborative components: Part 1 dynamically maintains potential
burst items with high frequency, tracks those compliant burst items
and calculates their periodicity; Part 2 maintains those periodic
items with more periodic occurrences as PB items based on the
burst item information reported by Part 1. It is easy to see that the
key innovations of PBSketch are reflected mainly in the design of
Part 1, whose design philosophy is shown below.

The basic data structure of Part 1 is a customized hot-cold sketch
with two arrays, which is also one of the key techniques of PBS-
ketch. Each array has the same number of hot-cold buckets, and
the structure of each bucket is designed to have a unique layout of
several variable-length cells: Only one large-size hot cell is used to
record the complete information required for potential burst items,
while other cold cells of gradually smaller sizes only record basic
information such as the frequency of non-burst active items. Since
items with high frequency have more potential to become burst
items, the cells in the bucket are sorted dynamically in real time so
that the item most likely to become a burst item is always in the
hot cell. Of course, if the potential burst item in the current hot cell
is in its burst active period, it will be properly protected and not
participate in the sorting: As long as it becomes an eligible burst
item during the retention period, we calculate the burst period and
pass its related information to Part 2. Once there are two potential
burst items in a bucket, the new one will avoid conflict by being
rehashed into the bucket of another array and eliminating the least
active item at the bottom. In summary, the above technique exploits
the skewness of data streams to select eligible active burst items in a
memory-efficient manner. While centrally processing the potential
burst item information before each cross-time window (to select the
eligible ones) may cause unstable performance. Thus, we propose
Window Smoothing Processing (WSP) optimization for PBSketch to
smooth throughput. Each bucket only needs a minimal additional
overhead to avoid repeated access, so that the burst compliance is
judged immediately after the item insertion process of the current
window is completed. Thanks to the techniques from Part 1, Part
2 only needs to use a probability equation to dynamically select
the ones with more pronounced periodicity as PB items. See § 3 for
more details.

Further, we provide error bounds and time complexity of PBS-
ketch through rigorous mathematical analysis in § 4. Finally, we
conduct extensive experiments in § 5, as follows. 1) We compare
PBSketch with the baseline solution in terms of accuracy and speed

Zhuochen Fan et al.

on two real-world datasets in § 5.3 and § 5.4, respectively, and the
results fully demonstrate its clear advantages in both aspects. 2)
We implement PBSketch on an FPGA platform with a through-
put of 223.2 Mops in § 5.5. 3) We also implement the rate limiting
optimization mentioned in § 1.1, i.e., we apply PBSketch to opti-
mize two typical rate limiting algorithms: counter-based and leaky
bucket-based rate limiting algorithms in § 5.6. Experimental results
show that PBSketch only requires negligible memory overhead
to significantly reduce the number of rejections of the above two
algorithms by about 14.1% and 18.6%, respectively.

Our Key Contributions:

e We propose a new problem called finding PB items for the first
time, which is important in many big data-related application
scenarios but has never been studied.

e We propose a novel sketch algorithm, namely PBSketch, which
can accurately find PB items in data streams with only a small
memory overhead.

o We provide theoretical guarantees for PBSketch through rigorous
mathematical analysis.

e We conduct extensive experiments, and the results show not
only the great advantages of PBSketch over the baseline solution,
but also verify that PBSketch has deployment flexibility and can
effectively optimize rate limiting.

2 Related Work

2.1 BurstSketch

BurstSketch [20] is the SOTA sketch algorithm for finding burst
items in data streams. It defines a burst item for the first time in
such a way that an item must satisfy both the burst start (sudden
increase) and the burst end (sudden decrease), as shown below.
Initially, a given data stream needs to be divided into many fixed-
length time windows. For any item, assuming that its frequency in
the (i+1)-th window is more than kX that of the i-th window (burst
start), and its frequency in the (j+1)-th window is less than %X that
of the j-th window (burst end), where j — i is less than a maximum
length L and the frequencies of windows from i + 1 to j exceed
a burst threshold H, then the item is a burst item. BurstSketch
consists of two stages. In the first stage, infrequent items with a
frequency lower than H (H’ < H) are eliminated because they
will not become burst items and account for the majority, and the
remaining potential burst items are transferred to the second stage.
The second stage records the information related to the sudden
increase and decrease of the frequencies of potential burst items
and reports the burst items that meet the definition mentioned.

2.2 PeriodicSketch

PeriodicSketch [21] is the first and SOTA sketch algorithm for
finding periodic items in data streams. It defines periodic items
as follows. For any item, assuming that t; and ¢, are its i-th and
(i+1)-th occurrences on the time axis, respectively, so the i-th time
interval can be calculated as t;41 — t;, then the item is a periodic
item when all its time intervals have values around ;1 — t; and the
total number of such intervals is the K largest. PeriodicSketch also
consists of two stages. The first stage records and reports the time
interval of each item in real time. Before entering the second stage,
any item ID/key is bound to its time interval and treated as a new

PBSketch: Finding Periodic Burst Items in Data Streams

item. The second stage records the interval frequency of the item
and keeps those items with high interval frequencies as the final
reported periodic items.

2.3 Baseline Solution

Since there is no prior work on finding PB items!, we adopt a direct
combination of BurstSketch and PeriodicSketch as a baseline solu-
tion. Specifically, we input the given data stream into BurstSketch
and output the reported burst items at the end of each time window.
Meanwhile, we use these burst items as the input stream to Period-
icSketch to obtain PB items, where each input item is adjusted to
burst type.

3 PBSketch Design

3.1 Problem Statement

We provide the problem definition of periodic burst (PB) items as
follows. Primarily, PB items must be generated from burst items
(refer to § 2.1) with the same item key. Assume that there is a burst
item set B = {bfl, fz, cee ,bfi, ---} with the same key e, where
ti,tp, - - -, t; are the corresponding burst start times, so the burst
interval v of any adjacent items can be calculated as vy = t;—t;, 0, =
t3 — ty,+ -+ ,0; = tiy1 — ti, -+, then B is also a PB item set under
the following conditions: vy, v, - - - ,v;, - - - all fall within the range
[v—6,0+), where § is the preset acceptable error, and the interval
frequency (the number of intervals falling within the range) r is the
top-K (used in this paper) or exceeds a threshold.

b
burst '

item burst start time I:l burst end time

Y s S s B s S

be2 [} 1] i

- =
1 2 3 4 5 6 7 g

Figure 1: Examples of PB items.

As shown in Figure 1, we explain the above definition more
clearly through the following examples, where § = 1 is assumed.
@ For the burst item b, it starts to burst at time t; = 1, ¢, = 4,
and t3 = 6, and the intervals are v; = 3 and v, = 2, then: both v;
and v, fall in the range [2,4), so v = 3 and r = 2; @ For the burst
item b€, it starts to burst at time t; = 1, t, = 5, and t3 = 7, so there
are two different intervals v = v; = 4 and v = v, = 2, and their r
is both 1; @ For the burst item b®3, it starts to burst at time t; = 1,
ty = 3,t3 = 5, and ty = 7, and the intervals vy, 0y, v5 are all 2, so
v = 2 and r = 3. Finally, we can get the order of PB items in the
form of (key, v, r) as follows: (es, 2, 3) is top 1, {ey, 3, 2) is top 2, and
(€2, 4, 1) and (ey, 2, 1) is top 3.

!n this paper, our definition of PB items is inspired by by the definitions of the burst
items and periodic items in BurstSketch and PeriodicSketch, respectively. Users can
also appropriately modify the definition according to their actual needs, e.g., the burst
items only consider burst starts [18].

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

3.2 Data Structure

As shown in Figure 2, the data structure of PBSketch comprises Part
1 and Part 2 that cooperate with each other: The former detects
high-frequency items as potential burst items, examines them, and
reports eligible ones with burst intervals; The latter tracks the K
periodic items with the largest interval frequency as PB items.

i Part 1 B f
| B B[1] |
E key Forel el]
PPl P [) | :
==y Bulhy(el khy (| |
i cold 2]
HEAE Jeells § |/ \@ """ *| Bylh,(e)] :
E abucket in B Bl[m] E
T Tacompliantburstitem
e: <key, v>
n' cells
key’ | v | 1 h(e)

D[1] == [Dlh(e)][- | D[m’]

.

a bucket in D Part 2

i
i
i
i
i
i
i
'
i
! ¢ [K€Yrmin| Vimin | Tmin
i
i
i
i
i
i
i
i

Figure 2: Data structure of PBSketch.

Part 1 is a sketch with two arrays B; and B,, associated with
pairwise independent hash functions h;(.) and h;(.), respectively.
Each array has m buckets, each of which contains n cells, denoted
as celly, celly, . . ., cell,, where the cell sizes increase sequentially.
The maximum size cell (hot cell), cell,, is used to record the com-
plete information of a potential burst item <key, Fores Feurs Ty s Tm>,
where: key represents the full key of the item; Fj,,. and F,, repre-
sent the frequencies of the item in the previous window and the
current window, respectively, for determining burst compliance;
and T},, and Ty, represent the time of the last burst start and the
current burst start, respectively, for calculating the interval. The
remaining n — 1 smaller cold cells only store basic information
(FP, F.y,;) (where FP denotes the item’s fingerprint) for less active
items, with variable-sized F,, counters to adapt to the skewness
of data streams.

Part 2 is a customized hash table D with m’ buckets, associated
with a hash function A(.). Each bucket contains n’ cells and one
failure counter Crair: Each cell records (key,v, r), where key and
v are the full key of the active burst item and its burst interval
from Part 1, respectively, and r is the interval frequency of the
(key,v) pair; Crq; denotes the number of replacement failures
in the bucket, which will be used in a probabilistic replacement
equation mentioned later to retain potential periodic items.

3.3 Algorithm and Operations

Insertion (Part 1): The insertion in Part 1 includes an item insertion
stage and a window centralized processing stage. When an item e
(its key is also denoted as e) arrives in the current time window
T, we map it into two candidate buckets B, [h;(e)] and B, [hy(e)]
of the two arrays by calculating hash functions h;(e) and h;(e),
traversing the cells in B; [h;(e)] and Bz [h,(e)] and checking if it
already exists. There are two cases as follows.

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

Case 1: If e exists in B;[hi(e)], we first increment F¢,, of the
cell where e is located by 1. Then, we sort all the cells in the bucket
according to the size of F,,, to ensure that the most potential item
always occupies the hot cell, where whether the current hot cell
participates in the sorting depends on whether @ Ty, is not empty’
or @ ‘T —T/,, < P, P is the longest retention period’ are true: If so,
it participates; otherwise, it does not. After sorting, if the updated
F¢,, is already the 2nd largest F.,, in the bucket, and is still below
a given threshold H’, the insertion ends here; If the updated F¢,,
exceeds H’, e qualifies as a potential burst item, and we try to insert
it into the hot cell of another candidate bucket B;[h;(e)]. If this hot
cell needs to participate in sorting and its Fe,, is less than Ff,,,, the
item in it will be replaced by e: €’s fingerprint FP¢ is converted into
the key e and occupies the hot cell together with its F,,, while the
original item of the hot cell is shifted down to the cold cell cell,_;
and the key is converted to FP, and the item information in the
bottom cell; will be cleared.

Case 2: If e is not in either candidate bucket, it is inserted into the
first empty cell of B;[h;(e)] or B;[h;(e)], and the corresponding
F.yr is set to 1; If both candidate buckets are full, cell; in B;[h;(e)]
or B,[hy(e)] is randomly selected and the recorded F,, is decre-
mented by 1: Once this F,,, is decremented to 0, cell; is cleared and
(FP¢, 1) is recorded in it, otherwise e leaves.

After we have completed the item insertion stage of each window,
it is time for the window centralized processing stage. First, We
calculate the ratio ;C':: in the hot cells of all buckets: 1) If 5;’:: >k
and F.,, > H (burst threshold), a burst start occurs, and Ty, is set
to the time T of the current window; 2) If JFE;‘:: < % Fyre 2 H and
T — Tgr < L, the current burst ends: As long as T, is not empty,
we directly subtract it from Ty;, to calculate the burst interval v, i.e.,
0 = Ty — T},,., and report the burst item information (key, v); After
that, T}, is set to Ty, and Ty, is cleared (time switching). Next,
Fyre of all hot cells is set to Fy and Fey, is cleared in all buckets

(frequency switching).

B,[0]
h
eg: <key,10,19+1,86,92> e,: <key,32,15,8390,96null> | -+—
es: <FP,14> e <FR15> —| o)
‘hl(en e,: <FP13> eg: <FP,14> ?
*2 e <FP,3>
ey: <key,20,28,80,89> hy(e,) > [essr<key 212 2aul> ;0 <key,o,15,null,nuu>|
hifes)| || €171 <FP,10> €,0: <FP,7> e,y <FP12>
B.01]
e, <FP,8> e,5: <FP6> WP e, <FP,7>
ey <FP1> | mp ey <FRI1> €31 <FP2> e,5: <FP,6>
B,[1]
D[1]
: <k : <key, 7, 2+1 : <key, 9, 2
PSP e e 2 C13t <K, > insert e,: <key, 7>
D[0] e,,: <key, 3, 5> eg:<key,6,5> | 4@ | e <key,6,5> T
€2i
o] o

Figure 3: Examples of PBSketch.

Time Information Compression: We can reduce memory
overhead by compressing Ty, and T, recorded in the hot
cell in each bucket. Here, we set the compression ratio Re =
bits used after compression . .
Bits used before compression” Users can adjust Re according to actual needs.
However, in order to make a trade-off between Rc and accuracy,

we provide the tuning experiments in § 5.2.

Zhuochen Fan et al.

Window Smoothing Processing (WSP) Optimization: During
the window centralized processing stage, PBSketch has to deal with
the following challenge. When crossing windows, there will be a
period of unified processing, which requires pausing item inser-
tion. This will cause the throughput to drop during this period,
causing fluctuations in the overall throughput of PBSketch. Thus,
we further propose this WSP optimization, which does not require
unified processing at the end of each window, avoiding a decrease
in throughput with minimal memory cost. Specifically, we set an ad-
ditional field T n. in the hot cell to indicate the time of the current
centralized processing operation. When item e is inserted into Part
1at T, Tsync in the hot cells of its two candidate buckets needs to be
checked. If Tsyne # T, the current bucket has not been processed at
T, then the operations in the window centralized processing stage
are performed, and finally Tyync is set to T; Otherwise, the current
bucket has been processed at T, and nothing needs to be done.
Insertion (Part 2): When a recently active burst item (e, v) arrives,
we first map it to the bucket D[h(e)] by calculating the hash func-
tion h(e) and check if it already exists. Note that this only works if
there actually exists an e in D[h(e)] whose v is sufficiently close
to or exactly the same as the incoming v (see § 3.1). There are two
cases as follows.

Case 1: If (e, v) exists in D[h(e)], we first increment the corre-
sponding r of the cell in which it is located by 1.

Case 2: If (e, v) is not in D[h(e)], but there is at least one empty
cell, then record (e, v, 1) in an arbitrary empty cell; If D [h(e)] is full,
we try to replace the item with the smallest r (denoted as ry;,) with
probability P = [21]: If it holds, the replacement is

successful, we record {e,v,7) (r = rmin + | Cfail/Tmin]) in the free
cell and reset Crq; to 0; Otherwise, we just increment Cggy by 1.

Examples (Figure 3): Below we use several examples to illustrate
the insertion operation of PBSketch, where k = 2, H = 20, H' = 15,
L=50,m=m'"=2,n=4,n =2, T =92, and the frequency
switching in the window centralized processing is not shown for
clarity. @ es is mapped to bucket B;[0]. es happens to be already
in the hot cell, whose F,, is changed to 20 after being incremented

by 1. Its position remains unchanged after sorting. Since its 1;;1:;
20

% = 2, a burst begins, and its Ty, is set to 92. @ e, is mapped
twice to bucket B;[0]. e; is in the 2nd cold cell, and its F.,, is
incremented by 2 to become 15. After sorting, e; is promoted to
the 1st cold cell, and es originally occupying the 1st cold cell is
demoted to the 2nd cold cell. Since its F.,,, = H = 15, we try to
store e; into the hot cell of another candidate bucket B,[1]. Since
the original resident of the current hot cell, e39, has an empty T
and its Fp,, = 12 < 15, e; successfully occupies this hot cell and
updates it to {ey, 0, 15, null, null). In this case, the item information
in the original 4 cells occupying B, [1] is shifted downward in order,
and the bottom ey; is cleared; e5 and e in B [0] are shifted upward
in order as e; has left. ® e; is mapped to bucket B;[1]. B4[1] is
full, so F¢y, of ey5 at the bottom is decremented by 1. Since Fey,r =0
at this time, eys is cleared and replaced by e;. @ F.,, of e; in the
current window is updated to 15, i.e., the recorded information is
temporarily (e, 32, 15, 83, 90). Since %’f = g < % and the burst
interval v = 90 — 83 = 7, the current burst ends: {e;, 7) will be
inserted into D, and T/, is set to 90 and T;, is cleared. Next, e,

str

is mapped to D[1]. Since D[1] is full, it tries to replace e;3 with

1
2’“‘min_cfail"'1

PBSketch: Finding Periodic Burst Items in Data Streams

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

1—.—25KB+50KB 75KB 1—.—25KB ®- 50KB 75K B 1—.—25KB+50KB 75KB 1—-—25KB+50KB 75KB
Py
T '\. /.\./.\. —9
0.8 0.8 0.8 pe 0.8
® 3 @ o
8 8 <]
&3 0.64 0.6 $30.6 g’i 0.6
- - - -
L w [[/
0.44 0.4 0.4 0.4
2 0.2 0.2+~ 0218
01 02 04 06 08 09 01 03 05 07 09 095 116 3/32 18 U4 318 12 0 2 4 6 8 10
R, Ry Re P

(a) F1 Score vs. Ry (b) F1 Score vs. Ry

(c) F1 Score vs. Re (d) F1 Score vs. P

Figure 4: Experiments on parameter tuning.

Tmin = 2. With a probability of P = m = 0.5 and assuming
that it holds, e;3 is expelled and (e,, 7, 2 + 1) occupies the cell where
ey3 originally was.

Query: We just iterate over all buckets in D and return the (key, v)
pair with the top-K largest r as PB items.

4 Mathematical Analysis

In this section, we theoretically derive the error bounds for each
part of PBSketch and prove that the time complexity of PBSketch
can be considered as O(1). Formal details and proofs are available
in Appendix A.

For Part 1, assume that: (1) Hash Function: hy and h, are ideal 32-
bit hash functions with uniform distribution; (2) Frequency Distribu-
tion: item frequencies follow a power-law distribution P(f) o« f~%;
(3) Independence: arrivals of different items are mutually indepen-
dent; (4) Parameter Setting: m denotes the total number of buckets
in each hash table, n is the number of cells per bucket, and k is the
burst ratio threshold; (5) There are N distinct items observed in the
window, among which yN items have frequencies higher than the
threshold for e. Then, the probability that e is not recorded by Part 1

is at most,
2 kFf. a-1\"
Pmiss :(1_67/1) + 1—(1—(f;m))
2 kfo: a-1\"
—(1—e‘1) 1- 1—(fmm)
f

where A = %.

For Part 2, suppose each bucket contains n” cells (with m’ buckets
in total), and that the burst event (key,v) frequencies follow a
power-law distribution. With probabilistic eviction, for the top-K
most frequent burst events (among M total pairs), the probability

that such an item is retained in Part 2 is at least 1 — AK,I, ensuring
that most heavy burst events are preserved.

1

5 Performance Evaluation

5.1 Experimental Setup

Implementation: We implement PBSketch, the baseline solution,
and two typical rate limiting algorithms in C++. The hash function
used is the 32-bit Bob Hash [41] with different initial seeds. The
machine is equipped with a 16-core processor (24 threads, Intel(R)
Core(TM) i7-13700KF CPU @ 3.40GHz) and 32GB DRAM memory.
All relevant code has been released on GitHub?.

Zhttps://github.com/wenjunpaper/PBSketch

Datasets: We use the following two real-world datasets. 1) IP Trace
Dataset: It is composed of streams of anonymized IP traces collected
in 2018 by CAIDA [42]. In this dataset, a source IP address and a
destination IP address together are considered as an item, and there
are around 35M items and 17M distinct items. 2) MAWI Dataset: It
is composed of anonymized packet traces from the WIDE backbone
collected by the MAWI Working Group [43]. In this dataset, there
are around 1M items and 80K distinct items.

Metrics:

e Precision Rate (PR) is the proportion of the number of correctly
PB items to the number of PB items reported.

e Recall Rate (CR) is the proportion of the number of correctly
reported PB items to the number of correctly PB items.

e F1 Score is calculated as Zéfzifg'
e Average Absolute Error (AAE) is defined as

ﬁ 2 (e;ew) Iri = Fil, where r; is the real interval frequency of
the PB item e;, 7; is the estimated interval frequency of e;, and ¥
is the estimated set of PB items.)

o Average Relative Error (ARE) is defined as ﬁ Y(erew) lr‘;” L

e Throughput is defined as Million of operations (insertions) per
second (Mops) to evaluate speed.

e Number of Rejections is obtained by counting the total number
of requests/items that are automatically denied by the system
due to exceeding the rate limits.

e Number of Boundary Problems is defined as the number of
significant bursts in traffic that occur at the transition point
between two rate limiting windows.

5.2 Parameter Tuning

We tune four hyper-parameters: The ratio R; of the memory size of
Part 1 to the memory size of PBSketch, the ratio Ry of the frequency
threshold H’ (qualification for being a potential burst item, H" =
Ry X H) to the burst threshold H in Part 1, the compression ratio
Rc, and the retention time window threshold P of potential burst
items in hot cells.

Effects of R; (Figure 4(a)): R; determines the memory allocation
of Part 1 and Part 2, which obviously affects the performance of
PBSketch. R; that is too small or too large will weaken the number
and accuracy of active burst items and PB items, respectively. We
find that as R, increases, the F1 Scores of PBSketch first increase
and then gradually decrease and reach a peak at R; = 0.2 with three
memory capacities. Thus, we choose R; = 0.2 for our subsequent
experiments.

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

Effects of Ry (Figure 4(b)): Ry is an important parameter in Part
1 and is responsible for selecting potential burst items. If Ry is
set too small, a large number of non-compliant items will occupy
the space of hot cells, affecting the output of active burst items. If
Ry is too large, some items with burst potential will be trapped in
cold cells. As Ry increases, the F1 Scores of PBSketch show a trend
of gradually increasing and then decreasing, and reach a peak at
Ry = 0.9 with three memory capacities. Hence, we choose Ry = 0.9
for our subsequent experiments.

Effects of Rc (Figure 4(c)): Rc also affects the output of Part 1. If
Rc is too low, although it saves some memory on the surface, the
accuracy of the recorded time information is weakened and many
real active burst items are missed. As R¢ increases, the F1 Scores
of PBSketch first increase and then gradually decrease and reach a
peak at Re = é with three memory capacities. Consequently, we
set Re to 0.125 for our subsequent experiments.

Effects of P (Figure 4(d)): P directly affects the report results of
Part 1. If P is too small, many active burst items that should have
been reported will be lost; If P is too large, it may increase the
difficulty in selecting the real target items. As P increases, the F1
Scores of PBSketch tend to increase first and then decrease slightly,
reaching a peak at P = 6 with three memory capacities. Therefore,
we select the best performing P = 6 for subsequent experiments.

5.3 Experiments on Accuracy

PR (Figure 5(a)-5(b)): The results show that the PR of PBSketch is
about 28.3% and 69.3% higher than that of the baseline solution on
the two datasets, respectively.

1 ——Ours —@—Baseline
o0

0.94

Bos]
s
Sor|
3061
o
05/

04— . . | -
20 40 60 80 100
Memory (KB)
(a) IP Trace

Precision Rate
o o
[} [e¢]

o
o

S
84

50 70 90 110
Memory (KB)
(b) MAWI

Figure 5: PR vs. Memory.

CR (Figure 6(a)-6(b)): The results show that the CR of PBSketch
is about 34.2% and 33.6% higher than that of the baseline solution
on the two datasets, respectively.

1 ——Ours —@— Basdline 1 ——Ours —@— Basdine
ool ./-/I—I/. 09/ -/./I/'/.
© 0.8 gl
E g 0.8
g 0.7 g 0.74
g 0.6 Zosl
0.5
0.5
0.4
- r - T r 041 - r - -
20 40 60 80 100 30 50 70 90 110

Memory (KB)
(a) IP Trace

Memory (KB)
(b) MAWI

Figure 6: CR vs. Memory.

Zhuochen Fan et al.

F1 Score (Figure 7(a)-7(b)): The results show that the F1 Score of
PBSketch is about 31.7% and 60.0% higher than that of the baseline
solution on the two datasets, respectively.

1 ——Ours —@— Basdline 1 —m—Ours —@—Basdline
09 ./.——I’"."".
0.8
0 08 o
o} e}
#0.7 0.6
— —
06 v
04 oo o
0.5
0.4 0.2
20 40 60 80 100 30 50 70 90 110
Memory (KB) Memory (KB)
(a) IP Trace (b) MAWI

Figure 7: F1 Score vs. Memory.

AAE (Figure 8(a)-8(b)): The results show that the AAE of PBSketch
is about 22.9%X and 22.2Xx lower than that of the baseline solution
on the two datasets, respectively.

10t —=—Ours —@—Basdine 100 —=®—Ours —@—Basdine
5 5 o o *
5 .\.\'\.\. E
j] j] 1
£ 10° £10
[[
Qo Qo
510t 102
S 10 S 10
o] o]
> >
< <

102~ . - . . 1031~ - . ! '

20 40 60 80 100 30 50 70 90 110
Memory (KB) Memory (KB)
(a) IP Trace (b) MAWI

Figure 8: AAE vs. Memory.

ARE (Figure 9(a)-9(b)): The results show that the ARE of PBSketch
is about 25.6x and 30.1x lower than that of the baseline solution
on the two datasets, respectively.

100 ——Ours —@— Basdline 100 ——Ours —@— Basdline
s .\Q\'_’\. s
& g | " —e—%—
210" 210"
3 3
T T
14 14
D 112 DO 12
3 -\-—._\.\. 810 -\-—.——I—l
o} [}
> >
< <

10° 10°

20 40 60 80 100 30 50 70 90 110
Memory (KB) Memory (KB)
(a) IP Trace (b) MAWI

Figure 9: ARE vs. Memory.

5.4 Experiments on Processing Speed

In this subsection, we first evaluate the average throughput of
PBSketch and the baseline on two datasets.

Throughput (Figure 10): The results show that PBSketch achieves
higher throughput than the baseline solution, being on average
about 1.38% and 1.43x faster on the two datasets, respectively.

PBSketch: Finding Periodic Burst Items in Data Streams

W2 ours

XY Baseline|

Throughput (M ops)

IP Trace MAWI
Figure 10: Insertion speed.

Then, we conduct ablation experiments to evaluate the effect of

WSP optimization on PBSketch: we sample two adjacent windows
(each with a length of 30000 items) to observe the fine-grained
changes in throughput.
Results (Figure 11): The throughput of the optimized version
only dropped by about 12.6% at the window switching point
(0/30000/60000), while the unoptimized version dropped sharply by
about 91.7%, verifying its effectiveness.

25 = wwsp o wioWSP|
@20 P o+ s gh-2 o2 oo
g [| | |]
515
Q.
4
10
2
5 ‘
0. L] []
0 10000 20000 30000 40000 50000 60000
Sampling Point

Figure 11: Ablation experiments.

5.5 FPGA Implementation

We implement PBSketch on the Xilinx Ultrascale+ VU13P FPGA to
evaluate its practical deployment flexibility and further verify the
effectiveness of our WSP optimization. The architecture of PBSketch
FPGA version is shown in Figure 12, where the functions of the
upper and lower halves correspond to Part 1 and Part 2 of the CPU
version, respectively. The overall FPGA implementation adopts the
fully-pipelined architecture, where input items are processed in the
hardware pipeline. This architecture enables PBSketch to receive
and insert a new item in each hardware clock cycle.

Upon receiving a new item, two different hash function modules
will calculate the corresponding hash value and key, with two cold
tables being triggered to read the data indexed by these hash value
and key. One storage word of the cold table comprises several
segments: hit flag, indicating whether the current word is occupied;
timestamp, documenting the last update time of the word; and
frequency F of the item. The hardware will update the segments
in the word according to the hit flag and the WSP optimization
method. Simultaneously, following our insertion operations, the
cold inserting and hot inserting modules filter the most active
items from two cold tables and attempts to insert these items into
hot tables. Once an item within the hot tables is detected as the
burst, its window is utilized to update the Hash Table C for the
value of period. In our algorithm, the updating of Table D requires
the calculation of the dropping probability, which is difficult to
directly complete on FPGA. To address the issue, we introduce the
Failing Table C, which shares the same structure of Hash Table C
to document Crg;1, and Bucket min, Table to document the min,

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

value of Table D. The stored Cr,;; and min, are sent to the look-up
table (Probability Table) to get the dropping probability instead
of a complex calculation of the float-point data. With dropping
probability and data from Hash Table C, Table D performs the final
insertion within the P stages, where P denotes the maximum count
of Table D insert attempt. The insertion is neither successfully
completed nor failed controlled by the dropping probability. In the
final pipeline stage, it will update the Failing Table if the inserting
operation fails, or updating the Bucket min, Table based on the

latest updated value.

Input Items

— T

Hash Function Hash Function

Module A Module B
Rd Rd
— Hash Addr, I Hash Addr,
Key Key
Cold Cold
"| Table 0 Table 1

Hit_fla == Hit_fla
l __E Tnow ==Tsync ? l __gCD*'l?ﬂ
|

I Hit | Time Stamp | F | I Hit | Time Stamp | F
il B T [

i

Cold Inserting Module &
Hot Inserting Module

Wr Wr

| -—

Hot Hot

Table 0 Table 1
Part1

v
Hash Function Part 2
Module C
¥
Hash Table C ’—v Failing Table C ’—v Min_r Bucket
Reg Probability
Table

| |
]

FIFO Queue D:D:ED]]
A,

—

Burst
Table D

Figure 12: PBSketch (w/ WSP) FPGA implementation archi-
tecture.

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

Results: The resource usage is listed in Table 1. The clock frequency
of PBSketch (w/ WSP) FPGA version reaches 223.2 MHz, i.e., the
throughput is 223.2 Mops. If WSP optimization is not used, a
window-by-window clearing overhead of 13.45 ps will be incurred.
Assuming that each time window is 100 ps, the actual throughput
is only 120345 % 223.2 = 193.2 Mops.

Table 1: PBSketch performance on the FPGA platform

Resource Usage Percentage
Logics/LUTs 123879 0.27%
Block RAM 12 0.45%
DSP Blocks 0 0%

5.6 Experiments on a Practical Application

5.6.1 Background.

Rate limiting is a key mechanism in network management, designed
to prevent system overload and crash due to burst traffic [44, 45].
It is necessary in many scenarios, including servers, API gateways,
load balancers, and firewalls. For example, both in Nginx itself, the
meter table of Open vSwitch (OVS), and the filter of Spring Cloud
Gateway all have rate limiting modules that support one or all of
the following rate limiting algorithms: 1) counter-based; 2) leaky
bucket-based.

1) Counter-based rate limiting. It refers to counting requests
(items) within a fixed time window and stops accepting new items
when a limit is reached. However, it may suffer from the boundary
problem, where bursts in items during window transition may
overload the system.

2) Leaky bucket-based rate limiting. It refers to smoothing
input traffic with a fixed-capacity bucket that leaks items at a con-
stant rate and blocks or drops excess traffic. However, its memory
overhead is high because it needs to maintain individual buckets
for each user/connection to track the state of their items.

Next, we will propose our optimization solutions, called Opt-1
and Opt-2, to improve the performance of counter-based and leaky
bucket-based rate limiting algorithms using PBSketch, respectively.
5.6.2 Optimizations.

Rationale: The key is to predict bursts using detected PB items.
For a PB item (e, T), if a burst is detected where item e starts to
increase at time ¢, then it is predicted that item e will also have
a burst at time t + T. Therefore, PBSketch can be used to predict
bursts before they occur.

Architecture: For both Opt-1 and Opt-2, the overall structure can
be divided into: Normal Processing Area (NPA) and Burst Processing
Area (BPA). The key of our optimizations is to introduce PBSketch in
the controller to specifically handle possible burst items for BPA. Next,
we describe the structural differences between Opt-1 and Opt-2: 1)
For Opt-1, a small number of dynamic leaky buckets are added to
BPA based on the original counter-based rate limiting, as shown in
Figure 13(a); 2) For Opt-2, a very small number of dynamic big leaky
buckets are added to BPA based on the original leaky bucket-based
rate limiting, as shown in Figure 13(b).

Implementation: 1) For Opt-1, during the data processing period
between adjacent time windows, PBSketch can be used to detect
burst items and predict the possible burst traffic in the next window
later, which will be inserted into the priority queue. When new
possible burst items appear in the next window, the leaky buckets

discarded

Normal Processing Area

F auto-increment
counter(key,)
counter(key) \

~check count

counter(key,)

Input Port

items,

Clear

items

Controller
counters

Set Key of
leaky buckets

p—— Bt

Zhuochen Fan et al.

overflowed

Burst Processing Area

leaky bucket(keys)

leaky bucket(key,)
Item

Classifier

leaky bucket(key,)

s1942nq JIWeuAp

passed shaped
Output Port
(a) Opt-1
Input Port
overflowed items overflowed

| Normal Processing Area

leaky bucket(key,)

leaky bucket(key,)

Controller

items

Set Key of |
leaky buckets]

Burst Processing Area

big leaky bucket(key;)

big leaky bucket(key;)

il Item
| Classifier

Item
Classifier

S1Nq SIWEUAD

leaky bucket(key,) big leaky bucket(key,)

shaped

burst item reflux

Output Port

(b) Opt-2
Figure 13: Architecture of our optimization solutions.

in BPA can be allocated to store these possible burst items in this
window. In other words, this part of the burst traffic and the rest
of the normal traffic are applied to the leaky bucket-based and
counter-based rate limiting algorithms, respectively. In this way, the
ability of the leaky bucket to cache items can be used to achieve the
functions of reducing rejected items and traffic shaping, alleviating
the shortcoming of the counter-based rate limiting algorithm. 2)
For Opt-2, its implementation is similar to that of Opt-1, except that
both areas are handled by leaky buckets. In this way, the ability to
handle burst traffic becomes stronger.

Hence, after optimizations of PBSketch, the main processes and
steps of Opt-1 and Opt-2 are as follows:

o Item Passing Process:

— [Step 1] After the item enters the port, copy the key of the item
and insert the key into PBSketch.

— [Step 2] The controller’s traffic diversion algorithm (item split-
ter) diverts the item: If there is a leaky bucket in BPA that corre-
sponds to the key, it is determined that the item belongs to burst
traffic and it is diverted to BPA ([Step 3]); Otherwise, the item is
diverted to NPA ([Step 4]).

— [Step 3] The item is passed according to the specific algorithm
used by BPA.

— [Step 4] The item is passed according to the specific algorithm

used by NPA.

Window Interval Process:

[Step 1] Clear all counters in NPA to 0 and restart counting (only

for Opt-1).

PBSketch: Finding Periodic Burst Items in Data Streams

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

Table 2: Memory consumption (MB) of each part in the four solutions

Solution Normal Processing Area (NPA) Burst Processing Area (BPA) PBSketch Total
Counter-Based Rate Limiting 98 0 0 98
Opt-1 98 16 0.2 114.2
Leaky Bucket-Based Rate Limiting 6594 0 0 6594
Opt-2 6594 16 0.2 6610.2

— [Step 2] Recycle the empty leaky buckets in BPA and make them
free buckets, i.e., they no longer belong to the original items.

— [Step 3] Utilize PBSketch to predict the burst items, and insert
the predicted burst items into the priority queue in the form
of (predicted_time, burst_item_key). The queue can be easily
checked to find the possible bursts in the next window.

o Leaky Bucket Allocation:

— While item passing, simultaneously check the priority queue,
extract all items that are predicted to generate bursts in the next
window. If there are still free buckets, allocate leaky buckets to
these items in BPA, i.e., allocate a free bucket to each item so
that the bucket is no longer free.

5.6.3 Experimental Results.

Experiment 1: Firstly, we measure the impact of the number of

dynamic buckets in BPA on the number of rejections as well as

number of boundary problems (only for Opt-1 and its unoptimized
version). In this experiment, we fix the number of rate limits per

window?® to 50.

—— Opt-1—@®— Counter

Opt-2 L eaky Bucket 280 —i—Opt-1 —®— Counter
%S9 00000000 .,
g9 g
Q2
\"_”85 © 260
5% &
3 8 T >
8 g
£75 5240
@
7 g B |
65 220

1 5 10 20 30 40 50 60 70
Dynamic Buckets
(a) # Rejections

1 5 10 20 30 40 50 60 70

Dynamic Buckets
(b) # Boundary Problems
Figure 14: Evaluation on Opt-1 and Opt-2 by varying # dy-
namic buckets (Experiment 1).

Result 1 (Figure 14(a)-14(b)): 1) We find that Opt-1 and Opt-
2 reduce the number of rejections by 14.1% and 18.6% when the
number of dynamic buckets is 70, respectively; 2) We find that
Opt-1 reduces the number of boundary problems by 17.3% when
the number of dynamic buckets is 70.

Experiment 2: Secondly, we measure the impact of the number of
rate limits per window on the number of rejections and the number
of boundary problems (only for Opt-1 and its unoptimized version).
In this experiment, we fix the number of dynamic buckets to 50.
Result 2 (Figure 15(a)-15(b)): 1) We find that Opt-1 and Opt-2
can reduce the number of rejections by about 11.7% and 15.1% on
average, respectively; 2) We find that Opt-1 reduces the number of
boundary problems by about 14.1% on average.

Analysis: The memory overhead of each part of all solutions in
the above experiments is shown in Table 2. We find that Opt-1

3The number of items allowed through each window.

—— Opt-1—@®— Counter

13 Opt-2 L eaky Bucket 400 —— Opt-1 @ Counter
12 . g e
su 5 350 :
8o & g <
g 5 Ld
=0 §250 .
7 #* B
200
6 20 30 40 50 60 20 30 40 50 60

Rate Limits Per Window
(a) # Rejections

Rate Limits Per Window
(b) # Boundary Problems
Figure 15: Evaluation on Opt-1 and Opt-2 by varying # rate
limits per window (Experiment 2).

requires about 16% additional memory consumption, while the
additional memory required by Opt-2 is almost negligible. In terms
of the increase in memory, the memory consumption of the leaky
bucket-based rate limiting algorithm is about 67X higher than that
of the counter-based rate limiting algorithm, but it only reduces
the number of rejections by less than 20% on average; While the
total memory consumption required by PBSketch for optimizing
the counter-based rate limiting algorithm is much smaller than that
of the leaky bucket-based rate limiting algorithm, but it achieves
a level of more than 50% reduction in the number of rejections,
and is even better than that of the leaky bucket-based rate limiting
algorithm in some cases.

6 Conclusion

Real-time detection of PB items in high-speed data streams plays
an important role in many applications. In this paper, we propose a
novel algorithm called PBSketch to detect PB items in data streams,
which is the first sketch method to address this problem. Our exper-
imental results show that PBSketch not only significantly improves
accuracy and speed compared to the baseline solution, but is also
successfully applied to optimize the two rate-limiting algorithms
and clearly improve their performance.

Acknowledgments

We sincerely thank Jiarui Guo (Peking University) for his valuable
suggestions on mathematical analysis. We also sincerely thank the
anonymous reviewers for their constructive comments. This work
was supported in part by the National Key Research and Devel-
opment Program of China under grant No. 2025YFE0200100, the
Basic and Frontier Research Project of Pengcheng Laboratory under
grant No. 2025QYB004, the Major Key Project of Pengcheng Labo-
ratory under grant No. PCL2025A07, the Young Top-notch Talent
Project of Guangdong Province under grant No. 2023TQ07X362,
and the National Natural Science Foundation of China under grant
No. 62402012 and under grant No. 62102203.

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

References

(1]

[2

[

[11]

[12

[13]

[14]

[15]

[16

[17

(18]

[19

[20]

[21

[22]

[23

[24

[25]

[26

Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip S Yu, and
Bryan Hooi. Sketch-based anomaly detection in streaming graphs. In ACM
SIGKDD, pages 93-104, 2023.

Qilong Shi, Chengjun Jia, Wenjun Li, Zaoxing Liu, Tong Yang, Jianan Ji, Gaogang
Xie, Weizhe Zhang, and Minlan Yu. BitMatcher: Bit-level counter adjustment for
sketches. In IEEE ICDE, pages 4815-4827, 2024.

Yiyan Qi, Rundong Li, Pinghui Wang, Yufang Sun, and Rui Xing. Qsketch: An
efficient sketch for weighted cardinality estimation in streams. In ACM SIGKDD,
pages 2432-2443, 2024.

Yiping Wang, Yanhao Wang, and Cen Chen. Dpsw-sketch: A differentially
private sketch framework for frequency estimation over sliding windows. In
ACM SIGKDD, pages 3255-3266, 2024.

Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Randomized
admission policy for efficient top-k and frequency estimation. In IEEE INFOCOM,
pages 1-9, 2017.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In ACM SIGCOMM, pages 561-575, 2018.

Lu Tang, Qun Huang, and Patrick PC Lee. Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams. In IEEE
INFOCOM, pages 2026-2034, 2019.

Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong
Zhang. Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams. In ACM SIGKDD, pages 1574-1584, 2020.

Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. Cocosketch: High-performance sketch-
based measurement over arbitrary partial key query. In ACM SIGCOMM, pages
207-222, 2021.

Zhuochen Fan, Ruixin Wang, Yalun Cai, Ruwen Zhang, Tong Yang, Yuhan Wu, Bin
Cui, and Steve Uhlig. Onesketch: A generic and accurate sketch for data streams.
IEEE Transactions on Knowledge and Data Engineering, 35(12):12887-12901, 2023.
Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.
Cuckoo counter: Adaptive structure of counters for accurate frequency and top-k
estimation. IEEE/ACM Transactions on Networking, 31(4):1854-1869, 2023.

Lu Cao, Qilong Shi, Yuxi Liu, Hanyue Zheng, Yao Xin, et al. Bubble sketch: A
high-performance and memory-efficient sketch for finding top-k items in data
streams. In ACM CIKM, pages 3653-3657, 2024.

Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun Zhong. Finding
persistent items in data streams. Proc. VLDB Endow., 10(4):289-300, 2016.

He Huang, Yu-E Sun, Shigang Chen, Shaojie Tang, Kai Han, Jing Yuan, and
Wenjian Yang. You can drop but you can’t hide: k-persistent spread estimation
in high-speed networks. In IEEE INFOCOM, pages 1889-1897, 2018.

Haipeng Dai, Meng Li, Alex X Liu, Jiaqi Zheng, and Guihai Chen. Finding
persistent items in distributed datasets. IEEE/ACM Transactions on Networking,
28(1):1-14, 2019.

Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and
Bin Cui. On-off sketch: A fast and accurate sketch on persistence. Proc. VLDB
Endow.,, 14(2):128-140, 2020.

Lu Cao, Qilong Shi, Weigiang Xiao, Nianfu Wang, Wenjun Li, Zhijun Li, Weizhe
Zhang, and Mingwei Xu. Hypersistent sketch: Enhanced persistence estimation
via fast item separation. In IEEE ICDE, pages 3030-3042, 2025.

Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim, and Ke Wang. Topicsketch: Real-
time bursty topic detection from twitter. IEEE Transactions on Knowledge and
Data Engineering, 28(8):2216-2229, 2016.

Debjyoti Paul, Yanqing Peng, and Feifei Li. Bursty event detection throughout
histories. In IEEE ICDE, pages 1370-1381, 2019.

Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. Bursts-
ketch: Finding bursts in data streams. In ACM SIGMOD, pages 2375-2383, 2021.
Zhuochen Fan, Yinda Zhang, Tong Yang, Mingyi Yan, Gang Wen, Yuhan Wu,
Hongze Li, and Bin Cui. Periodicsketch: Finding periodic items in data streams.
In IEEE ICDE, pages 96—109, 2022.

Zirui Liu, Chaozhe Kong, Kaicheng Yang, Tong Yang, Ruijie Miao, Qizhi Chen,
Yikai Zhao, Yaofeng Tu, and Bin Cui. Hypercalm sketch: One-pass mining
periodic batches in data streams. In IEEE ICDE, pages 14-26, 2023.

Zhuochen Fan, Zhoujing Hu, Yuhan Wu, Jiarui Guo, Sha Wang, Wenrui Liu, Tong
Yang, Yaofeng Tu, and Steve Uhlig. Pisketch: Finding persistent and infrequent
flows. IEEE/ACM Transactions on Networking, 31(6):3191-3206, 2023.

Jiayao Wang, Qilong Shi, Xiyan Liang, Han Wang, Wenjun Li, Ziling Wei, Weizhe
Zhang, and Shuhui Chen. Pssketch: Finding persistent and sparse flow with high
accuracy and efficiency. In ACM SIGKDD, pages 2950-2961, 2025.

Zhuochen Fan, Jiarui Guo, Xiaodong Li, Tong Yang, Yikai Zhao, Yuhan Wu, Bin
Cui, Yanwei Xu, Steve Uhlig, and Gong Zhang. Finding simplex items in data
streams. In IEEE ICDE, pages 19531966, 2023.

Xiaodong Li, Zhuochen Fan, Haoyu Li, Zheng Zhong, Jiarui Guo, Sheng Long,
Tong Yang, and Bin Cui. Steadysketch: Finding steady flows in data streams. In
IEEE/ACM IWQoS, pages 01-09, 2023.

Zhuochen Fan et al.

[27] Zhuochen Fan, Xiangyuan Wang, Xiaodong Li, Jiarui Guo, Wenrui Liu, et al.

[28

[29

[30

(32

[33

(34

[35

[37

[38

[39

Steadysketch: A high-performance algorithm for finding steady flows in data
streams. IEEE/ACM Transactions on Networking, 32(6):5004-5019, 2024.

] Jiagian Liu, Haipeng Dai, Rui Xia, Meng Li, Ran Ben Basat, Rui Li, and Guihai

Chen. Duet: A generic framework for finding special quadratic elements in data

streams. In ACM WWW, pages 2989-2997, 2022.

Fangming Liu, Jian Guo, Xiaomeng Huang, and John CS Lui. eba: Efficient band-

width guarantee under traffic variability in datacenters. IEEE/ACM Transactions

on Networking, 25(1):506-519, 2016.

Kun Qian, Yongqing Xi, Jiamin Cao, Jiagi Gao, Yichi Xu, Yu Guan, Binzhang Fu,

Xuemei Shi, Fangbo Zhu, Rui Miao, et al. Alibaba hpn: A data center network

for large language model training. In ACM SIGCOMM, pages 691-706, 2024.

Xiaoyang Zhao, Chuan Wu, and Xia Zhu. Dynamic flow scheduling for dnn

training workloads in data centers. IEEE Transactions on Network and Service

Management, 2024.

Rafael Ramos Regis Barbosa, Ramin Sadre, and Aiko Pras. Towards periodicity

based anomaly detection in scada networks. In IEEE ETFA, pages 1-4, 2012.

Zhiyuan Zheng and AL Narasimha Reddy. Safeguarding building automation

networks: The-driven anomaly detector based on traffic analysis. In IEEE ICCCN,

pages 1-11, 2017.

Alexandr Kuznetsov, Sergii Kavun, Oleksii Smirnov, Vitalina Babenko, Oleksandr

Nakisko, and Kateryna Kuznetsova. Malware correlation monitoring in computer

networks of promising smart grids. In IEEE ESS, pages 347-352, 2019.

Aanshi Bhardwaj, Veenu Mangat, Renu Vig, Subir Halder, and Mauro Conti.

Distributed denial of service attacks in cloud: State-of-the-art of scientific and

commercial solutions. Computer Science Review, 39:100332, 2021.

Tianrui Hu, Daniel] Dubois, and David Choffnes. Behaviot: Measuring smart

home iot behavior using network-inferred behavior models. In ACM IMC, pages

421-436, 2023.

Lianjin Ye, Qing Li, Xudong Zuo, Jingyu Xiao, Yong Jiang, Zhuyun Qi, and

Chunsheng Zhu. Puff: A passive and universal learning-based framework for

intra-domain failure detection. In IEEE IPCCC, pages 1-8, 2021.

Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong. Drift-bottle: A

lightweight and distributed approach to failure localization in general networks.

In ACM CoNEXT, pages 337-348, 2022.

Chengkun Wei, Xing Li, Ye Yang, Xiaochong Jiang, Tianyu Xu, Bowen Yang,

Taotao Wu, Chao Xu, Yilong Lv, Haifeng Gao, et al. Achelous: Enabling pro-

grammability, elasticity, and reliability in hyperscale cloud networks. In ACM

SIGCOMM, pages 769-782, 2023.

] Jingyu Xiao, Qing Li, Dan Zhao, Xudong Zuo, Wenxin Tang, and Yong Jiang.
Themis: A passive-active hybrid framework with in-network intelligence for
lightweight failure localization. Computer Networks, 255:110836, 2024.

] The source code of bob hash. http://burtleburtle.net/bob/hash/evahash.html.

] The caida anonymized internet traces. http://www.caida.org/data/overview/.

]

]

Mawi working group traffic archive. https://mawi.wide.ad.jp/mawi/.
Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate
limiting youtube video streaming. In USENIX ATC, pages 191-196, 2012.

] Donatella Firmani, Francesco Leotta, and Massimo Mecella. On computing
throttling rate limits in web apis through statistical inference. In IEEE ICWS,
pages 418-425, 2019.

A Mathematical Analysis
A.1 Insertion of Part 1

ALl

Time complexity.

The insertion algorithm for Part 1 in PBSketch consists of the fol-
lowing steps:

Hash Computation: Given an input item e, two hash functions
hy(e) and h;(e) are computed to determine the candidate buckets
in two arrays B; and B,, respectively. Here, calculating two
independent hash functions h; (e) and h;(e) takes O(1) time.
Cell Scan: For each candidate bucket, n cells are scanned to
check whether e already exists, which takes a total of O(n) time.
Sorting: If an update or insertion is triggered, we will use pop
sorting to sort the cell, so it will cost O(n).
Replacement/Update: In case of replacement, update the cor-
responding cell(s) with new values, it costs O(1) time.

Combining these steps, the overall time complexity for inserting
an item is dominated by the scanning and sorting process and can
be expressed as O(n), where n is the number of cells per bucket.
Since n is small and constant in practical deployments, the actual
insertion time is O(1) per item.

http://burtleburtle.net/bob/hash/evahash.html
http://www.caida.org/data/overview/
https://mawi.wide.ad.jp/mawi/

PBSketch: Finding Periodic Burst Items in Data Streams

A.1.2 Error bound.

Suppose the following assumptions hold: (1) Hash Function: h;
and h, are ideal 32-bit hash functions with uniform distribution;
(2) Frequency Distribution: item frequencies follow a power-law
distribution P(f) o f~%; (3) Independence: arrivals of different
items are mutually independent; (4) Parameter Setting: m denotes
the total number of buckets in each hash table, n the number of
cells per bucket, H is the burst frequency threshold, k is the burst
ratio threshold, and the target item’s frequency satisfies f¢ > H.

A burst item e with frequency f¢ may not be recorded in Part 1
due to three main reasons.

First, in the insertion stage, a burst item e may fail to be recorded
if its candidate buckets are already fully occupied by other items
with higher frequencies. To rigorously estimate this probability,
we perform the following analysis under the assumption that hash
functions are ideal and the distribution of items is sufficiently large
and sparse.

Suppose there are N distinct items observed in the window,
among which yN items have frequencies higher than the threshold
for e. Each such high-frequency item is independently and uni-
formly mapped into m buckets using 2-hashing. For a target item e,
we ask: what is the probability that both of its 2 candidate buckets
are fully occupied by high-frequency items and hence e cannot be
inserted? We proceed step by step:

LEmMA 1. To rigorously quantify the proportion of high-frequency
items, we provide the explicit derivation of y based on the power-law
assumption. For analytical tractability, we approximate the discrete
frequency distribution with a continuous probability density function.
Let fmin be the minimum frequency and f, be the threshold frequency
for a target item e (where f, > H). The probability density function
is defined as p(f) = Cf~* for f € [fmin,), where C is the normal-
ization constant. First, we determine C such that the integral over the
domain is 1:

. 7" 0~ fonin
/ Cf ”‘df:C'[] =C- ——— =1 2)
fonin 1-«a foin 1-«a
Solving for C, we obtain C = (a — 1)f* . Next, y represents the
proportion of items with frequencies exceeding the threshold f.. It is
calculated as:
Je

y= /f p(f)df = /f (- Df% ‘“df=(fmm) 3

Remark: In our experiments, fmin was consistently observed as 1. Using
Maximum-Likelihood Estimation (MLE), we obtained mean a values
0of 3.0 for the IP Trace dataset and 6.7 for the MAWI dataset, satisfying
the condition a > 1.

LEMMA 2. Suppose there are yN items with frequencies higher
than a target item e in the observation window, and each item is
independently and uniformly hashed into m buckets using 2-hash
functions. Let X be the number of such high-frequency items that get
hashed into a particular bucket. When N is large and yN > m, by the
law of rare events, X can be approximated by a Poisson distribution
with mean

_N
=
This lemma enables us to capture the number of high-frequency
items colliding in any given bucket.
LEMMA 3. Given a bucket with n cells, the probability that it re-
ceives at least n or more high-frequency items (and thus is fully

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

occupied by them) is

n-l1 e~k
Pbucket(n) = PI‘[X > n] =1- Z o
k=0 .

where X ~ Poi(A) and A = %

LEMMA 4. Let e be an item of interest that has been mapped to
2 certain candidate buckets via its hash functions. If, for all of these
2 buckets, each one happens to be fully occupied by high-frequency
items, then e cannot be inserted or recorded. Therefore, the overall
probability that e is not recorded (misses all its candidate buckets)
can be estimated as

Priss = [Pbucke‘[(n)]2

where Pyycket (1) is defined in Lemma 3.

Second, after an item e is successfully inserted into the candidate
bucket (i.e., it is among the recorded items in at least one of its two
buckets), it may still fail to be promoted into a hot cell if both of its
candidate buckets have at least one item whose frequency is higher
than e’s current frequency, i.e., e is always out-competed and never
occupies a hot position. We now estimate this masking probability.

LEMMA 5. Suppose bucket B has n cells, and yN items in the win-
dow have frequencies strictly greater than e. As in Lemma 2, let
X ~ Poi(A) be the (Poisson-approximated) number of such strong
items mapped to B, where A = % The probability that at least one
stronger item is present in B is

Piom =1-Pr[X=0]=1-¢*

LEMMA 6. After insertion, an item e will never reside in a hot cell
(in either of its two candidate buckets), if and only if, in both buckets,
there is at least one item with strictly higher frequency than e. The
probability that e is masked by stronger items in both its buckets is

2 -2\?
Pmaskz[Pdom] 2(1—6) .

Proor. For each candidate bucket, the event that at least one
stronger item resides in the bucket is independent (under the hash-
ing and sparsity assumption). e can only be in the hot cell if it is
the bucket’s top item; otherwise, it’s masked. Thus, e can only be
“hot” if at least one of its buckets does not have a stronger item.

Therefore, the probability that e is not hot in any bucket equals
the probability that both its candidate buckets each have at least
one stronger item, hence the formula above.

o

Third, we rigorously analyze the probability that e fails to be
detected as bursty in the centralized window processing stage, after
successful insertion in a hot cell.

LEMMA 7. Let finin be the minimum frequency, and items were inde-
pendently inserted into a hot cell, and their frequencies X1, X, ..., X,
are independent random variables drawn from a power-law distribu-
tion:

x < fmin

1- (fﬂ)a_l x > f .
x > = Jmin
where a > 1, and fmin is the minimum item frequency.
Let

Fx(x) =Pr(X <x) =

Foet =max{Xy,...,Xp}

be the maximum in the previous window. Then the Cumulative Dis-

tribution Function (CDF) of Fi* is:

Pr (P < t) = [Fx(0)]"

KDD ’26, August 09-13, 2026, Jeju Island, Republic of Korea

and thus the Probability Density Function (PDF) is:
frmax(t) =n [Fx (D)]" f ()

where for x > fuin,

f) = X = a1y
LEMMA 8. Let e be an item with frequency f > H in the current
window, and k be the burst detection ratio. Let fmin be the minimum
frequency, then the probability that e’s frequency ratio to the previous-

window hot cell maximum is less than k, i.e., e fails to be detected as

bursty, is:
f f "
Prjsspurst = Pr | —=— < k| =P Fnlzx —|=1—-|Fx =
burst I(F;,nrzx< g >k 3% .
Proor. f
Pmiss,burst =Pr (f < kF;E.iX) =Pr (F;},ix > E)
=1-Pr (F;:;i* < {) 1 R (/R
m}
Iff/k 2 fmin,
f kfmin ot
F —|l=1-—
x (k f
Thus,

kfini a-11"
Pmiss,burst(f) n,a, k’fmin) =1- [1 - (%)
If f/k < fin, then Fx(f/k) =0, 50 Pisspurst = 1 (leak is certain).

Overall Error Bound Summary. Combining the above analyses,
the probability that a burst item e with frequency f¢ > H is missed
in Part 1 can be comprehensively expressed as follows. The overall
miss event occurs if e is not successfully inserted (insertion failure),
or after successful insertion, it never becomes hot (promotion fail-
ure), or it is not registered as bursty in the centralized detection
phase (detection failure). However, as discussed above, the event of
insertion failure (Part 1) is strictly stronger than that of promotion
failure (Part 2), i.e., an item that cannot be inserted must necessarily
fail to become hot.

Furthermore, under the assumption that the promotion and de-
tection stages are statistically independent (conditioned on success-
ful insertion), the probability that e is missed after insertion can
be given by the union of the two independent events (promotion
failure or detection failure):

Pmiss,total ~1- (1 - Pmask) (1 - Pmiss,burst)

= Pmask + Pmiss,burst - PmaskPmiss,burst

oo ()
e ()

where A = 2, Pk is the probability e never becomes hot (Lemma 6),

and Ppiss burst 1 the probability that e is not registered as bursty in

the window centralized processing stage (Lemma 8).

A.2 Insertion of Part 2

A.2.1 Time complexity.

e Hash Computation: For a newly arrived burst item (e, v), com-
pute a hash function A(e) to map it to a specific bucket in 9. The
calculation of h(e) requires O(1) time.

Zhuochen Fan et al.

e Cell Scan: Scan all n’ cells in the target bucket D[h(e)] to check
if an equivalent (e, v) already exists, costing O(n’) time.

e Update/Insertion: If the item exists, increment the r value; if
there is an empty cell, insert (e, v, 1) into that cell. Both operations
are in O(1) time.

e Replacement with Probabilistic Eviction: If the bucket is full,
compute the minimum r,,;, among the cells (O(n")), decide on
replacement with a constant-time probability calculation and,
if selected, update the corresponding cell. Overall, this step is
dominated by finding r,,;,, which is O(n’).

Combining these steps, the total time complexity for inserting a
burst item in Part 2 is dominated by the cell scanning and minimum-
value search process, expressed as O(n’), where n’ is the number
of cells per bucket in D. Since n’ is a small constant in practical
settings, the actual insertion time per item is effectively O(1) in
real-world deployments.

A.2.2 Error bound.

To analyze the error bound in burst tracking for Part 2, let us
consider the process of inserting each burst event (e, v) into the
Part 2 table, which employs m’ buckets, each with n” cells, and uses
the probabilistic eviction rule detailed previously.

Assume there are M different (e, v) pairs, whose burst frequen-
cies follow a power-law distribution f~2.

Guarantee for Frequent Bursty Events. Let fpe., denote the burst
count of a newly inserted pair, and f;,;, denote the minimum burst
count among the current items in the corresponding bucket. Due
to the eviction rule, when fyev = 2fmin, the new pair is guaranteed
to replace the item with the minimum count after at most 2fi,
failed attempts, because the replacement probability becomes P =
m, and when Cry;; reaches 2fi, P = 1. Consequently,
all bursty events whose burst count is at least twice as large as the
current smallest count in their hashed bucket will be eventually
inserted and preserved in the Part 2 table.

Guarantee for Top-K Frequent Events. Define the burst count of
the K-th most frequent pair as fx. Using the power-law assumption,
no more than 2K pairs have frequency above fx/2:

Ky oq- 2K
P(f<5)~1- 70

This implies that, among all pairs, at least a fraction 1 — % has a
burst count less than fx /2.

Assume that items are assigned to buckets randomly, and let p
denote the load factor (i.e., probability that a given cell is occupied).
For a top-K pair, the insertion succeeds directly if it finds an empty
cell (1 — p), or it collides with a lower-frequency item (probability
p(1- %)) in which case probabilistic eviction ensures the higher-
frequency item can replace the lower-frequency one, as shown
above. Hence, the lower bound for the insertion probability (for a
top-K pair) is:

1—papl1-2K
ptp)

Averaging over all possible load factors by integrating p from 0 to
1, we get the average lower bound:

/1(1 . (1 ZK))d -k
A p+p alEG e

That is, at least 1 — AK/I fraction of top-K bursty events can be made
to remain in the Part 2 table under power-law input, thanks to the
probabilistic eviction.

	Abstract
	1 Introduction
	1.1 Background and Motivations
	1.2 Our Proposed Solution

	2 Related Work
	2.1 BurstSketch
	2.2 PeriodicSketch
	2.3 Baseline Solution

	3 PBSketch Design
	3.1 Problem Statement
	3.2 Data Structure
	3.3 Algorithm and Operations

	4 Mathematical Analysis
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Parameter Tuning
	5.3 Experiments on Accuracy
	5.4 Experiments on Processing Speed
	5.5 FPGA Implementation
	5.6 Experiments on a Practical Application

	6 Conclusion
	Acknowledgments
	References
	A Mathematical Analysis
	A.1 Insertion of Part 1
	A.2 Insertion of Part 2

