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Abstract
Detecting periodic burst (PB) items in data streams is crucial for

applications like rate limiting but remains unexplored. While com-

bining existing sketch algorithms offers a baseline, it suffers from

significant inaccuracy and inefficiency. In this paper, we propose

PBSketch, the first dedicated sketch algorithm designed for detect-

ing PB items in real time. Its key techniques mainly include: 1) a

two-stage hierarchical structure that efficiently maintains potential

burst items and discards those without potential; 2) a fine-grained

PB selection mechanism during window processing, coupled with

the Window Smoothing Processing optimization to amortize per-

formance overhead and eliminate processing spikes. We provide its

error bounds through rigorous theoretical analysis. Our extensive

experiments show that PBSketch outperforms the baseline solu-

tion in accuracy and speed. By deploying it on an FPGA platform,

the throughput is further significantly improved. Moreover, it ef-

fectively optimizes a practical application of rate limiting, clearly

improving performance with almost negligible overhead.

CCS Concepts
• Information systems→ Data stream mining; • Networks→
Network measurement.
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1 Introduction
1.1 Background and Motivations
Most data exist widely in the form of data streams. It has always

been a challenge to accurately extract the required information

from massive data streams. As probabilistic algorithms, sketches

[1–4] are fast and memory-saving. They always obtain target in-

formation in real time with only a small sacrifice of accuracy and

have been widely recognized by the research community in ad-

dressing the challenge. Among the diverse tasks of data stream

processing using sketches, targets include not only the tradition-

ally well-studied frequent items (including heavy hitters) [5–12]

and persistent items [13–17], but also burst items [18–20], periodic

items [21] and batches [22], PI items [23, 24], simplex items [25],

steady items [26, 27], and quadratic items [28], 𝑒𝑡𝑐. that play crucial

roles in different application scenarios but remain understudied.

In this paper, we introduce and study periodic burst (PB) items,

a novel concept in the realm of data streams. PB items represent a

unique combination of periodic and burst items, where burst items

occur at fixed intervals. Despite their significance, PB items have not

been explored in prior research. However, they hold great promise

inmany applications. For instance, in rate limiting, the predictability

of PB items enables proactive resource allocation to improve QoS

[29]; In LLM training, detecting periodic synchronization bursts

[30, 31] helps identify stragglers and prevent costly halts. PB items

also have important potential roles in intrusion detection [32–35],

IoT data management [36], and network failure localization [37–40].

A baseline solution for finding PB items is to combine existing

algorithms such as BurstSketch [20] and PeriodicSketch [21], which

are state-of-the-art (SOTA) sketches for detecting burst items and

periodic items, respectively. However, such a baseline solution is

https://creativecommons.org/licenses/by/4.0
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far from optimal in both accuracy and efficiency due to poor coop-

eration and redundant components. This highlights the need for a

purpose-built solution to accurately and efficiently detect PB items.

1.2 Our Proposed Solution
Towards the design goal, we propose a novel sketch algorithm,

called PBSketch, to find PB items in data streams in real time for

the first time. PBSketch is compact, requiring only 20KB of memory

overhead when processing 35M items; PBSketch is accurate, with

its F1 Score, Average Absolute Error (AAE), and Average Relative

Error (ARE) improved by up to 60.0%, 22.9×, 30.1× compared to the

baseline solution in finding PB items, respectively; PBSketch is fast,

with its throughput 1.43× faster than that of the baseline solution.

Compared with the four components of the above-mentioned

baseline solution, PBSketch consists of only two interconnected/-

collaborative components: Part 1 dynamically maintains potential

burst items with high frequency, tracks those compliant burst items

and calculates their periodicity; Part 2 maintains those periodic

items with more periodic occurrences as PB items based on the

burst item information reported by Part 1. It is easy to see that the

key innovations of PBSketch are reflected mainly in the design of

Part 1, whose design philosophy is shown below.

The basic data structure of Part 1 is a customized hot-cold sketch

with two arrays, which is also one of the key techniques of PBS-

ketch. Each array has the same number of hot-cold buckets, and

the structure of each bucket is designed to have a unique layout of

several variable-length cells: Only one large-size hot cell is used to

record the complete information required for potential burst items,

while other cold cells of gradually smaller sizes only record basic

information such as the frequency of non-burst active items. Since

items with high frequency have more potential to become burst

items, the cells in the bucket are sorted dynamically in real time so

that the item most likely to become a burst item is always in the

hot cell. Of course, if the potential burst item in the current hot cell

is in its burst active period, it will be properly protected and not

participate in the sorting: As long as it becomes an eligible burst

item during the retention period, we calculate the burst period and

pass its related information to Part 2. Once there are two potential

burst items in a bucket, the new one will avoid conflict by being

rehashed into the bucket of another array and eliminating the least

active item at the bottom. In summary, the above technique exploits

the skewness of data streams to select eligible active burst items in a

memory-efficient manner. While centrally processing the potential

burst item information before each cross-time window (to select the

eligible ones) may cause unstable performance. Thus, we propose

Window Smoothing Processing (WSP) optimization for PBSketch to

smooth throughput. Each bucket only needs a minimal additional

overhead to avoid repeated access, so that the burst compliance is

judged immediately after the item insertion process of the current

window is completed. Thanks to the techniques from Part 1, Part

2 only needs to use a probability equation to dynamically select

the ones with more pronounced periodicity as PB items. See § 3 for

more details.

Further, we provide error bounds and time complexity of PBS-

ketch through rigorous mathematical analysis in § 4. Finally, we

conduct extensive experiments in § 5, as follows. 1) We compare

PBSketch with the baseline solution in terms of accuracy and speed

on two real-world datasets in § 5.3 and § 5.4, respectively, and the

results fully demonstrate its clear advantages in both aspects. 2)

We implement PBSketch on an FPGA platform with a through-

put of 223.2 Mops in § 5.5. 3) We also implement the rate limiting

optimization mentioned in § 1.1, 𝑖 .𝑒 ., we apply PBSketch to opti-

mize two typical rate limiting algorithms: counter-based and leaky

bucket-based rate limiting algorithms in § 5.6. Experimental results

show that PBSketch only requires negligible memory overhead

to significantly reduce the number of rejections of the above two

algorithms by about 14.1% and 18.6%, respectively.

Our Key Contributions:
• We propose a new problem called finding PB items for the first

time, which is important in many big data-related application

scenarios but has never been studied.

• We propose a novel sketch algorithm, namely PBSketch, which

can accurately find PB items in data streams with only a small

memory overhead.

• We provide theoretical guarantees for PBSketch through rigorous

mathematical analysis.

• We conduct extensive experiments, and the results show not

only the great advantages of PBSketch over the baseline solution,

but also verify that PBSketch has deployment flexibility and can

effectively optimize rate limiting.

2 Related Work
2.1 BurstSketch
BurstSketch [20] is the SOTA sketch algorithm for finding burst

items in data streams. It defines a burst item for the first time in

such a way that an item must satisfy both the burst start (sudden

increase) and the burst end (sudden decrease), as shown below.

Initially, a given data stream needs to be divided into many fixed-

length time windows. For any item, assuming that its frequency in

the (𝑖+1)-th window is more than 𝑘× that of the 𝑖-th window (burst

start), and its frequency in the ( 𝑗+1)-th window is less than
1

𝑘
× that

of the 𝑗-th window (burst end), where 𝑗 − 𝑖 is less than a maximum

length 𝐿 and the frequencies of windows from 𝑖 + 1 to 𝑗 exceed

a burst threshold 𝐻 , then the item is a burst item. BurstSketch

consists of two stages. In the first stage, infrequent items with a

frequency lower than 𝐻 ′
(𝐻 ′ < 𝐻 ) are eliminated because they

will not become burst items and account for the majority, and the

remaining potential burst items are transferred to the second stage.

The second stage records the information related to the sudden

increase and decrease of the frequencies of potential burst items

and reports the burst items that meet the definition mentioned.

2.2 PeriodicSketch
PeriodicSketch [21] is the first and SOTA sketch algorithm for

finding periodic items in data streams. It defines periodic items

as follows. For any item, assuming that 𝑡𝑖 and 𝑡𝑖+1 are its 𝑖-th and

(𝑖 +1)-th occurrences on the time axis, respectively, so the 𝑖-th time

interval can be calculated as 𝑡𝑖+1 − 𝑡𝑖 , then the item is a periodic

item when all its time intervals have values around 𝑡𝑖+1 − 𝑡𝑖 and the
total number of such intervals is the 𝐾 largest. PeriodicSketch also

consists of two stages. The first stage records and reports the time

interval of each item in real time. Before entering the second stage,

any item ID/key is bound to its time interval and treated as a new
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item. The second stage records the interval frequency of the item

and keeps those items with high interval frequencies as the final

reported periodic items.

2.3 Baseline Solution
Since there is no prior work on finding PB items

1
, we adopt a direct

combination of BurstSketch and PeriodicSketch as a baseline solu-

tion. Specifically, we input the given data stream into BurstSketch

and output the reported burst items at the end of each time window.

Meanwhile, we use these burst items as the input stream to Period-

icSketch to obtain PB items, where each input item is adjusted to

burst type.

3 PBSketch Design
3.1 Problem Statement
We provide the problem definition of periodic burst (PB) items as

follows. Primarily, PB items must be generated from burst items

(refer to § 2.1) with the same item key. Assume that there is a burst

item set 𝐵 = {𝑏𝑒𝑡1 , 𝑏
𝑒
𝑡2
, · · · , 𝑏𝑒𝑡𝑖 , · · · } with the same key 𝑒 , where

𝑡1, 𝑡2, · · · , 𝑡𝑖 are the corresponding burst start times, so the burst

interval 𝑣 of any adjacent items can be calculated as 𝑣1 = 𝑡2−𝑡1, 𝑣2 =
𝑡3 − 𝑡2, · · · , 𝑣𝑖 = 𝑡𝑖+1 − 𝑡𝑖 , · · · , then 𝐵 is also a PB item set under

the following conditions: 𝑣1, 𝑣2, · · · , 𝑣𝑖 , · · · all fall within the range

[𝑣 −𝛿, 𝑣 +𝛿), where 𝛿 is the preset acceptable error, and the interval
frequency (the number of intervals falling within the range) 𝑟 is the
top-𝐾 (used in this paper) or exceeds a threshold.

be1

1 2 3 4 5 6 7 8

be2

be3

time axis
(window)

burst 
item burst start time burst end time

…

Figure 1: Examples of PB items.

As shown in Figure 1, we explain the above definition more

clearly through the following examples, where 𝛿 = 1 is assumed.

① For the burst item 𝑏𝑒1 , it starts to burst at time 𝑡1 = 1, 𝑡2 = 4,

and 𝑡3 = 6, and the intervals are 𝑣1 = 3 and 𝑣2 = 2, then: both 𝑣1
and 𝑣2 fall in the range [2, 4), so 𝑣 = 3 and 𝑟 = 2; ② For the burst

item 𝑏𝑒2 , it starts to burst at time 𝑡1 = 1, 𝑡2 = 5, and 𝑡3 = 7, so there

are two different intervals 𝑣 = 𝑣1 = 4 and 𝑣 = 𝑣2 = 2, and their 𝑟

is both 1; ③ For the burst item 𝑏𝑒3 , it starts to burst at time 𝑡1 = 1,

𝑡2 = 3, 𝑡3 = 5, and 𝑡4 = 7, and the intervals 𝑣1, 𝑣2, 𝑣3 are all 2, so

𝑣 = 2 and 𝑟 = 3. Finally, we can get the order of PB items in the

form of ⟨𝑘𝑒𝑦, 𝑣, 𝑟 ⟩ as follows: ⟨𝑒3, 2, 3⟩ is top 1, ⟨𝑒1, 3, 2⟩ is top 2, and
⟨𝑒2, 4, 1⟩ and ⟨𝑒2, 2, 1⟩ is top 3.

1
In this paper, our definition of PB items is inspired by by the definitions of the burst

items and periodic items in BurstSketch and PeriodicSketch, respectively. Users can

also appropriately modify the definition according to their actual needs, 𝑒.𝑔., the burst

items only consider burst starts [18].

3.2 Data Structure
As shown in Figure 2, the data structure of PBSketch comprises Part

1 and Part 2 that cooperate with each other: The former detects

high-frequency items as potential burst items, examines them, and

reports eligible ones with burst intervals; The latter tracks the 𝐾

periodic items with the largest interval frequency as PB items.

B1[1]

B1[h1(e)]

B1[m]

B2[1]

B2[h2(e)]

B2[m]

e
h1 h2

key

FPn-1

FP1

Fcur

Fcur

… …

T’strFpre Fcur Tstr

(n-1)
cold 
cells

hot cell

…

…

…

…

a compliant burst item 
e: <key, v>

h(e)

Part 2

Part 1

a bucket in B

so
rt

Cfail

……

a bucket in D

key’ v’ r’

keymin vmin rmin

…
D[1] D[h(e)] D[m’]

n' cells

… …

D

B

Figure 2: Data structure of PBSketch.

Part 1 is a sketch with two arrays B1 and B2, associated with

pairwise independent hash functions ℎ1 (.) and ℎ2 (.), respectively.
Each array has𝑚 buckets, each of which contains 𝑛 cells, denoted

as 𝑐𝑒𝑙𝑙1, 𝑐𝑒𝑙𝑙2, . . . , 𝑐𝑒𝑙𝑙𝑛 , where the cell sizes increase sequentially.

The maximum size cell (hot cell), 𝑐𝑒𝑙𝑙𝑛 , is used to record the com-

plete information of a potential burst item

〈
𝑘𝑒𝑦, 𝐹𝑝𝑟𝑒 , 𝐹𝑐𝑢𝑟 ,𝑇

′
𝑠𝑡𝑟 ,𝑇𝑠𝑡𝑟

〉
,

where: 𝑘𝑒𝑦 represents the full key of the item; 𝐹𝑝𝑟𝑒 and 𝐹𝑐𝑢𝑟 repre-

sent the frequencies of the item in the previous window and the

current window, respectively, for determining burst compliance;

and 𝑇 ′
𝑠𝑡𝑟 and 𝑇𝑠𝑡𝑟 represent the time of the last burst start and the

current burst start, respectively, for calculating the interval. The

remaining 𝑛 − 1 smaller cold cells only store basic information

⟨𝐹𝑃, 𝐹𝑐𝑢𝑟 ⟩ (where 𝐹𝑃 denotes the item’s fingerprint) for less active

items, with variable-sized 𝐹𝑐𝑢𝑟 counters to adapt to the skewness

of data streams.

Part 2 is a customized hash table D with𝑚′
buckets, associated

with a hash function ℎ(.). Each bucket contains 𝑛′ cells and one

failure counter 𝐶𝑓 𝑎𝑖𝑙 : Each cell records ⟨𝑘𝑒𝑦, 𝑣, 𝑟 ⟩, where 𝑘𝑒𝑦 and

𝑣 are the full key of the active burst item and its burst interval

from Part 1, respectively, and 𝑟 is the interval frequency of the

⟨𝑘𝑒𝑦, 𝑣⟩ pair; 𝐶𝑓 𝑎𝑖𝑙 denotes the number of replacement failures

in the bucket, which will be used in a probabilistic replacement

equation mentioned later to retain potential periodic items.

3.3 Algorithm and Operations
Insertion (Part 1): The insertion in Part 1 includes an item insertion
stage and a window centralized processing stage. When an item 𝑒

(its 𝑘𝑒𝑦 is also denoted as 𝑒) arrives in the current time window

𝑇 , we map it into two candidate buckets B1 [ℎ1 (𝑒)] and B2 [ℎ2 (𝑒)]
of the two arrays by calculating hash functions ℎ1 (𝑒) and ℎ2 (𝑒),
traversing the cells in B1 [ℎ1 (𝑒)] and B2 [ℎ2 (𝑒)] and checking if it

already exists. There are two cases as follows.
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Case 1: If 𝑒 exists in B1 [ℎ1 (𝑒)], we first increment 𝐹𝑒𝑐𝑢𝑟 of the

cell where 𝑒 is located by 1. Then, we sort all the cells in the bucket

according to the size of 𝐹𝑐𝑢𝑟 to ensure that the most potential item

always occupies the hot cell, where whether the current hot cell

participates in the sorting depends on whether ① ‘𝑇𝑠𝑡𝑟 is not empty’

or ② ‘𝑇 −𝑇 ′
𝑠𝑡𝑟 < 𝑃 , 𝑃 is the longest retention period’ are true: If so,

it participates; otherwise, it does not. After sorting, if the updated

𝐹𝑒𝑐𝑢𝑟 is already the 2nd largest 𝐹𝑐𝑢𝑟 in the bucket, and is still below

a given threshold 𝐻 ′
, the insertion ends here; If the updated 𝐹𝑒𝑐𝑢𝑟

exceeds𝐻 ′
, 𝑒 qualifies as a potential burst item, and we try to insert

it into the hot cell of another candidate bucket B2 [ℎ2 (𝑒)]. If this hot
cell needs to participate in sorting and its 𝐹𝑐𝑢𝑟 is less than 𝐹

𝑒
𝑐𝑢𝑟 , the

item in it will be replaced by 𝑒 : 𝑒’s fingerprint 𝐹𝑃𝑒 is converted into

the 𝑘𝑒𝑦 𝑒 and occupies the hot cell together with its 𝐹𝑒𝑐𝑢𝑟 , while the

original item of the hot cell is shifted down to the cold cell 𝑐𝑒𝑙𝑙𝑛−1
and the 𝑘𝑒𝑦 is converted to 𝐹𝑃 , and the item information in the

bottom 𝑐𝑒𝑙𝑙1 will be cleared.

Case 2: If 𝑒 is not in either candidate bucket, it is inserted into the

first empty cell of B1 [ℎ1 (𝑒)] or B2 [ℎ2 (𝑒)], and the corresponding

𝐹𝑐𝑢𝑟 is set to 1; If both candidate buckets are full, 𝑐𝑒𝑙𝑙1 in B1 [ℎ1 (𝑒)]
or B2 [ℎ2 (𝑒)] is randomly selected and the recorded 𝐹𝑐𝑢𝑟 is decre-

mented by 1: Once this 𝐹𝑐𝑢𝑟 is decremented to 0, 𝑐𝑒𝑙𝑙1 is cleared and

⟨𝐹𝑃𝑒 , 1⟩ is recorded in it, otherwise 𝑒 leaves.

After we have completed the item insertion stage of each window,
it is time for the window centralized processing stage. First, We

calculate the ratio
𝐹𝑐𝑢𝑟
𝐹𝑝𝑟𝑒

in the hot cells of all buckets: 1) If
𝐹𝑐𝑢𝑟
𝐹𝑝𝑟𝑒

≥ 𝑘
and 𝐹𝑐𝑢𝑟 ≥ 𝐻 (burst threshold), a burst start occurs, and 𝑇𝑠𝑡𝑟 is set

to the time 𝑇 of the current window; 2) If
𝐹𝑐𝑢𝑟
𝐹𝑝𝑟𝑒

< 1

𝑘
, 𝐹𝑝𝑟𝑒 ≥ 𝐻 and

𝑇 −𝑇𝑠𝑡𝑟 < 𝐿, the current burst ends: As long as 𝑇 ′
𝑠𝑡𝑟 is not empty,

we directly subtract it from𝑇𝑠𝑡𝑟 to calculate the burst interval 𝑣 , 𝑖 .𝑒 .,

𝑣 =𝑇𝑠𝑡𝑟 −𝑇 ′
𝑠𝑡𝑟 , and report the burst item information ⟨𝑘𝑒𝑦, 𝑣⟩; After

that, 𝑇 ′
𝑠𝑡𝑟 is set to 𝑇𝑠𝑡𝑟 , and 𝑇𝑠𝑡𝑟 is cleared (time switching). Next,

𝐹𝑝𝑟𝑒 of all hot cells is set to 𝐹𝑐𝑢𝑟 and 𝐹𝑐𝑢𝑟 is cleared in all buckets

(frequency switching).

e8: <key,10,19+1,86,92>

e5: <FP,14>

e1: <FP,13>

e16: <FP,3>

e9: <key,20,28,80,89>
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…

…
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h1(e8)
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e3
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e11: <key, 3, 5>

2

e13: <key, 9, 2>

e8: <key, 6, 5>

3

insert e2: <key, 7>
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0

B1[0]

D[0]

D[1]

B1[1]

B2[0]

B2[1]

H’=15

h(e2)

T = 92

v=90-83=7

Figure 3: Examples of PBSketch.

Time Information Compression: We can reduce memory

overhead by compressing 𝑇 ′
𝑠𝑡𝑟 and 𝑇𝑠𝑡𝑟 recorded in the hot

cell in each bucket. Here, we set the compression ratio 𝑅𝐶 =
bits used after compression
bits used before compression . Users can adjust 𝑅𝐶 according to actual needs.

However, in order to make a trade-off between 𝑅𝐶 and accuracy,

we provide the tuning experiments in § 5.2.

Window Smoothing Processing (WSP) Optimization: During

the window centralized processing stage, PBSketch has to deal with

the following challenge. When crossing windows, there will be a

period of unified processing, which requires pausing item inser-

tion. This will cause the throughput to drop during this period,

causing fluctuations in the overall throughput of PBSketch. Thus,

we further propose this WSP optimization, which does not require

unified processing at the end of each window, avoiding a decrease

in throughput with minimal memory cost. Specifically, we set an ad-

ditional field𝑇𝑠𝑦𝑛𝑐 in the hot cell to indicate the time of the current

centralized processing operation. When item 𝑒 is inserted into Part

1 at𝑇 ,𝑇𝑠𝑦𝑛𝑐 in the hot cells of its two candidate buckets needs to be

checked. If 𝑇𝑠𝑦𝑛𝑐 ≠ 𝑇 , the current bucket has not been processed at

𝑇 , then the operations in the window centralized processing stage

are performed, and finally 𝑇𝑠𝑦𝑛𝑐 is set to 𝑇 ; Otherwise, the current

bucket has been processed at 𝑇 , and nothing needs to be done.

Insertion (Part 2):When a recently active burst item ⟨𝑒, 𝑣⟩ arrives,
we first map it to the bucket D[ℎ(𝑒)] by calculating the hash func-

tion ℎ(𝑒) and check if it already exists. Note that this only works if

there actually exists an 𝑒 in D[ℎ(𝑒)] whose 𝑣 is sufficiently close

to or exactly the same as the incoming 𝑣 (see § 3.1). There are two

cases as follows.

Case 1: If ⟨𝑒, 𝑣⟩ exists in D[ℎ(𝑒)], we first increment the corre-

sponding 𝑟 of the cell in which it is located by 1.

Case 2: If ⟨𝑒, 𝑣⟩ is not in D[ℎ(𝑒)], but there is at least one empty

cell, then record ⟨𝑒, 𝑣, 1⟩ in an arbitrary empty cell; IfD[ℎ(𝑒)] is full,
we try to replace the item with the smallest 𝑟 (denoted as 𝑟𝑚𝑖𝑛) with

probability P = 1

2∗𝑟𝑚𝑖𝑛−𝐶𝑓 𝑎𝑖𝑙+1 [21]: If it holds, the replacement is

successful, we record ⟨𝑒, 𝑣, 𝑟 ⟩ (𝑟 = 𝑟𝑚𝑖𝑛 + ⌊𝐶𝑓 𝑎𝑖𝑙/𝑟𝑚𝑖𝑛⌋) in the free

cell and reset 𝐶𝑓 𝑎𝑖𝑙 to 0; Otherwise, we just increment 𝐶𝑓 𝑎𝑖𝑙 by 1.

Examples (Figure 3): Below we use several examples to illustrate

the insertion operation of PBSketch, where 𝑘 = 2, 𝐻 = 20, 𝐻 ′ = 15,

𝐿 = 50, 𝑚 = 𝑚′ = 2, 𝑛 = 4, 𝑛′ = 2, 𝑇 = 92, and the frequency

switching in the window centralized processing is not shown for

clarity. ① 𝑒8 is mapped to bucket B1 [0]. 𝑒8 happens to be already
in the hot cell, whose 𝐹𝑐𝑢𝑟 is changed to 20 after being incremented

by 1. Its position remains unchanged after sorting. Since its
𝐹𝑐𝑢𝑟
𝐹𝑝𝑟𝑒

=

20

10
= 2, a burst begins, and its 𝑇𝑠𝑡𝑟 is set to 92. ② 𝑒1 is mapped

twice to bucket B1 [0]. 𝑒1 is in the 2nd cold cell, and its 𝐹𝑐𝑢𝑟 is

incremented by 2 to become 15. After sorting, 𝑒1 is promoted to

the 1st cold cell, and 𝑒5 originally occupying the 1st cold cell is

demoted to the 2nd cold cell. Since its 𝐹𝑐𝑢𝑟 = 𝐻 ′ = 15, we try to

store 𝑒1 into the hot cell of another candidate bucket B2 [1]. Since
the original resident of the current hot cell, 𝑒30, has an empty 𝑇𝑠𝑡𝑟
and its 𝐹𝑐𝑢𝑟 = 12 < 15, 𝑒1 successfully occupies this hot cell and

updates it to ⟨𝑒1, 0, 15, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩. In this case, the item information

in the original 4 cells occupyingB2 [1] is shifted downward in order,
and the bottom 𝑒23 is cleared; 𝑒5 and 𝑒16 in B1 [0] are shifted upward
in order as 𝑒1 has left. ③ 𝑒3 is mapped to bucket B1 [1]. B1 [1] is
full, so 𝐹𝑐𝑢𝑟 of 𝑒25 at the bottom is decremented by 1. Since 𝐹𝑐𝑢𝑟 = 0

at this time, 𝑒25 is cleared and replaced by 𝑒3. ④ 𝐹𝑐𝑢𝑟 of 𝑒2 in the

current window is updated to 15, 𝑖 .𝑒 ., the recorded information is

temporarily ⟨𝑒2, 32, 15, 83, 90⟩. Since 𝐹𝑐𝑢𝑟
𝐹𝑝𝑟𝑒

= 15

32
< 1

2
and the burst

interval 𝑣 = 90 − 83 = 7, the current burst ends: ⟨𝑒2, 7⟩ will be
inserted into D, and 𝑇 ′

𝑠𝑡𝑟 is set to 90 and 𝑇𝑠𝑡𝑟 is cleared. Next, 𝑒2
is mapped to D[1]. Since D[1] is full, it tries to replace 𝑒13 with
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Figure 4: Experiments on parameter tuning.

𝑟𝑚𝑖𝑛 = 2. With a probability of P = 1

2×2−3+1 = 0.5 and assuming

that it holds, 𝑒13 is expelled and ⟨𝑒2, 7, 2 + 1⟩ occupies the cell where
𝑒13 originally was.

Query:We just iterate over all buckets inD and return the ⟨𝑘𝑒𝑦, 𝑣⟩
pair with the top-𝐾 largest 𝑟 as PB items.

4 Mathematical Analysis
In this section, we theoretically derive the error bounds for each

part of PBSketch and prove that the time complexity of PBSketch

can be considered as 𝑂 (1). Formal details and proofs are available

in Appendix A.

For Part 1, assume that: (1) Hash Function: ℎ1 and ℎ2 are ideal 32-
bit hash functions with uniform distribution; (2) Frequency Distribu-
tion: item frequencies follow a power-law distribution 𝑃 (𝑓 ) ∝ 𝑓 −𝛼 ;
(3) Independence: arrivals of different items are mutually indepen-

dent; (4) Parameter Setting:𝑚 denotes the total number of buckets

in each hash table, 𝑛 is the number of cells per bucket, and 𝑘 is the

burst ratio threshold; (5) There are 𝑁 distinct items observed in the

window, among which 𝛾𝑁 items have frequencies higher than the

threshold for 𝑒 . Then, the probability that 𝑒 is not recorded by Part 1

is at most,

𝑃miss =

(
1 − 𝑒−𝜆

)
2

+
[
1 −

(
1 −

(
𝑘 𝑓min

𝑓

)𝛼−1)𝑛]
−

(
1 − 𝑒−𝜆

)
2

[
1 −

(
1 −

(
𝑘 𝑓min

𝑓

)𝛼−1)𝑛] (1)

where 𝜆 =
𝛾𝑁

2𝑚
.

For Part 2, suppose each bucket contains𝑛′ cells (with𝑚′
buckets

in total), and that the burst event ⟨𝑘𝑒𝑦, 𝑣⟩ frequencies follow a

power-law distribution. With probabilistic eviction, for the top-𝐾

most frequent burst events (among𝑀 total pairs), the probability

that such an item is retained in Part 2 is at least 1 − 𝐾
𝑀
, ensuring

that most heavy burst events are preserved.

5 Performance Evaluation
5.1 Experimental Setup
Implementation: We implement PBSketch, the baseline solution,

and two typical rate limiting algorithms in C++. The hash function

used is the 32-bit Bob Hash [41] with different initial seeds. The

machine is equipped with a 16-core processor (24 threads, Intel(R)

Core(TM) i7-13700KF CPU @ 3.40GHz) and 32GB DRAM memory.

All relevant code has been released on GitHub
2
.

2
https://github.com/wenjunpaper/PBSketch

Datasets:We use the following two real-world datasets. 1) IP Trace

Dataset: It is composed of streams of anonymized IP traces collected

in 2018 by CAIDA [42]. In this dataset, a source IP address and a

destination IP address together are considered as an item, and there

are around 35M items and 17M distinct items. 2) MAWI Dataset: It

is composed of anonymized packet traces from the WIDE backbone

collected by the MAWI Working Group [43]. In this dataset, there

are around 1M items and 80K distinct items.

Metrics:

• Precision Rate (PR) is the proportion of the number of correctly

PB items to the number of PB items reported.

• Recall Rate (CR) is the proportion of the number of correctly

reported PB items to the number of correctly PB items.

• F1 Score is calculated as
2·𝐶𝑅 ·𝑃𝑅
𝐶𝑅+𝑃𝑅 .

• Average Absolute Error (AAE) is defined as

1

|Ψ |
∑

(𝑒𝑖 ∈Ψ) |𝑟𝑖 − 𝑟𝑖 |, where 𝑟𝑖 is the real interval frequency of

the PB item 𝑒𝑖 , 𝑟𝑖 is the estimated interval frequency of 𝑒𝑖 , and Ψ
is the estimated set of PB items.

• Average Relative Error (ARE) is defined as
1

|Ψ |
∑

(𝑒𝑖 ∈Ψ)
|𝑟𝑖−𝑟𝑖 |
𝑟𝑖

.

• Throughput is defined as Million of operations (insertions) per

second (Mops) to evaluate speed.

• Number of Rejections is obtained by counting the total number

of requests/items that are automatically denied by the system

due to exceeding the rate limits.

• Number of Boundary Problems is defined as the number of

significant bursts in traffic that occur at the transition point

between two rate limiting windows.

5.2 Parameter Tuning
We tune four hyper-parameters: The ratio 𝑅1 of the memory size of

Part 1 to the memory size of PBSketch, the ratio 𝑅𝐻 of the frequency

threshold 𝐻 ′
(qualification for being a potential burst item, 𝐻 ′ =

𝑅𝐻 × 𝐻 ) to the burst threshold 𝐻 in Part 1, the compression ratio

𝑅𝐶 , and the retention time window threshold 𝑃 of potential burst

items in hot cells.

Effects of 𝑅1 (Figure 4(a)): 𝑅1 determines the memory allocation

of Part 1 and Part 2, which obviously affects the performance of

PBSketch. 𝑅1 that is too small or too large will weaken the number

and accuracy of active burst items and PB items, respectively. We

find that as 𝑅1 increases, the F1 Scores of PBSketch first increase

and then gradually decrease and reach a peak at 𝑅1 = 0.2 with three

memory capacities. Thus, we choose 𝑅1 = 0.2 for our subsequent

experiments.
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Effects of 𝑅𝐻 (Figure 4(b)): 𝑅𝐻 is an important parameter in Part

1 and is responsible for selecting potential burst items. If 𝑅𝐻 is

set too small, a large number of non-compliant items will occupy

the space of hot cells, affecting the output of active burst items. If

𝑅𝐻 is too large, some items with burst potential will be trapped in

cold cells. As 𝑅𝐻 increases, the F1 Scores of PBSketch show a trend

of gradually increasing and then decreasing, and reach a peak at

𝑅𝐻 = 0.9 with three memory capacities. Hence, we choose 𝑅𝐻 = 0.9

for our subsequent experiments.

Effects of 𝑅𝐶 (Figure 4(c)): 𝑅𝐶 also affects the output of Part 1. If

𝑅𝐶 is too low, although it saves some memory on the surface, the

accuracy of the recorded time information is weakened and many

real active burst items are missed. As 𝑅𝐶 increases, the F1 Scores

of PBSketch first increase and then gradually decrease and reach a

peak at 𝑅𝐶 = 1

8
with three memory capacities. Consequently, we

set 𝑅𝐶 to 0.125 for our subsequent experiments.

Effects of 𝑃 (Figure 4(d)): 𝑃 directly affects the report results of

Part 1. If 𝑃 is too small, many active burst items that should have

been reported will be lost; If 𝑃 is too large, it may increase the

difficulty in selecting the real target items. As 𝑃 increases, the F1

Scores of PBSketch tend to increase first and then decrease slightly,

reaching a peak at 𝑃 = 6 with three memory capacities. Therefore,

we select the best performing 𝑃 = 6 for subsequent experiments.

5.3 Experiments on Accuracy
PR (Figure 5(a)-5(b)): The results show that the PR of PBSketch is

about 28.3% and 69.3% higher than that of the baseline solution on

the two datasets, respectively.
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Figure 5: PR vs. Memory.

CR (Figure 6(a)-6(b)): The results show that the CR of PBSketch

is about 34.2% and 33.6% higher than that of the baseline solution

on the two datasets, respectively.
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Figure 6: CR vs. Memory.

F1 Score (Figure 7(a)-7(b)): The results show that the F1 Score of

PBSketch is about 31.7% and 60.0% higher than that of the baseline

solution on the two datasets, respectively.

2 0 4 0 6 0 8 0 1 0 00 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

1

F1
 Sc

ore

M e m o r y  ( K B )

 O u r s           B a s e l i n e

(a) IP Trace

3 0 5 0 7 0 9 0 1 1 00 . 2

0 . 4

0 . 6

0 . 8

1

F1
 Sc

ore

M e m o r y  ( K B )

 O u r s           B a s e l i n e

(b) MAWI

Figure 7: F1 Score vs. Memory.

AAE (Figure 8(a)-8(b)): The results show that the AAE of PBSketch

is about 22.9× and 22.2× lower than that of the baseline solution

on the two datasets, respectively.
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Figure 8: AAE vs. Memory.

ARE (Figure 9(a)-9(b)): The results show that the ARE of PBSketch

is about 25.6× and 30.1× lower than that of the baseline solution

on the two datasets, respectively.
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Figure 9: ARE vs. Memory.

5.4 Experiments on Processing Speed
In this subsection, we first evaluate the average throughput of

PBSketch and the baseline on two datasets.

Throughput (Figure 10): The results show that PBSketch achieves

higher throughput than the baseline solution, being on average

about 1.38× and 1.43× faster on the two datasets, respectively.
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Figure 10: Insertion speed.

Then, we conduct ablation experiments to evaluate the effect of

WSP optimization on PBSketch: we sample two adjacent windows

(each with a length of 30000 items) to observe the fine-grained

changes in throughput.

Results (Figure 11): The throughput of the optimized version

only dropped by about 12.6% at the window switching point

(0/30000/60000), while the unoptimized version dropped sharply by

about 91.7%, verifying its effectiveness.
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Figure 11: Ablation experiments.

5.5 FPGA Implementation
We implement PBSketch on the Xilinx Ultrascale+ VU13P FPGA to

evaluate its practical deployment flexibility and further verify the

effectiveness of ourWSP optimization. The architecture of PBSketch

FPGA version is shown in Figure 12, where the functions of the

upper and lower halves correspond to Part 1 and Part 2 of the CPU

version, respectively. The overall FPGA implementation adopts the

fully-pipelined architecture, where input items are processed in the

hardware pipeline. This architecture enables PBSketch to receive

and insert a new item in each hardware clock cycle.

Upon receiving a new item, two different hash function modules

will calculate the corresponding hash value and key, with two cold

tables being triggered to read the data indexed by these hash value

and key. One storage word of the cold table comprises several

segments: hit flag, indicating whether the current word is occupied;

timestamp, documenting the last update time of the word; and

frequency 𝐹 of the item. The hardware will update the segments

in the word according to the hit flag and the WSP optimization

method. Simultaneously, following our insertion operations, the

cold inserting and hot inserting modules filter the most active

items from two cold tables and attempts to insert these items into

hot tables. Once an item within the hot tables is detected as the

burst, its window is utilized to update the Hash Table 𝐶 for the

value of period. In our algorithm, the updating of Table 𝐷 requires

the calculation of the dropping probability, which is difficult to

directly complete on FPGA. To address the issue, we introduce the

Failing Table 𝐶 , which shares the same structure of Hash Table 𝐶

to document 𝐶𝑓 𝑎𝑖𝑙 , and Bucket𝑚𝑖𝑛𝑟 Table to document the𝑚𝑖𝑛𝑟

value of Table 𝐷 . The stored 𝐶𝑓 𝑎𝑖𝑙 and𝑚𝑖𝑛𝑟 are sent to the look-up

table (Probability Table) to get the dropping probability instead

of a complex calculation of the float-point data. With dropping

probability and data from Hash Table𝐶 , Table 𝐷 performs the final

insertion within the 𝑃 stages, where 𝑃 denotes the maximum count

of Table 𝐷 insert attempt. The insertion is neither successfully

completed nor failed controlled by the dropping probability. In the

final pipeline stage, it will update the Failing Table if the inserting

operation fails, or updating the Bucket 𝑚𝑖𝑛𝑟 Table based on the

latest updated value.
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Figure 12: PBSketch (w/ WSP) FPGA implementation archi-
tecture.
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Results: The resource usage is listed in Table 1. The clock frequency
of PBSketch (w/ WSP) FPGA version reaches 223.2 MHz, 𝑖 .𝑒 ., the

throughput is 223.2 Mops. If WSP optimization is not used, a

window-by-window clearing overhead of 13.45 𝜇𝑠 will be incurred.

Assuming that each time window is 100 𝜇𝑠 , the actual throughput

is only
100−13.45

100
× 223.2 = 193.2 Mops.

Table 1: PBSketch performance on the FPGA platform
Resource Usage Percentage

Logics/LUTs 123879 0.27%

Block RAM 12 0.45%

DSP Blocks 0 0%

5.6 Experiments on a Practical Application
5.6.1 Background.
Rate limiting is a keymechanism in networkmanagement, designed

to prevent system overload and crash due to burst traffic [44, 45].

It is necessary in many scenarios, including servers, API gateways,

load balancers, and firewalls. For example, both in Nginx itself, the

meter table of Open vSwitch (OVS), and the filter of Spring Cloud

Gateway all have rate limiting modules that support one or all of

the following rate limiting algorithms: 1) counter-based; 2) leaky

bucket-based.

1) Counter-based rate limiting. It refers to counting requests

(items) within a fixed time window and stops accepting new items

when a limit is reached. However, it may suffer from the boundary

problem, where bursts in items during window transition may

overload the system.

2) Leaky bucket-based rate limiting. It refers to smoothing

input traffic with a fixed-capacity bucket that leaks items at a con-

stant rate and blocks or drops excess traffic. However, its memory

overhead is high because it needs to maintain individual buckets

for each user/connection to track the state of their items.

Next, we will propose our optimization solutions, called Opt-1

and Opt-2, to improve the performance of counter-based and leaky

bucket-based rate limiting algorithms using PBSketch, respectively.

5.6.2 Optimizations.
Rationale: The key is to predict bursts using detected PB items.

For a PB item ⟨𝑒,𝑇 ⟩, if a burst is detected where item 𝑒 starts to

increase at time 𝑡 , then it is predicted that item 𝑒 will also have

a burst at time 𝑡 +𝑇 . Therefore, PBSketch can be used to predict

bursts before they occur.

Architecture: For both Opt-1 and Opt-2, the overall structure can

be divided into: Normal ProcessingArea (NPA) and Burst Processing

Area (BPA). The key of our optimizations is to introduce PBSketch in
the controller to specifically handle possible burst items for BPA. Next,
we describe the structural differences between Opt-1 and Opt-2: 1)
For Opt-1, a small number of dynamic leaky buckets are added to

BPA based on the original counter-based rate limiting, as shown in

Figure 13(a); 2) For Opt-2, a very small number of dynamic big leaky

buckets are added to BPA based on the original leaky bucket-based

rate limiting, as shown in Figure 13(b).

Implementation: 1) For Opt-1, during the data processing period

between adjacent time windows, PBSketch can be used to detect

burst items and predict the possible burst traffic in the next window

later, which will be inserted into the priority queue. When new

possible burst items appear in the next window, the leaky buckets
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Figure 13: Architecture of our optimization solutions.

in BPA can be allocated to store these possible burst items in this

window. In other words, this part of the burst traffic and the rest

of the normal traffic are applied to the leaky bucket-based and

counter-based rate limiting algorithms, respectively. In this way, the

ability of the leaky bucket to cache items can be used to achieve the

functions of reducing rejected items and traffic shaping, alleviating

the shortcoming of the counter-based rate limiting algorithm. 2)
For Opt-2, its implementation is similar to that of Opt-1, except that

both areas are handled by leaky buckets. In this way, the ability to

handle burst traffic becomes stronger.

Hence, after optimizations of PBSketch, the main processes and

steps of Opt-1 and Opt-2 are as follows:

• Item Passing Process:
– [Step 1] After the item enters the port, copy the key of the item

and insert the key into PBSketch.

– [Step 2] The controller’s traffic diversion algorithm (item split-

ter) diverts the item: If there is a leaky bucket in BPA that corre-

sponds to the key, it is determined that the item belongs to burst

traffic and it is diverted to BPA ([Step 3]); Otherwise, the item is

diverted to NPA ([Step 4]).
– [Step 3] The item is passed according to the specific algorithm

used by BPA.

– [Step 4] The item is passed according to the specific algorithm

used by NPA.

• Window Interval Process:
– [Step 1] Clear all counters in NPA to 0 and restart counting (only

for Opt-1).



PBSketch: Finding Periodic Burst Items in Data Streams KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea

Table 2: Memory consumption (MB) of each part in the four solutions

Solution Normal Processing Area (NPA) Burst Processing Area (BPA) PBSketch Total
Counter-Based Rate Limiting 98 0 0 98

Opt-1 98 16 0.2 114.2

Leaky Bucket-Based Rate Limiting 6594 0 0 6594

Opt-2 6594 16 0.2 6610.2

– [Step 2] Recycle the empty leaky buckets in BPA and make them

free buckets, 𝑖 .𝑒 ., they no longer belong to the original items.

– [Step 3] Utilize PBSketch to predict the burst items, and insert

the predicted burst items into the priority queue in the form

of ⟨𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑡𝑖𝑚𝑒, 𝑏𝑢𝑟𝑠𝑡_𝑖𝑡𝑒𝑚_𝑘𝑒𝑦⟩. The queue can be easily

checked to find the possible bursts in the next window.

• Leaky Bucket Allocation:
– While item passing, simultaneously check the priority queue,

extract all items that are predicted to generate bursts in the next

window. If there are still free buckets, allocate leaky buckets to

these items in BPA, 𝑖 .𝑒 ., allocate a free bucket to each item so

that the bucket is no longer free.

5.6.3 Experimental Results.
Experiment 1: Firstly, we measure the impact of the number of

dynamic buckets in BPA on the number of rejections as well as
number of boundary problems (only for Opt-1 and its unoptimized

version). In this experiment, we fix the number of rate limits per

window
3
to 50.
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Figure 14: Evaluation on Opt-1 and Opt-2 by varying # dy-
namic buckets (Experiment 1).

Result 1 (Figure 14(a)-14(b)): 1) We find that Opt-1 and Opt-

2 reduce the number of rejections by 14.1% and 18.6% when the

number of dynamic buckets is 70, respectively; 2) We find that

Opt-1 reduces the number of boundary problems by 17.3% when

the number of dynamic buckets is 70.

Experiment 2: Secondly, we measure the impact of the number of

rate limits per window on the number of rejections and the number
of boundary problems (only for Opt-1 and its unoptimized version).

In this experiment, we fix the number of dynamic buckets to 50.

Result 2 (Figure 15(a)-15(b)): 1) We find that Opt-1 and Opt-2

can reduce the number of rejections by about 11.7% and 15.1% on

average, respectively; 2) We find that Opt-1 reduces the number of

boundary problems by about 14.1% on average.

Analysis: The memory overhead of each part of all solutions in

the above experiments is shown in Table 2. We find that Opt-1
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Figure 15: Evaluation on Opt-1 and Opt-2 by varying # rate
limits per window (Experiment 2).

requires about 16% additional memory consumption, while the

additional memory required by Opt-2 is almost negligible. In terms

of the increase in memory, the memory consumption of the leaky

bucket-based rate limiting algorithm is about 67× higher than that

of the counter-based rate limiting algorithm, but it only reduces

the number of rejections by less than 20% on average; While the

total memory consumption required by PBSketch for optimizing

the counter-based rate limiting algorithm is much smaller than that

of the leaky bucket-based rate limiting algorithm, but it achieves

a level of more than 50% reduction in the number of rejections,

and is even better than that of the leaky bucket-based rate limiting

algorithm in some cases.

6 Conclusion
Real-time detection of PB items in high-speed data streams plays

an important role in many applications. In this paper, we propose a

novel algorithm called PBSketch to detect PB items in data streams,

which is the first sketch method to address this problem. Our exper-

imental results show that PBSketch not only significantly improves

accuracy and speed compared to the baseline solution, but is also

successfully applied to optimize the two rate-limiting algorithms

and clearly improve their performance.
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A Mathematical Analysis
A.1 Insertion of Part 1
A.1.1 Time complexity.
The insertion algorithm for Part 1 in PBSketch consists of the fol-

lowing steps:

• Hash Computation: Given an input item 𝑒 , two hash functions

ℎ1 (𝑒) andℎ2 (𝑒) are computed to determine the candidate buckets

in two arrays B1 and B2, respectively. Here, calculating two

independent hash functions ℎ1 (𝑒) and ℎ2 (𝑒) takes 𝑂 (1) time.

• Cell Scan: For each candidate bucket, 𝑛 cells are scanned to

check whether 𝑒 already exists, which takes a total of 𝑂 (𝑛) time.

• Sorting: If an update or insertion is triggered, we will use pop

sorting to sort the cell, so it will cost 𝑂 (𝑛).
• Replacement/Update: In case of replacement, update the cor-

responding cell(s) with new values, it costs 𝑂 (1) time.

Combining these steps, the overall time complexity for inserting

an item is dominated by the scanning and sorting process and can

be expressed as 𝑂 (𝑛), where 𝑛 is the number of cells per bucket.

Since 𝑛 is small and constant in practical deployments, the actual

insertion time is 𝑂 (1) per item.

http://burtleburtle.net/bob/hash/evahash.html
http://www.caida.org/data/overview/
https://mawi.wide.ad.jp/mawi/
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A.1.2 Error bound.
Suppose the following assumptions hold: (1) Hash Function: ℎ1

and ℎ2 are ideal 32-bit hash functions with uniform distribution;

(2) Frequency Distribution: item frequencies follow a power-law

distribution 𝑃 (𝑓 ) ∝ 𝑓 −𝛼 ; (3) Independence: arrivals of different
items are mutually independent; (4) Parameter Setting:𝑚 denotes

the total number of buckets in each hash table, 𝑛 the number of

cells per bucket, 𝐻 is the burst frequency threshold, 𝑘 is the burst

ratio threshold, and the target item’s frequency satisfies 𝑓 𝑒 ≥ 𝐻 .
A burst item 𝑒 with frequency 𝑓 𝑒 may not be recorded in Part 1

due to three main reasons.

First, in the insertion stage, a burst item 𝑒 may fail to be recorded

if its candidate buckets are already fully occupied by other items

with higher frequencies. To rigorously estimate this probability,

we perform the following analysis under the assumption that hash

functions are ideal and the distribution of items is sufficiently large

and sparse.

Suppose there are 𝑁 distinct items observed in the window,

among which 𝛾𝑁 items have frequencies higher than the threshold

for 𝑒 . Each such high-frequency item is independently and uni-

formly mapped into𝑚 buckets using 2-hashing. For a target item 𝑒 ,

we ask: what is the probability that both of its 2 candidate buckets

are fully occupied by high-frequency items and hence 𝑒 cannot be

inserted? We proceed step by step:

Lemma 1. To rigorously quantify the proportion of high-frequency
items, we provide the explicit derivation of 𝛾 based on the power-law
assumption. For analytical tractability, we approximate the discrete
frequency distribution with a continuous probability density function.
Let 𝑓min be the minimum frequency and 𝑓𝑒 be the threshold frequency
for a target item 𝑒 (where 𝑓𝑒 ≥ 𝐻 ). The probability density function
is defined as 𝑝 (𝑓 ) =𝐶𝑓 −𝛼 for 𝑓 ∈ [𝑓min,∞), where 𝐶 is the normal-
ization constant. First, we determine 𝐶 such that the integral over the
domain is 1:∫ ∞

𝑓
min

𝐶𝑓 −𝛼𝑑 𝑓 =𝐶 ·
[
𝑓 1−𝛼

1 − 𝛼

]∞
𝑓
min

=𝐶 ·
0 − 𝑓 1−𝛼

min

1 − 𝛼 = 1 (2)

Solving for 𝐶 , we obtain 𝐶 = (𝛼 − 1) 𝑓 𝛼−1
min

. Next, 𝛾 represents the
proportion of items with frequencies exceeding the threshold 𝑓𝑒 . It is
calculated as:

𝛾 =

∫ ∞

𝑓𝑒

𝑝 (𝑓 )𝑑 𝑓 =

∫ ∞

𝑓𝑒

(𝛼 − 1) 𝑓 𝛼−1
min

𝑓 −𝛼𝑑 𝑓 =

(
𝑓𝑒

𝑓min

)
1−𝛼

(3)

Remark: In our experiments, 𝑓min was consistently observed as 1. Using
Maximum-Likelihood Estimation (MLE), we obtained mean 𝛼 values
of 3.0 for the IP Trace dataset and 6.7 for the MAWI dataset, satisfying
the condition 𝛼 > 1.

Lemma 2. Suppose there are 𝛾𝑁 items with frequencies higher
than a target item 𝑒 in the observation window, and each item is
independently and uniformly hashed into 𝑚 buckets using 2-hash
functions. Let 𝑋 be the number of such high-frequency items that get
hashed into a particular bucket. When 𝑁 is large and𝛾𝑁 ≫𝑚, by the
law of rare events, 𝑋 can be approximated by a Poisson distribution
with mean

𝜆 =
𝛾𝑁

2𝑚
.

This lemma enables us to capture the number of high-frequency

items colliding in any given bucket.

Lemma 3. Given a bucket with 𝑛 cells, the probability that it re-
ceives at least 𝑛 or more high-frequency items (and thus is fully

occupied by them) is

𝑃bucket (𝑛) = Pr[𝑋 ≥ 𝑛] = 1 −
𝑛−1∑︁
𝑘=0

𝑒−𝜆𝜆𝑘

𝑘!
,

where 𝑋 ∼ Poi(𝜆) and 𝜆 =
𝛾𝑁

2𝑚
.

Lemma 4. Let 𝑒 be an item of interest that has been mapped to
2 certain candidate buckets via its hash functions. If, for all of these
2 buckets, each one happens to be fully occupied by high-frequency
items, then 𝑒 cannot be inserted or recorded. Therefore, the overall
probability that 𝑒 is not recorded (misses all its candidate buckets)
can be estimated as

𝑃miss ≈ [𝑃bucket (𝑛)]2
where 𝑃bucket (𝑛) is defined in Lemma 3.

Second, after an item 𝑒 is successfully inserted into the candidate

bucket (𝑖 .𝑒 ., it is among the recorded items in at least one of its two

buckets), it may still fail to be promoted into a hot cell if both of its

candidate buckets have at least one item whose frequency is higher

than 𝑒’s current frequency, 𝑖 .𝑒 ., 𝑒 is always out-competed and never

occupies a hot position. We now estimate this masking probability.

Lemma 5. Suppose bucket 𝐵 has 𝑛 cells, and 𝛾𝑁 items in the win-
dow have frequencies strictly greater than 𝑒 . As in Lemma 2, let
𝑋 ∼ Poi(𝜆) be the (Poisson-approximated) number of such strong
items mapped to 𝐵, where 𝜆 =

𝛾𝑁

2𝑚
. The probability that at least one

stronger item is present in 𝐵 is
𝑃dom = 1 − Pr[𝑋 = 0] = 1 − 𝑒−𝜆

Lemma 6. After insertion, an item 𝑒 will never reside in a hot cell
(in either of its two candidate buckets), if and only if, in both buckets,
there is at least one item with strictly higher frequency than 𝑒 . The
probability that 𝑒 is masked by stronger items in both its buckets is

𝑃mask ≈ [𝑃dom]2 =
(
1 − 𝑒−𝜆

)
2

.

Proof. For each candidate bucket, the event that at least one

stronger item resides in the bucket is independent (under the hash-

ing and sparsity assumption). 𝑒 can only be in the hot cell if it is

the bucket’s top item; otherwise, it’s masked. Thus, 𝑒 can only be

“hot” if at least one of its buckets does not have a stronger item.

Therefore, the probability that 𝑒 is not hot in any bucket equals

the probability that both its candidate buckets each have at least

one stronger item, hence the formula above.

□

Third, we rigorously analyze the probability that 𝑒 fails to be

detected as bursty in the centralized window processing stage, after

successful insertion in a hot cell.

Lemma 7. Let 𝑓min be theminimum frequency, and items were inde-
pendently inserted into a hot cell, and their frequencies 𝑋1, 𝑋2, . . . , 𝑋𝑛
are independent random variables drawn from a power-law distribu-
tion:

𝐹𝑋 (𝑥) = Pr(𝑋 ≤ 𝑥) =

0 𝑥 < 𝑓min

1 −
(
𝑓
min

𝑥

)𝛼−1
, 𝑥 ≥ 𝑓min

where 𝛼 > 1, and 𝑓min is the minimum item frequency.
Let

𝐹max

𝑝𝑟𝑒 =max{𝑋1, . . . , 𝑋𝑛}
be the maximum in the previous window. Then the Cumulative Dis-
tribution Function (CDF) of 𝐹max

𝑝𝑟𝑒 is:

Pr

(
𝐹max

𝑝𝑟𝑒 ≤ 𝑡
)
= [𝐹𝑋 (𝑡)]𝑛
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and thus the Probability Density Function (PDF) is:
𝑓𝐹max

𝑝𝑟𝑒
(𝑡) = 𝑛 [𝐹𝑋 (𝑡)]𝑛−1 𝑓𝑋 (𝑡)

where for 𝑥 ≥ 𝑓min,

𝑓𝑋 (𝑥) =
𝑑𝐹𝑋

𝑑𝑥
= (𝛼 − 1) 𝑓 𝛼−1

min
𝑥−𝛼

Lemma 8. Let 𝑒 be an item with frequency 𝑓 ≥ 𝐻 in the current
window, and 𝑘 be the burst detection ratio. Let 𝑓min be the minimum
frequency, then the probability that 𝑒’s frequency ratio to the previous-
window hot cell maximum is less than 𝑘 , 𝑖 .𝑒 ., 𝑒 fails to be detected as
bursty, is:

𝑃miss,burst = Pr

(
𝑓

𝐹max

𝑝𝑟𝑒

< 𝑘

)
= Pr

(
𝐹max

𝑝𝑟𝑒 >
𝑓

𝑘

)
= 1 −

[
𝐹𝑋

(
𝑓

𝑘

)]𝑛
Proof.

𝑃miss,burst = Pr

(
𝑓 < 𝑘𝐹max

𝑝𝑟𝑒

)
= Pr

(
𝐹max

𝑝𝑟𝑒 >
𝑓

𝑘

)
= 1 − Pr

(
𝐹max

𝑝𝑟𝑒 ≤ 𝑓

𝑘

)
= 1 − [𝐹𝑋 (𝑓 /𝑘)]𝑛

□
If 𝑓 /𝑘 ≥ 𝑓min,

𝐹𝑋

(
𝑓

𝑘

)
= 1 −

(
𝑘 𝑓min

𝑓

)𝛼−1
Thus,

𝑃miss,burst (𝑓 , 𝑛, 𝛼, 𝑘,𝑓min) = 1 −
[
1 −

(
𝑘 𝑓min

𝑓

)𝛼−1]𝑛
If 𝑓 /𝑘 < 𝑓min, then 𝐹𝑋 (𝑓 /𝑘) = 0, so 𝑃miss,burst = 1 (leak is certain).

Overall Error Bound Summary. Combining the above analyses,

the probability that a burst item 𝑒 with frequency 𝑓 𝑒 ≥ 𝐻 is missed

in Part 1 can be comprehensively expressed as follows. The overall

miss event occurs if 𝑒 is not successfully inserted (insertion failure),
or after successful insertion, it never becomes hot (promotion fail-
ure), or it is not registered as bursty in the centralized detection

phase (detection failure). However, as discussed above, the event of

insertion failure (Part 1) is strictly stronger than that of promotion

failure (Part 2), 𝑖 .𝑒 ., an item that cannot be inserted must necessarily

fail to become hot.

Furthermore, under the assumption that the promotion and de-

tection stages are statistically independent (conditioned on success-

ful insertion), the probability that 𝑒 is missed after insertion can

be given by the union of the two independent events (promotion

failure or detection failure):

𝑃miss,total ≈ 1 − (1 − 𝑃mask) (1 − 𝑃miss,burst)
= 𝑃mask + 𝑃miss,burst − 𝑃mask𝑃miss,burst

=

(
1 − 𝑒−𝜆

)
2

+
[
1 −

(
1 −

(
𝑘 𝑓min

𝑓

)𝛼−1)𝑛 ]
−

(
1 − 𝑒−𝜆

)
2

[
1 −

(
1 −

(
𝑘 𝑓min

𝑓

)𝛼−1)𝑛 ]
where 𝜆 =

𝛾𝑁

2𝑚
, 𝑃mask is the probability 𝑒 never becomes hot (Lemma 6),

and 𝑃miss,burst is the probability that 𝑒 is not registered as bursty in

the window centralized processing stage (Lemma 8).

A.2 Insertion of Part 2
A.2.1 Time complexity.
• Hash Computation: For a newly arrived burst item ⟨𝑒, 𝑣⟩, com-

pute a hash function ℎ(𝑒) to map it to a specific bucket inD. The

calculation of ℎ(𝑒) requires 𝑂 (1) time.

• Cell Scan: Scan all 𝑛′ cells in the target bucketD[ℎ(𝑒)] to check
if an equivalent ⟨𝑒, 𝑣⟩ already exists, costing 𝑂 (𝑛′) time.

• Update/Insertion: If the item exists, increment the 𝑟 value; if

there is an empty cell, insert ⟨𝑒, 𝑣, 1⟩ into that cell. Both operations
are in 𝑂 (1) time.

• Replacement with Probabilistic Eviction: If the bucket is full,
compute the minimum 𝑟𝑚𝑖𝑛 among the cells (𝑂 (𝑛′)), decide on
replacement with a constant-time probability calculation and,

if selected, update the corresponding cell. Overall, this step is

dominated by finding 𝑟𝑚𝑖𝑛 , which is 𝑂 (𝑛′).
Combining these steps, the total time complexity for inserting a

burst item in Part 2 is dominated by the cell scanning and minimum-

value search process, expressed as 𝑂 (𝑛′), where 𝑛′ is the number

of cells per bucket in D. Since 𝑛′ is a small constant in practical

settings, the actual insertion time per item is effectively 𝑂 (1) in
real-world deployments.

A.2.2 Error bound.
To analyze the error bound in burst tracking for Part 2, let us

consider the process of inserting each burst event ⟨𝑒, 𝑣⟩ into the

Part 2 table, which employs𝑚′
buckets, each with 𝑛′ cells, and uses

the probabilistic eviction rule detailed previously.

Assume there are𝑀 different ⟨𝑒, 𝑣⟩ pairs, whose burst frequen-
cies follow a power-law distribution 𝑓 −2.

Guarantee for Frequent Bursty Events. Let 𝑓𝑛𝑒𝑤 denote the burst

count of a newly inserted pair, and 𝑓𝑚𝑖𝑛 denote the minimum burst

count among the current items in the corresponding bucket. Due

to the eviction rule, when 𝑓𝑛𝑒𝑤 ≥ 2𝑓𝑚𝑖𝑛 , the new pair is guaranteed

to replace the item with the minimum count after at most 2𝑓𝑚𝑖𝑛
failed attempts, because the replacement probability becomes 𝑃 =

1

2𝑓𝑚𝑖𝑛−𝐶𝑓 𝑎𝑖𝑙+1 , and when 𝐶𝑓 𝑎𝑖𝑙 reaches 2𝑓𝑚𝑖𝑛 , 𝑃 = 1. Consequently,

all bursty events whose burst count is at least twice as large as the

current smallest count in their hashed bucket will be eventually

inserted and preserved in the Part 2 table.

Guarantee for Top-𝐾 Frequent Events. Define the burst count of
the𝐾-th most frequent pair as 𝑓𝐾 . Using the power-law assumption,

no more than 2𝐾 pairs have frequency above 𝑓𝐾/2:
𝑃 (𝑓 ≤ 𝑓𝐾

2

) ≈ 1 − 2𝐾

𝑀
.

This implies that, among all pairs, at least a fraction 1 − 2𝐾
𝑀

has a

burst count less than 𝑓𝐾/2.
Assume that items are assigned to buckets randomly, and let 𝜌

denote the load factor (𝑖 .𝑒 ., probability that a given cell is occupied).

For a top-𝐾 pair, the insertion succeeds directly if it finds an empty

cell (1 − 𝜌), or it collides with a lower-frequency item (probability

𝜌 (1 − 2𝐾
𝑀
)), in which case probabilistic eviction ensures the higher-

frequency item can replace the lower-frequency one, as shown

above. Hence, the lower bound for the insertion probability (for a

top-𝐾 pair) is:

1 − 𝜌 + 𝜌
(
1 − 2𝐾

𝑀

)
.

Averaging over all possible load factors by integrating 𝜌 from 0 to

1, we get the average lower bound:∫
1

0

(
1 − 𝜌 + 𝜌

(
1 − 2𝐾

𝑀

))
𝑑𝜌 = 1 − 𝐾

𝑀
.

That is, at least 1 − 𝐾
𝑀

fraction of top-𝐾 bursty events can be made

to remain in the Part 2 table under power-law input, thanks to the

probabilistic eviction.
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