
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

LightGuardian: A Full-Visibility, Lightweight,
In-band Telemetry System Using Sketchlets
Yikai Zhao, Kaicheng Yang, and Zirui Liu, Peking University; Tong Yang,

Peking University and Peng Cheng Laboratory; Li Chen, Huawei Theory Lab; Shiyi Liu,
Naiqian Zheng, Ruixin Wang, and Hanbo Wu, Peking University; Yi Wang,
Southern University of Science and Technology and Peng Cheng Laboratory;

Nicholas Zhang, Huawei Theory Lab
https://www.usenix.org/conference/nsdi21/presentation/zhao

LightGuardian: A Full-Visibility, Lightweight, In-band Telemetry System Using
Sketchlets

Yikai Zhao†, Kaicheng Yang†, Zirui Liu†, Tong Yang†,§, Li Chen¶,
Shiyi Liu†, Naiqian Zheng†, Ruixin Wang†, Hanbo Wu†, Yi Wang‡,§, Nicholas Zhang¶

†Department of Computer Science, Peking University, China
§Peng Cheng Laboratory, Shenzhen, China ¶Huawei Theory Lab, China

‡Southern University of Science and Technology

Abstract
1 Network traffic measurement is central to successful net-
work operations, especially for today’s hyper-scale networks.
Although existing works have made great contributions, they
fail to achieve the following three criteria simultaneously:
1) full-visibility, which refers to the ability to acquire any
desired per-hop flow-level information for all flows; 2) low
overhead in terms of computation, memory, and bandwidth;
and 3) robustness, meaning the system can survive partial
network failures. We design LightGuardian to meet these
three criteria. Our key innovation is a (small) constant-sized
data structure, called sketchlet, which can be embedded in
packet headers. Specifically, we design a novel SuMax sketch
to accurately capture flow-level information. SuMax can be
divided into sketchlets, which are carried in-band by pass-
ing packets to the end-hosts for aggregation, reconstruction,
and analysis. We have fully implemented a LightGuardian
prototype on a testbed with 10 programmable switches and
8 end-hosts in a FatTree topology, and conduct extensive
experiments and evaluations. Experimental results show that
LightGuardian can obtain per-flow per-hop flow-level informa-
tion within 1.0∼ 1.5 seconds with consistently low overhead,
using only 0.07% total bandwidth capacity of the network.
We believe LightGuardian is the first system to collect per-
flow per-hop information for all flows in the network with
negligible overhead.

1 Introduction

Network traffic measurement is central to successful network
operations, especially for today’s hyper-scale networks with
more than 105 devices [1–6]. Meanwhile, at end-hosts, know-
ing the traffic information in the core of the network can also
benefit application performance [7–9]. To infer application
performance and user experience, the community consensus
is to measure at flow-level granularity. Thus, an ideal mea-
surement system is expected to achieve: 1) full-visibility,
which we define as the ability to acquire any desired per-hop

1Co-primary authors: Yikai Zhao, Kaicheng Yang, and Zirui Liu. Cor-
responding authors: Tong Yang (yangtongemail@gmail.com) and Yi Wang
(wy@ieee.org).

flow-level information2 for all flows. Typical desired informa-
tion includes routing path, per-hop latency, jitters, and packet
drops. 2) lightweight in terms of computation, memory, and
bandwidth, independent of the scale of network and the traffic
dynamics; 3) robustness: the system should survive partial
network failures, including link failures, device failures, and
bandwidth depletion [6, 10–12].

Although existing works have made great contributions,
they fail to meet the above criteria simultaneously. We
coarsely characterize them into four categories:

• Partial/Sampling solutions [13–17] only sample pack-
ets or flows, or collect detailed statistics based on a pre-
configured list of conditionals [18, 19]. For instance, Ev-
erflow [20] samples each SYN packet, and Cisco switches
use the “match” keyword to specify which network flows
need to be counted. Therefore, only a subset of the network
traffic is measured with questionable accuracy.

• Probing solutions [6,21–24] measures the states of devices
or links by sending probing packets, and only these probes
are measured.

• Sketch-based solutions [25–34] collects the information
of every packet in a compact data structure, namely sketch,
on network devices. Current sketches are unable to collect
important flow-level information, such as jitters and packet
drops, and are not robust to network failures, particularly
device failures. Most prior sketches cannot be implemented
on P4-capable switches (§ 2.2).
• In-band solutions carry information in every packet header.

AM-PM [35] cannot achieve full-visibility with only one bit
per packet. Although INT [36, 37] can potentially achieve
full-visibility, its bandwidth and processing overhead grows
quickly with the scale of the network. In both the postcard
[38] (mirroring packets on each switch) or the passport [36]
mode (mirroring packets on only the sink switches), the
number of packets is at least doubled, which is a huge
burden for the network. *Flow [39] uses a cache to group
packet-level telemetry information according to the flow
IDs. But its bandwidth overhead is still proportional to the
number of packets.

2In this paper, per-hop flow-level information means per-flow per-hop
information.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 991

In summary, no existing work can achieve full-visibility with-
out considerable performance overhead, and none focuses on
lightweight and robust collection mechanism of network-wide
flow-level information.

We design LightGuardian to meet the above three criteria
simultaneously. Our key innovation is a (small) constant-sized
data structure, called sketchlet. A sketchlet is a fragment of
the sketch data structure on network devices (physical or
virtual), carried in-band in a packet’s header. At the end-host,
LightGuardian collects the sketchlets, reconstructs the original
sketch, and consequently obtains the accurate measurement
results of all flows.

To support and make full use of sketchlets, LightGuardian
incorporates three key techniques:
• Accurate & versatile device-local sketches: As current

sketches fail to capture important flow-level statistics (per-
hop latency and jitters), we design a novel sketch: the
SuMax sketch to support common measurement tasks, as
well as new tasks of operational importance. With our in-
sight that recording both the sum and the maximum can
accurately perform these tasks (§ 4.2), we design the sketch
with two types of cells: the sum cells and the maximum
cells. SuMax can be readily deployed on programmable
network devices, and we have fully implemented it on a
P4-capable switch (§ 7.1). Although SuMax is not the only
way to measure flow-level statistics, it can support almost
all measurement tasks thanks to its versatility.

• In-band telemetry with sketchlets: We propose a novel
approach that combines in-band telemetry and device-local
sketches. An INT-enabled device appends measurement
data to each packet. INT alone consumes an enormous
amount of bandwidth and multiplies the number of pack-
ets (§ 2.2). On the other hand, for sketch-based solutions,
although sketch is a compact coding of flow-level infor-
mation, the size of a sketch should be sufficiently large to
ensure accuracy, thus cannot be embedded in packet head-
ers. Combining the advantages of both approaches, our key
novelty is to split the sketch with flow-level information
into constant-sized sketchlets that can be embedded into
selected packet headers. Since the number of flows in the
network is much smaller than that of packets and the sketch
is a compactly coded representation of flow-level statistics,
the bandwidth overhead of sketchlets is significantly lower
than that of INT, while accurate flow-level measurement
can still be retrieved.

• Incremental network-wide aggregation: The receiving
end-hosts can either forward the sketchlets to a global ana-
lyzer, or reconstruct the sketch locally to obtain measure-
ment information of flows and devices inside the network.
The information can assist end-host applications in perfor-
mance optimization in a distributed fashion, which lessens
the burden on the centralized network control/management
plane. To guarantee robustness, we design the reconstruc-
tion algorithm to be tolerant of losses and reordering of

sketchlets. Our algorithm can approximate a sketch with
a subset of its sketchlets, and the reconstruction accuracy
is incrementally improved with more arriving sketchlets.
Our experimental results show that 80% sketchlets can
achieve an accurate estimation (§ 8.1), while collecting
80% sketchlets only needs 1.0∼ 1.5 seconds.

To the best of our knowledge, LightGuardian is the first
system to measure per-flow per-hop latency distribution and
detect abnormal jitters with high accuracy for all flows on
every participating network device, while maintaining low
overhead. It also collects useful traffic data for operations and
diagnostics previously unavailable in existing systems. Since
LightGuardian aims to measure various per-hop flow-level
information, after detecting end-to-end problems, users can
use our system to locate culprit network devices. Besides,
LightGuardian’s on-device mechanism is not limited to phys-
ical devices, and can be readily used in cloud networking
environments with virtualized network functions.

We have fully implemented a LightGuardian prototype on a
testbed with 10 Tofino switches and 8 end-hosts in a FatTree
topology. As a whole, our prototype can obtain per-flow per-
hop information within 1.0∼ 1.5 seconds with consistently
low overhead (0.07% of total bandwidth) on the network. We
also conduct large-scale simulations using mininet [40] and
P4 behavior model [41], confirming the correctness, robust-
ness, and performance of LightGuardian. We release all source
code anonymously 3.

In this paper, we make four key contributions:
We propose sketchlets and design a lightweight in-band
telemetry system. Using sketchlets, our system makes the
entirety of traffic information in the core of the network avail-
able at end-hosts for analytics and diagnostics. LightGuardian
is lightweight, which takes up negligible bandwidth, and it
can aggregate all sketchlets within 4 seconds.
We design the SuMax sketch to support common and
more important measurement tasks with high accu-
racy. For common tasks (e.g., flow size estimation), SuMax
achieves 6.78 times smaller error rate. Further, LightGuardian
can locate the culprit devices in the context of packet drops,
inflated latency, and abnormal jitters, achieving almost 100%
accuracy with less than 0.5MB memory.
We design an incremental reconstruction algorithm to
achieve robustness and failure tolerance. Our experimen-
tal results show that, even when 50% end-hosts fail, the an-
alyzer can still reconstruct 89% of all sketches. In addition,
device and link failures do not affect the reconstruction of
sketches of other devices (§ 8.3.2).
We implement a LightGuardian prototype and make it
open-source. We also build a testbed and conduct extensive
experiments, which confirms that our system can reach the
design criteria.

3 https://github.com/Light-Guardian/LightGuardian

992 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Light-Guardian/LightGuardian

Table 1: Comparison with the state-of-the-arts. In this table, “Impl.” refers to implementation platforms; “P4 BM” refers to P4
behavior model [41]; “RMT” refers to Re-configurable Match Tables; and “PFPH” refers to “Per-Flow and Per-Hop”.

Measurement Tasks CM FlowRadar EverFlow INT AM-PM LightGuardian

Device-
local

Flow Size X X × X × X
Flow Size Distr. X X × X × X

Entropy X X × X × X
Cardinality X X × X × X

Network-
wide

PFPH Latency Distr. × × × X × X
PFPH Packet Drops × × × X × X

PFPH Jitters × × × X × X
Forwarding Path × X X X × X

Impl. RMT switches X × × X X X
P4 BM X X × X X X

2 Background and Related Work

2.1 Measurement Tasks
Existing measurement tasks can be classified into two cat-
egories: device-local measurement tasks and network-wide
measurement tasks. Device-local measurement tasks refer
to measuring flow-level information in a single node (an
end-host, a switch or a router), and there have been various
sketch-based solutions, such as sketches of CM [25], CU [26],
Count [27], UnivMon [28], Elastic [29], SketchLearn [30],
SketchVisor [42], and more [32–34, 43–48]. However, there
are very few sketches designed for network-wide measure-
ment tasks. This paper focuses on the following four network-
wide measurement tasks.
1) Estimating Latency: We aim to estimate per-flow per-
hop latency distribution. Existing works acquire end-to-end
latency by sending probing packets. And they monitor spe-
cific flows by tracking their packets [49]. However, these
solutions can hardly locate the victim flows and the culprit
devices simultaneously. In contrast, per-flow per-hop latency
distribution can help a lot but is more challenging.
2) Detecting Packet Drops: There are three causes of packet
drops: random drops, loops, and blackholes. For random
drops, the state-of-the-art LossRadar [50] uses a Bloom fil-
ter [51] and an Invertible Bloom Lookup Table (IBLT) [52] to
accurately find drops. LossRadar works excellently in many
cases. However, it consumes a lot of memory when a large
flow drops many packets, which frequently happens when
there are network misconfigurations [53]. For loops and black-
holes, the state-of-the-art FlowRadar [54] also uses a Bloom
filter and an IBLT, sharing the same advantages and shortcom-
ings as that of LossRadar.
3) Detecting Abnormal Jitters: Jitters refer to drastic
changes of packet inter-arrival time of a given flow. We aim to
find abnormal jitters in the per-flow per-hop manner. Jitters are
often caused by queuing, congestion, high bandwidth load, or
network attacks. It can significantly affect the performance of
streaming media (e.g., audio, video, music). To detect jitters,
end-to-end methods [55–57] have been proposed. However,
they cannot work in the per-flow per-hop manner.

4) Tracing Forwarding Path: We aim to trace the forward-
ing path of any flow. Given a flow, tracing forwarding path
can check whether the actual forwarding path is consistent
with expectation. It can help test and/or debug new network
protocols and network architectures, solutions for network
congestion, load balance, and flow scheduling. Existing works
for tracing forwarding path include FlowRadar [54], Switch-
Pointer [58], Service traceroute [59], and more [60–63].

2.2 Related Work
As shown in Table 1, compared with the state-of-the-art so-
lutions, only our system supports device-local and network-
wide measurement tasks, and it is implemented in both RMT
switches (e.g., Tofino) and P4 behavior model, achieving per-
flow per-hop measurements. In this section, we mainly in-
troduce the following four categories of measurement solu-
tions. For other measurement solutions, please refer to refer-
ences [64–72].
Partial/Sampling Solutions. Many measurement sys-
tems [14–17,20,46,73–76] are developed by sampling packets.
Sampling can significantly reduce the overhead of both time
and space, but inevitably sacrifices accuracy and misses impor-
tant events. Typical systems include NetFlow [73], sFlow [74],
OpenSketch [46], OpenSample [17], Everflow [20], NitroS-
ketch [77], and more [14–16, 76]. The state-of-the-art Univ-
Mon [28] obtains elegant theoretical guarantees using a mul-
tiple sample solution at the cost of high time complexities.
Sampling solutions probably miss many small flows, and thus
cannot achieve the ideal goal of fully-visibility.
Probing Solutions. These solutions monitor the net-
work by sending tailored packets. Typical systems include
Pingmesh [78], NetBoncer [6], NetSonar [22], NetNorad [23],
and more [24, 79–82]. Recently, AM-PM [35] gains wide
recognition in industry. AM-PM divides packet streams into
time periods, and the middle packet in each period is essen-
tially a probing packet. Therefore, it only records per-period
packet information, but is unaware of flow-level informa-
tion. Probing solutions cannot achieve the ideal goal of fully-
visibility because they cannot measure per-flow information.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 993

Step 1: Capture flow-level statistics with
the new sketch we designed.

Step 2: Split our sketch into sketchlets and send
to end-hosts.

End-hostDevice

SuMax sketch
new
packet

Insert each
packet into the
SuMax sketch.

Batch sketchlets and send
them to the analyzer.

End-host
Reconstruction ModuleForwarding Module

send to
analyzer

+ =
sketchlet
group

Strip sketchlets and
batch into group.

Step 3: Reconstruct the sketch and
perform analysis.

+ =
send to
end-host

Insert sketchlet
to the packet.

Split SuMax
into sketchlets. sketchlets

End-hosts

Devices

Analyzer

Further
analysis.

The partially
reconstructed
SuMax sketch

Collect and
classify.

Packet Format

TCP header
Transport Layer

sketchlet
Application Layer

carry
-bit

device ID sketchlet ID
active
-bit

Figure 1: LightGuardian Overview and Workflow.

Sketch-based Solutions. There are a great number of sketch-
based solutions, which can be further divided into three cat-
egories. First, design and optimization of sketch algorithms.
Typical solutions include sketches of CM [25], CU [26],
Count [27], Elastic [29], and more [28, 30–32, 34]. But they
cannot measure the latency and jitters. Some are implemented
in P4 behavior model, but only a very few (BeauCoup [33],
Elastic [29]) are fully implemented in real programmable
switches . Due to the limitations of RMT (Re-configurable
Match Tables) based programmable switches, e.g., limited
concurrent memory access, single stage memory access, and
etc., the implementation in real switches is significantly more
challenging. Thus, we aim to design a new sketch to sup-
port both device-local and network-wide measurement tasks,
while can be easily implemented in RMT switches. Sec-
ond, measurement systems with dedicated sketches. Typical
solutions include FlowRadar [54], SketchLearn [30], NitroS-
ketch [77], and more [33, 46, 50]. The dedicated sketches can
barely achieve fully-visibility. Third, measurement systems
with shining features. Typical solutions include Marple [83],
Sonata [84], DREAM [85], Scream [86], and OmniMon [87].
By carefully designing the resource manager and telemetry
operator, OmniMon [87] achieves both resource efficiency
and high accuracy. Our SuMax sketch can also be applied in
OmniMon. All existing solutions do not focus on the overhead
with aggregating sketches all over the network.
In-band Telemetry Solutions. They insert packet-level in-
formation into every packet. Well-known solutions include
INT [36] and its successor PINT [88]. INT is considered as the
most promising solution for network measurement because
of two reasons. First, it can achieve fully-visibility because it
is flexible to carry any desired packet-level information. Sec-
ond, it can be implemented in RMT switches in a per-packet
manner. However, its bottleneck lies in the aggregation of
INT information. The INT information is distributed in every
network packet, and it is obviously very challenging to ag-
gregate that per-packet information. INT has two aggregation
strategies: postcard and passport, which mirror every packet

with only INT information in each switch or only the sink
switches. Although the INT information in each packet is
small (e.g., 100 bytes), the total bandwidth overhead is huge.
What is worse, the number of packets in the network will
be doubled, which is a heavy burden for packet processing.
Another in-band telemetry solution *Flow [39] uses a cache
to group packet-level telemetry information according to the
flow IDs. In this way, some information (e.g., 5-tuple flow ID)
in one group is recorded only once. However, its bandwidth
overhead is still proportional to the number of packets.

3 LightGuardian Overview
As shown in Figure 1, LightGuardian captures flow-level statis-
tics on each participating network device (physical or virtual)4

using sketches. The devices periodically split the sketches
into sketchlets and send the sketchlets to the end-hosts by
piggybacking them in headers of appropriate packets. Then
at the receiving end, the end-hosts batch the sketchlets into
groups and send them to a global analyzer when the network
load is low. Finally, the analyzer reconstructs the sketches and
perform analysis.
1) Capture flow-level statistics with novel sketches. Light-
Guardian captures flow-level statistics by deploying our
SuMax sketch on each participating device. Every packet is
processed into the sketch without sampling. Typical collected
statistics include the flow size (number of packets/bytes), per-
hop delay distribution, the arrival time of the last packet, and
the maximum inter-arrival time. The above statistics are used
for detecting packet drops and measuring per-hop latency
and maximum inter-arrival time, which are essential tasks for
industrial community. To support more tasks, we can also
include more collected statistics, e.g., the number of out-of-
order packets, the highest sequence number, and etc.
2) Split sketches into sketchlets and send them to the
end-hosts. The participating devices periodically split their

4Since most legacy switches and routers do not have programmable
dataplane capabilities, they cannot participate in LightGuardian (and their
existence in the network will not hinder the functions of LightGuardian).

994 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sketches into sketchlets and send them to the end-hosts.
Specifically, at the start of each measurement interval, the
devices initiate a new SuMax sketch to record the flow-level
statistics. In the end, the sketches are divided into sketchlets of
several bytes (24 bytes in our implementation). Each sketch-
let is one column5 (or several columns) of the sketch. Each
switch then attaches these sketchlets to appropriate incoming
packets. Specifically, we choose the packets that have not yet
carried a sketchlet with a fixed probability (e.g., 0.05).

3) [Optional] Batch sketchlets and forward to a global
analyzer. LightGuardian has two working modes: 1) Local
analysis mode, where each end-host uses local sketchlets to
perform analysis for local applications; 2) Global analysis
mode, where a global analyzer collects all sketchlets and per-
forms analysis for network operators. If an end-host does
not want to perform local analysis, it can choose to forward
sketchlets to a global analyzer. A system daemon process
running on each end-host strips sketchlets off the packets,
and maintains the received sketchlets. When the process has
collected enough sketchlets, it batches the received sketchlets
into groups and forward them to the global analyzer. For Light-
Guardian, more than 350 sketchlets are grouped into a UDP
packet and share 42 bytes packet header, which significantly
reduces the number of additional packets for measurement.

4) Reconstruct sketches and perform analysis. The end-
host or the global analyzer (or end-hosts) can reconstruct the
sketchlets into sketches and perform further analysis. The pro-
cess of reconstructing sketches proceeds simultaneously with
the process of collecting sketchlets. After collecting enough
sketchlets, the analyzer can perform accurate estimation using
the partially reconstructed sketch. According to our experi-
ments, after receiving 55% sketchlets, our LightGuardian re-
ports 90% valid results, while the average relative error (ARE)
is only 0.088. Further, the estimation results are incrementally
refined with more and more sketchlets collected, the ARE re-
duces to 1×10−2, 1×10−3, 2×10−4 when 80%, 90%, and
100% sketchlets are received, respectively.

In this way, LightGuardian well achieves the three mentioned
design goals. For full-visibility, LightGuardian deploys SuMax
sketch on each network device to monitor various per-flow
per-hop information for all flows. For low overhead, Light-
Guardian uses small and constant-sized sketchlets to transmit
measurement information, which makes the in-band overhead
grow sub-linearly with the network/traffic scale. For robust-
ness, the reconstruction process of LightGuardian does not
require collecting all sketchlets whereas providing desirable
accuracy. Besides, any end-host with limited computation re-
sources can play the role of the global analyzer, which makes
our system robust.

5A sketch consists of multiple bucket arrays, and a column refers to the
buckets with the same index in each array.

4 Device-local Sketch Design: SuMax

4.1 Motivation
We design the SuMax sketch to achieve accurate measurement
of flow-level information on network devices of different plat-
forms: software (CPU, or OVS [89]), P4 behavior model [41],
programmable switches. To make LightGuardian widely ap-
plicable, this paper focuses on P4 behavior model and pro-
grammable switch platforms, as the software implementation
is straightforward. Using P4 also ensures our implementation
can be compiled to available and future P4 back-ends, such
as SmartNIC, FPGA and GPU.

UnivMon [28] and HashPipe [90] are implemented in P4
behavior model, but can hardly be implemented in RMT
switches. To address these issues, Basat et al. proposed us-
ing a recirculate method [91], inevitably incurring complex-
ities and degradation of switch throughput. BeauCoup [33]
and Elastic [29] have been implemented in RMT switches
(i.e., Tofino switches) by complicated designs and programs.
Further, the above four sketches cannot be directly used for
network-wide measurement tasks, such as estimating latency
and jitters. We found CM [25] is the most friendly sketch
for programmable switches. On the one hand, we optimize
its accuracy under the constraints of programmable switches.
On the other hand, we extend its functions to support both
device-local and network-wide tasks. In the meantime, we try
to keep the designed sketches as simple as possible.

4.2 Rationale and Design Space for Sketches
We first introduce the well-known CM sketch [25]. It is a typ-
ical sketch algorithm that sums packet attributes (e.g., packet
number, bytes number). It uses d counter arrays A0, · · · ,Ad−1.
For each array, it has a hash function Hi(·) to map a flow6

uniformly and randomly into a counter. When a packet of
flow f with attribute value α arrives, CM selects the counter
Ai[Hi(f)] for each array Ai and increments these counters by
α. To query the attribute sum of flow f , CM returns the mini-
mum value among A0[H0(f)], · · · ,Ad−1[Hd−1(f)], which is
still a sum of attributes of some flows. Therefore, CM has
only over-estimation errors. Similarly, the CU sketch [26] in-
crements only the smallest counter(s), significantly improving
the accuracy but not supporting pipeline implementation.

We propose to record both of the sum value and the maxi-
mum value7 to support versatile tasks. We insist that all packet
attributes can be accurately estimated by keeping only the
sum and maximum values. We also insist that either sum or
maximum value is indispensable. For example, sketches of
CM, CU, Count, FlowRadar cannot be used to find maximum
latency or inter-arrival time and last arrival time, because they
only record the sum value without maximum value.

6A flow has many packets sharing the same flow ID, which can be any
combination of 5-tuple: source IP address, source port, destination IP address,
destination port, protocol type.

7Note that [92] also suggests that the sketch algorithm can be used to find
the maximum value in a sequence.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 995

Table 2: Symbols frequently used in this paper.

Symbol Meaning
f An arbitrary flow

α
An attribute that needs to be recorded in the
sum cell (e.g., packet size)

β
An attribute that needs to be recorded in the
maximum cell (e.g., arrival time)

d SuMax consists of d bucket arrays
w Each array consists of w buckets
Ai The i-th bucket array

Asum
i [·] The sum cell in a bucket

Amax
i [·] The maximum cell in a bucket
Hi A hash function from a flow to {0, · · · ,w}

4.3 Data Structure and Operations
Data Structure (Figure 2): Our SuMax consists of d
bucket arrays A0, · · · ,Ad−1. Each array Ai contains w buckets
Ai[0], · · · ,Ai[w−1]. Each bucket has two cells: a sum cell and
a maximum cell, recording the sum value and the maximum
value of attributes, respectively. Each array Ai is associated
with a hash function Hi(.) that maps a flow into one of its
buckets. To support various tasks, we may need more than
one sum value or maximum value in each bucket. For conve-
nience, we only show using one sum value and one maximum
value. Table 2 lists the frequently used symbols in this paper.
Insertion: To achieve high accuracy and support pipeline
implementation, we propose an approximate conservative
update strategy as follows. To record a packet of flow f with
attribute α and β (〈 f ,α,β〉, α will be accumulated and β will
be compared with the maximum), we first maintain a current
minimum value ω and initialize it to ∞. For each array Ai,
we select a bucket Ai[Hi(f)] by computing the hash function
Hi(f). For each selected bucket Ai[Hi(f)], we check its sum
cell Asum

i [Hi(f)] and update it as follows:

• If Asum
i [Hi(f)]+α < ω, update the current minimum value

ω = Asum
i [Hi(f)]+α, and set the cell to ω.

• If Asum
i [Hi(f)]+α > ω, and Asum

i [Hi(f)]< ω, set the cell
to ω.

• If Asum
i [Hi(f)]> ω, we keep the cell unchanged.

For the maximum cell Amax
i [Hi(f)], we just set it to

max{Amax
i [Hi(f)],β}. The pseudo-code of the insertion op-

eration is shown in Algorithm 1 in Appendix A.
Query: Given a flow f , SuMax returns two results: one sum
value estimation and one maximum value estimation. The
sum estimation is the minimum value among Asum

0 [H0(f)]
, · · · , Asum

d−1[Hd−1(f)]. The maximum value estimation is the
minimum value among Amax

0 [H0(f)] , · · · , Amax
d−1[Hd−1(f)].

Example (Figure 2): To record a packet 〈 f ,α = 3,β = 4〉,
SuMax updates the d (d = 3) buckets A0[H0(f)], A1[H1(f)],
A2[H2(f)] as follows. For the bucket [6,3], we increase 6 to
9, set ω to 9, and set 4 to max{4,3}. For the bucket [9,7], as
9 > ω and 7 > 4, we keep this bucket unchanged. For the
bucket [3,5], as 3+α < ω, we update ω to 6 and update 3 to

!"
!#
!$

6 3
9 7

3 5new packet
%, ' =), * = +

SuMax sketch !$[ℋ$(/)]

9 4
9 7

6 5

a bucket a sum cell a maximum cell

!#[ℋ#(/)]

Figure 2: An example of SuMax.

ω = 6; as 4 < 5, we do not change the maximum cell. After
the insertion, when query flow f , SuMax returns min{9 ,9
,6} = 6 as the sum estimation, and returns min{4 ,7 ,5} = 4
as the maximum value estimation.
Analysis: Our SuMax uses an approximate conservative up-
date strategy to achieve both accuracy and pipeline friendly.
Note that the conservative update strategy (CU) cannot be
implemented in the pipeline because it needs the traceback
operations to only increase the smallest counter(s). Our idea
is to use the current minimum value to approximate the global
minimum value. In each insertion process, with more and
more counters accessed, the current minimum value will be
closer and closer to the global minimum value, and thus the
updated counter will be closer and closer to CU. Actually, the
first array is updated following the rule of CM, and the last
array is updated following the rule of CU. Since the coun-
ters in the last few arrays tend to have smaller values, they
are more likely to be returned as query results. Therefore,
SuMax can be viewed as an intermediate between CM and
CU, and its error is also bounded between them, but closer to
CU. As there are no tracebacks in our SuMax, it can be easily
implemented in the switch pipeline.

4.4 Configuration of SuMax Sketch
In current implementation, we design each bucket as follows.
Each bucket consists of four parts:

• a flow-size cell (sum cell) recording the flow size;
• λd delay cells (sum cells) recording the per-hop delay dis-

tribution, each one of which is associated with a predefined
delay time interval;

• an interval cell (maximum cell) recording the maximum
inter-arrival time;

• a last-time cell (maximum cell) recording the arrival time
of the last packet of a flow.

All cells are initialized to zero. When the cells of a bucket are
going to update, they should be updated as follows. Let tnow
be the ingress timestamp of this packet, tlast be the value of
the last-time cell, and tinterval = tnow− tlast . When tlast = 0, we
consider the current packet as the first packet of a flow, and
set tinterval = 0. First, we increment the flow-size cell by 1.
Second, we select one cell from the λd delay cells according
to the packet delay, and increment this cell by 1. Third, we
compare the value in the interval cell with tinterval and update
it accordingly. Fourth, we update the last-time cell to tnow.

996 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 Transmission of Sketchlets
In this section, we show the transmission procedure of sketch-
lets in each participating network device. First, we split
sketches into sketchlets. Second, we sample packets to carry
sketchlets. Third, we select a sketchlet to be carried using our
selection strategy and insert it into the packet.

5.1 Splitting the Sketch into Sketchlets.
LightGuardian deploys two SuMax sketches (one active and
one idle) on each device. The active sketch is used to record
flow-level information, while the idle sketch is split into
sketchlets for transmission. After a fixed time interval (e.g.,
5s), we interchange these two sketches. We use an active-bit
to indicate which sketch is active. The active-bit is flipped
periodically, and the current interval is set to 5 seconds.

We split the idle sketch column by column, so that each
sketchlet contains a column of buckets. Each sketchlet is
associated with 1) a Sketchlet ID indicating the column index;
2) a Device ID; and 3) the active-bit indicating which one
of the two sketches it belongs to. The analyzer will sort the
received sketchlets (bucket columns) according to the Device
ID, active-bit, and Sketchlet ID.

5.2 Probabilistically Carrying Sketchlets.
Given an incoming packet, the device first checks the packet
header: if it has already carried a sketchlet, no more sketch-
lets will be carried. Otherwise, the device calculates a fixed
carrying probability λc (e.g., 0.05) to determine whether this
packet should carry a sketchlet. Each device samples only a
part of the packets to carry sketchlets with λc, so that every
device has a similar opportunity for packet transmission.

The packet format is shown in Figure 1. If a packet is
selected to carry sketchlet, we insert the sketchlet between
the TCP header and the application-layer message. First, we
use a bit in the TCP header (carry-bit) to indicate whether
this TCP packet carries a sketchlet. Second, we add a field to
record the device ID (16 bits). Third, we add a field to record
the sketchlet ID and the active-bit.

5.3 Sketchlets Selection: K+chance Selection.
Once the device determines the incoming packet should carry
a sketchlet, we need an algorithm to choose a sketchlet. In-
band telemetry solutions will lose measurement information
when packet drops happen. To address this issue, we can send
a sketchlet several times at the cost of more bandwidth usage.
An effective solution is to use a counter array. Specifically,
each counter corresponds to a sketchlet, indicating the num-
ber of times this sketchlet has been carried. For the incoming
packet, we locate several counters by computing hash func-
tions, find the smallest counter among them, and choose the
corresponding sketchlet to carry. As mentioned above, simi-
lar to the CU sketch, this solution cannot be implemented in
current P4-programmable switches, and thus we propose a
new algorithm namely k+chance selection.

The k+chance selection uses k arrays, each of which is an
N-bit array. For each array, each bit corresponds to a sketchlet.
All bits are initialized to 0. Whenever we need to select one of
the N sketchlets, we access the k arrays one by one. For each
array, we randomly choose a bit: if it is zero, we choose the
corresponding sketchlet and set this bit to 1; Otherwise, we
access the next array. In the worst case, we do not find a zero
bit after accessing all the k arrays, and we randomly choose
one sketchlet to transmit. In this way, we only need to record
an array ID in each sketchlet, which just takes dlog(k+1)e
bits (2∼3 bits). By contrast, when using the simple round-
robin, we need to record the column ID (usually 32 bits) in
each sketchlet. K+chance selection is an approximately fair
selection algorithm for hardware platforms. Our experiments
show that k+chance selection works well (§ 8.1).

6 Reconstruction and Analysis
In this section, we first describe the two modules at the end-
hosts: forwarding module and reconstruction module. These
two modules can work in isolation or in parallel. Then we
elaborate on how to obtain device-local measurements and
network-wide analysis using SuMax.

6.1 End-host Modules
Reconstruction Module. This module dynamically classi-
fies the received sketchlets into groups according to their
device IDs and active-bits, and sorts the sketchlets in each
group by their sketchlet IDs. In this way, the end-host recon-
structs a sketch for each group. Note that the reconstructed
sketches might be incomplete because some sketchlets are
still in the network or missing. Fortunately, an incomplete
sketch can also be used to answer queries: each query will
access d buckets, some of which may not have been received
yet. We consider the values in these buckets as invalid, and
report the minimum value among the other valid buckets. As
long as one of the d buckets is valid, we can report a valid
result. Otherwise, we report the result of invalid. In this way,
after some sketchlets are collected, the end-host then uses
these reconstructed sketches to perform further analysis. Our
experimental results (see § 8.1) show that 55% sketchlets
can report 90% valid results and achieve accurate estimation
(ARE < 0.1). The following theorem provides theoretical
guarantees for the reconstruction process.

Theorem 6.1 After receiving sketchlets with a ratio of θ,
SuMax can report valid results with a ratio of (1− (1−θ)d).
Specifically, when the result is valid, the estimated flow size
has the following error bounds.

Pr
{
|n̂ f −n f |> ε

}
<

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d

where d and w are parameters of SuMax (see Table 2), n f and
n̂ f are the real and estimated flow size, and m is the number
of inserted packets.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 997

The module can reconstruct the following four widely-
studied [28, 29, 54] device-local measurements:
• Flow Size Estimation. We return the minimum value of

the d mapped flow-size cells.
• Flow Size Distribution. We use the MRAC [93] algorithm

with the first bucket array in SuMax as input.
• Entropy. We compute −∑(ni · i

m log i
m) based on the flow

size distribution, where ni is the number of flows with size
of i, and m = ∑(i ·ni).

• Cardinality. We calculate the number of flows using the
method of linear counting [94].
We believe the main advantage of this approach is that

the measurement is done in a distributed fashion, without a
centralized control or management plane.
Forwarding Module. End-hosts use this module to forward
sketchlets to a global analyzer for network-wide analysis.
Each end-host groups the received sketchlets into batches.
The end-host will send a batch of sketchlets to the analyzer
when appropriate. 1) When the bandwidth usage is high, the
end-host does not send sketchlets. 2) When the number of the
accumulated sketchlets reaches a threshold, or the end-host
has not sent any sketchlets for a certain period, it will send
all the accumulated sketchlets to the network-wide analyzer.
The network-wide analyzer reconstructs the sketches as the
end-hosts do, and then performs the network-wide analysis.

6.2 Network-wide Analysis with SuMax
For the following four network-wide analysis tasks, we need
to access different SuMax cells for different tasks. To perform
network-wide analysis tasks, we have two steps. First, the
network operator detects abnormal end-to-end incidents (e.g.,
TCP duplicate ACKs, TCP timeout8), and report the victim
flows to the network-wide control plane analyzer. Second,
based on the network topology, the analyzer further investi-
gates the sketches on the switches in the forwarding path of
the victim flow as to locate the specific culprit device or link.
Locating Inflated Latency. Locating inflated latency refers
to finding out the culprit switch, and the victim flow when
inflated end-to-end latency occurs. First, the end-host detects
abnormal incidents of inflated end-to-end latency, and reports
the ID of the victim flow. Second, the analyzer queries the per-
hop latency distribution of this flow by accessing the delay
cells in the corresponding reconstructed sketches. In this way,
it can easily locate the culprit switches with inflated latency
(e.g., a switch on which 80% packets have > 10µs latency).
Locating Packet Drops. As mentioned above, there are three
main packet drops behaviors: random drops, loops, and black-
holes. Random drops may result from hardware failures (e.g.,
faulty interfaces in switches). Loops may result from the mis-
configuration of the forwarding table, which leads the pack-
ets of the victim flows forever loop among several switches.

8Some tools provided by the OS (e.g., ePBF [95]) can help operators to
easily detect these abnormal incidents.

Blackholes may result from forwarding entries corruption
in culprit switches. After detecting end-to-end packet drops
from TCP re-transmission, timeout, or ping probe loss, the
end-host (sender) reports the flow ID to the analyzer. To lo-
cate the culprit switch, the analyzer queries the victim flow
in every sketch on the forwarding path by accessing the flow-
size cells. 1) If the flow size suddenly drops to 0 after passing
a switch, we report the switch as a blackhole. For example,
suppose there are five switches (s1 ∼ s5) on the forward-
ing path. If the estimated flow sizes on the five switches are
100,100,100,0,0, respectively, we report s4 as a blackhole.
2) If the flow size is abnormally large on several switches, we
infer a loop happens on them. For the same example with five
switches, if the flow sizes are 100,100,5000,5000,0, respec-
tively, we infer that s3 and s4 probably be involved in a loop.
3) If the flow size slightly decreases after passing a switch,
we infer that the switch suffers random packet drops. For the
same example, if the flow sizes are 100,100,95,95,95, we
infer random packet drops happen on s3.
Locating Abnormal Jitters. After detecting end-to-end vari-
ation in the packet inter-arrival time of a flow, the end-host
reports the flow ID to the analyzer. The analyzer queries the
maximum inter-arrival time of that flow, and finds out the
culprit switches on which the result is abnormally large.
Finding Abnormal Forwarding Path. When an end-host
receives a packet which carries a sketchlet not belonging to
the switches on the expected forwarding path, we report this
packet suffers abnormal forwarding.

7 Prototype Implementation
In this section, we first describe the workflow and difficulties
we face when implementing a LightGuardian prototype on a
programmable switch (Tofino-40GbE). On each switch, we
develop SuMax and the sketchlet transmission mechanism
using P4 [96]. Then we overview the components in the end-
hosts: the kernel modules to collect and forward the sketchlets.

7.1 SuMax on Programmable Switches
All existing sketches can be implemented in the software (e.g.
middleboxes, virtual network appliances, etc.), but most of
them cannot be deployed on programmable switches, which
limits their applicability outside of cloud networking envi-
ronments. For LightGuardian, since deployability is crucial to
achieving full-visibility in all network environments, we first
show that SuMax can be deployed on programmable switches
by implementing it on a Tofino-40GbE switch.

7.1.1 Workflow
On the switch, we design the workflow (relevant to Light-
Guardian) (Figure 3) as follows: we put Decision Making
Stage in the ingress pipeline, and Sketching Stage and Sketch-
let Generation Stage are placed in the egress pipeline.

The Decision Making Stage decides the following:

998 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Decision MakingIngress
Pipeline

Egress
Pipeline

Traffic Manager

Sketching

Sketchlet Generation

Deparser

Network packets

Idle Sketch

Active Sketch

Parser

Figure 3: Workflow on an RMT switch.

• Active sketch, i.e. which sketch should be inserted into. As
mentioned in § 5.1, we deploy two SuMax sketches on each
switch, and use the active-bit to identify the active sketch.
Note that the data plane of the switch cannot periodically
update the active-bit. Therefore, we run a process in the
switch control plane to periodically flip it. As the flipping
is asynchronous, we forbid carrying sketchlets in the last
second in each measurement interval.

• Fitness for sketchlets, i.e. whether the packet should carry
a sketchlet. The fitness conditions are: 1) the packet is
not carrying a sketchlet; 2) For each packet, we use its
5-tuple and its ingress timestamp to calculate a 16-bit
hash value (CRC16), and only when the value falls within
[0,λc216), the packet is selected to carry a sketchlet. λc is
a pre-configured parameter, and the second condition is
approximately allowing a packet to carry sketchlet with a
probability of λc

• Sketchlets selection. As described in § 5.3, we use the
k+chances selection algorithm to select a sketchlet to carry.
Thus, we need to randomly select a bit for each bit array. In
Tofino switches, we can only achieve pseudo-randomness:
we still use CRC16 to generate approximately random
numbers, and choose reasonable polynomials of CRC16
to generate multiple approximately independent random
numbers. Due to limitation of Tofino switch, we set k = 1.
In the Sketching Stage, we place two sketches: one idle

and one active. Their status is periodically flipped. These
two sketches are two match-action tables placed in the egress
pipeline, so each packet will pass them sequentially. For each
packet, the sketch table checks the active-bit. If the active-bit
indicates the current sketch is active, we hash the flow ID to
update the corresponding cells to record packet information.
The update procedures of SuMax are challenging on Tofino,
and we highlight the difficulties below (§ 7.1.2).

The Sketch Generation Stage reads the selected sketchlet
and writes it into the metadata if the packet is selected.

7.1.2 Challenge of Sketching Stage
SuMax records multiple packet attributes (e.g., flow size, de-
lay distribution, last arrival time, maximum inter-arrival time).
This requires multiple cells in each bucket. In Tofino switches,
the cells in SuMax are stored in registers. A switch has 12
Match-Action Units (MAU), each of which contains up to two

!"
!#

SuMax delay part

SuMax interval part

< 100'(100'(~1*(
1*(~10*(> 10*(
Four delay (sum) cells

sketchlet #2

register

Switch

!"

register
!#!,!-

sketchlet #3 An interval
(maximum) cell

Figure 4: Sketch implementation on an RMT switch.

256KB registers. Since 6 MAUs are used in other stages, only
6 MAUs (12 registers) can be used in the Sketching stage.
The main challenge is that, each incoming packet can only
access each register exactly once, and each access can only
read/write up to 64 consecutive bytes.

Thus, we have to assign the cells in a single bucket to
multiple registers. In other words, we need to divide SuMax
into parts. We use two examples, the measurement of latency
distribution (sum) and that of maximum packet inter-arrival
time, to illustrate our solution.
Latency distribution. We use the delay part of SuMax to
perform this task. As shown in Figure 4, this part consists
of d = 2 bucket arrays, each of which has w = 215 buckets.
Each bucket has λd = 4 sum cells (32-bit), each of which
corresponds to a predefined delay range. To make full use of
the registers, we observe that:
• The four cells in each bucket should not be assigned to a

single register. Since each 256KB register stores up to 216

32-bit cells, using a single register will limit the size of the
sketch (up to 214), which compromises the accuracy.

• Using four registers to store the four cells in each bucket
cannot be implemented on Tofino switch. As each switch
has two sketches, each of which contains at least two bucket
arrays, so we need at least 16 registers, while at most 12
registers are available in the Sketching stage.
Thus, we propose to use one register to store two cells in

each bucket, as shown in Figure 4. We divide each bucket
array into two registers, the first contains the first two cells
of each bucket, and the second contains the remaining two
cells. We group 4 cells in the same column into a sketchlet. In
this way, either the active or the idle sketch is updated, each
register is accessed only once for a packet.
Packet inter-arrival time is a task of measuring the maxi-
mum value, and its implementation is much easier. As shown
in Figure 4, we set d = 4 and w = 216. For each bucket array,
all 32-bit interval-cells are assigned to one register. We still
group the 4 interval-cells in the same column into a sketchlet.

7.2 End-host Components
LightGuardian needs to implement three functions on the end-
hosts: sending packets, receiving packets, reconstruction and
performing analysis.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 999

Sending packets: In the current implementation, Light-
Guardian inserts sketchlets between the Ethernet header and
the IP header. However, we should emphasize that this is
mainly due to hardware limitation: TCP checksum recalcula-
tion on Tofino is unreliable currently.

We also add the carry-bit after the Ethernet header, because
there is no space in the Ethernet header. To implement this
design, we program a Linux kernel module on the end-host,
which registers a new packet type ETH_P_SKETCHLET in the
Layer-3 protocol stack and modifies the Ethernet type of each
packet to be sent to ETH_P_SKETCHLET, and allocates extra
space for the carry-bit.
Receiving packets: We implement another Linux kernel
module to handle ETH_P_SKETCHLET packets. This module
decides whether the packet carries a sketchlet by checking
the carry-bit, and records the sketchlet in the stderr.
Reconstruction and Forwarding We implement a forward-
ing module for end-hosts to forward the sketchlets to a cen-
tralized analyzer. It reads stderr every 1 millisecond. When
the process finds the number of sketchlets in the log exceeds a
threshold (dependant on Maximum Transmission Unit (MTU)
of the network), or when a timeout is reached, the module
generates a packet containing all the received sketchlets of the
current interval, and sends it to the central analyzer. For ex-
ample, when MTU is 9KB, the threshold is set to 350 packets
(∼8.4KB). We set the timeout to 100 milliseconds.

Finally, analysis can be performed on the end-host or the
centralized analyzer with the same sketch reconstruction al-
gorithm described in § 6.1.

8 Experimental Results
We conduct extensive experiments on a testbed and using
mininet [40]. We focus on the following four key issues.
• How accurate can our SuMax sketch measure per-flow

statistics? We implement our SuMax sketch using C++,
and use the CAIDA datasets to evaluate the accuracy of
SuMax for seven measurement tasks.

• How much is the overhead of sending and aggregat-
ing sketchlets? We generate network traffic following the
widely used traffic distributions (WEB [97] and DCTCP
[98]). We evaluate the aggregation time, the bandwidth
overhead, and the impact on network performance (e.g.,
RTT, FCT).

• How accurate can LightGuardian detect network
anomalies? We use mininet to simulate a network, and
evaluate the accuracy of LightGuardian in locating black-
holes, loops, and abnormal jitters.

• Is LightGuardian resilient to network failures? We eval-
uate the performance of LightGuardian when end-hosts fail,
or some sketchlets are missing.

We conduct the experiments using the following metrics:
ARE, RR, PR, F1 Score, RE, and WMRE. We explain the
details of these metrics in Appendix C.

8.1 Experiments on SuMax
We use the anonymized IP traces collected in 2018 from
CAIDA [99]. The dataset contains 6M packets belonging to
0.9M different flows. We set d = 3 by default, which means
there are 3 bucket arrays in SuMax.
Flow size estimation (Figure 5a): We find that the accuracy
of SuMax is higher than CM and close to CU. When using
96KB of memory, the ARE of SuMax is 6.78 times lower
than CM, and 1.75 times higher than CU. We further study
how the flow sizes affect the accuracy (see Figure 11a in
Appendix D.1), and find that the results hold for both large
and small flows.
Robustness (Figure 5b-5c): We find that partially recon-
structed SuMax can provide accurate estimation. We set the
memory to 768KB and measure the valid query rate and the
ARE of the largest 1K flows. The results show that 55% re-
constructed SuMax can report >90% valid results with <0.1
ARE, and 80% reconstructed SuMax can report >99% valid
results with <0.01 ARE.
Other device-local tasks (Figure 5d-5e): We find that be-
sides flow size estimation, SuMax also achieves good per-
formance in other device-local measurement tasks, including
estimating cardinality, flow size distribution (see Figure 11c
in Appendix D.1), and entropy.
Delay distribution (Figure 5f): We find that the accuracy of
SuMax is higher than CM and close to CU. We generate the
delay of each packet according to the chi-square distribution.
We set λd = 8 and vary w from 210 to 217. For other delay
distribution, please refer to Figure 12a-12e in Appendix D.1.
Maximum inter-arrival time (Figure 5g): We find that
SuMax achieves <10 ARE when using more than 6MB of
memory, and <0.3 ARE when using more than 12MB of mem-
ory. Since when abnormal incidents happen, the maximum
inter-arrival time will rapidly increase dozens or hundreds
times, <10 ARE is accurate enough to locate problems. We
further study how the flow sizes affect the accuracy (see Fig-
ure 12h in Appendix D.1), and find that the results hold for
both large and small flows.
k+chance Selection (Figure 5h): We find that k+chance Se-
lection can effectively reduce the number of packets required
by the reconstruction process. According to the results, a
larger k goes with fewer required packets, which demonstrates
the effectiveness of our algorithm. We also find that the larger
the w, the better the optimization effect.
We further study the memory overhead of SuMax, and find
that its memory overhead grows sub-linearly with the network
scale, which guarantees the scalability of LightGuardian (see
Figure 11b and Table 3 in Appendix D.1).

8.2 Testbed Experiments
We evaluate LightGuardian on the testbed described in § 7.
Take the delay distribution measurement task as an instance,
the SuMax sketch we used contains d = 2 bucket arrays, each
of which has w = 215 buckets, and each bucket contains 4

1000 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

101 102 103 104

0.0

0.5

1.0

1.5

2.0

A
R

E

Memory usage (KB)

 SuMax (ours) CM
 CU

(a) Flow size estimation.

50 60 70 80 90 100
70

80

90

100

Va
lid

 q
ue

ry
 ra

te
 (%

)

Reconstruction rate (%)

 d=2 d=3
 d=4 d=5

(b) Valid query rate.

50 60 70 80 90 100

0.0

0.1

0.2

0.3

A
R

E

Reconstruction rate (%)

 d=2 d=3
 d=4 d=5

(c) ARE.

0 1000 2000 3000
10-3

10-2

10-1

100

R
E

Memory usage (KB)

 SuMax (ours) UnivMon

(d) Cardinality.

0 1000 2000 3000

10-3

10-2

10-1

R
E

Memory usage (KB)

 SuMax (ours) UnivMon

(e) Entropy.

102 103 104

0.0

0.1

0.2

0.3

0.4

0.5

W
M

R
E

Memory usage (KB)

 SuMax (ours) CM
 CU

(f) Delay distribution.

103 104 105

0

10

20

30

A
R

E

Memory usage (KB)

 d=2 d=3
 d=4

(g) Max inter-arrival time.

214 215 216 217 218 219 220

0

3

6

9

12

re

qu
ire

d
pa

ck
et

s
(×

 1
09)

buckets (w)

 k=0 k=1
 k=2 k=3

(h) K+chance Selection.
Figure 5: Experimental results on SuMax and the selection algorithm.

delay cells. This sketch also supports locating packet drops
and all the mentioned local measurement tasks. Similarly,
we can use another SuMax to locate abnormal jitters. By
default, we set the carrying probability λc to 1

16 , and set k = 1
for k+chance selection. We use two traffic distributions W1
(DCTCP [98]) and W2 (WEB [97]), which are widely used
in existing works [8, 100–102]. On each switch, the number
of the sketchlets is 216, and each sketchlet is 24 bytes.
Bandwidth overhead v.s. traffic load (Figure 6a): We find
that our system saves substantial bandwidth than INT. We
compare LightGuardian with a kind of INT that inserts 20-
bytes per-packet information into the packet headers at each
hop. The results show that the bandwidth overhead of Light-
Guardian ranges from 13.8Mbps to 25.7Mbps, which is only
about 0.07% of the total bandwidth. The bandwidth overhead
of INT ranges from 211Mbps to 394Mbps. Compared with
INT, our LightGuardian saves more than 93.5% bandwidth.
We also study how the carrying probability λc affects the
bandwidth usage (see Figure 13a-13c in Appendix D.3).
FCT v.s. traffic load (Figure 6b): We find that Light-
Guardian has little impact on the network. We vary the band-
width usage from 50% to 90%, and measure the average
Flow Completion Time (FCT) before and after deploying
LightGuardian. Under workload W1, after deploying Light-
Guardian, the average FCT increases by 8.3% at 50% traffic
load, and 1.8% at 90% traffic load. Under workload W2, af-
ter deploying LightGuardian, the average FCT increases by
16.3% at 50% traffic load, and 5.6% at 90% traffic load. Even
under 90% traffic load, LightGuardian still achieves <5ms
FCT. We also study the impact of the flow size on the average
FCT (see Figure 14b in Appendix D.3).
Per-hop latency v.s. traffic load (Figure 6c): We find that
LightGuardian has little impact on the network. We test the
per-hop latency before and after deploying LightGuardian in
the network. We vary the bandwidth usage from 0% to 90%,

and measure the average per-hop latency of 104 packets using
the ping -f instruction. The results show that at 0% traffic
load, after deploying LightGuardian, per-hop latency increases
1.6µs. At 90% load, per-hop latency increases at most 3.1µs.
Reconstruction rate v.s. time (Figure 6d): We find that the
sketches in LightGuardian can be quickly reconstructed. We
use 90% of the total bandwidth and measure the reconstruc-
tion rate on each switch over time. The results show that
under workload W1, the analyzer aggregates 90% sketchlets
on the edge switches, the aggregation switches, and the core
switches in 1.3, 1.7 and 2.1 seconds, respectively; and it aggre-
gates 99% sketchlets in 2.1, 2.8 and 3.6 seconds, respectively.
The results under workload W2 (as shown in Figure 14a in
Appendix D.3) are similar. Other results related to sketch
reconstruction are shown in Figure 14c-14d in Appendix D.3.

8.3 Simulations
8.3.1 Simulations on Mininet
We evaluate LightGuardian’s performance in locating black-
holes, loops, and abnormal jitters through Mininet case studies.
Our setup in Mininet consists of 16 hosts, 20 switches, and
48 links in a Fat-Tree topology. We only show the results as
F1 scores. For more specific PR and RR results, please refer
to Appendix D.2.
Locating blackholes (Figure 7a): We find that Light-
Guardian achieves high accuracy in locating blackholes. We
randomly generate 10M packets belonging to 0.1M different
flows. We create two blackholes by shutting down two links.
And we reconstruct the sketchlets in a fixed time interval (5s)
into sketches. For each flow, we query it in the reconstructed
sketches to locate the culprit switches where the ratio P

L is
below a threshold. Here, for any switch, P is the estimated
flow size, and L is the estimated flow size in the last-hop
switch. The results show that when using 0.8MB of memory
(216 buckets), F1 score can reach 0.99.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1001

0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

Ex
tr

a
ba

nd
w

id
th

 (M
bp

s)

Load

 W1 (ours) W1 (INT)
 W2 (ours) W2 (INT)

(a) Bandwidth v.s. load.

0.5 0.6 0.7 0.8 0.9
2.0

2.5

3.0

3.5

4.0

4.5

FC
T

(m
s)

Load

 W1 (ours) W1
 W2 (ours) W2

(b) FCT v.s. load.

0.00 0.25 0.50 0.75 1.00

0.004

0.006

0.008

0.010

Pe
r-

ho
p

la
te

nc
y

(m
s)

Load

 W1 (ours) W1
 W2 (ours) W2

(c) Per-hop latency v.s. load.

0 1 2 3 4
0

25

50

75

100

R
ec

on
st

ru
ct

io
n

ra
te

 (%
)

Time (seconds)

 Core Agg Edge

(d) Reconstruction v.s. time.
Figure 6: Experimental results on the testbed.

200 400 600 800
0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Memory usage (KB)

 threshold=0.9 threshold=0.7
 threshold=0.5 threshold=0.3
 threshold=0.1

(a) Blackhole detection.

200 400 600 800

0.7

0.8

0.9

1.0
F1

-s
co

re

Memory usage (KB)

 threshold=3 threshold=5
 threshold=7 threshold=9

(b) Loop detection.

0 10 20 30 40 50

0.8

0.9

1.0

F1
-s

co
re

Memory usage (KB)

 threshold=1.3 threshold=1.5
 threshold=1.7 threshold=1.9

(c) Jitter detection.

0 4 8 12 16

0

25

50

75

100

R
at

e
(%

)

broken end-hosts

 FRR RSR

(d) FRR/RSR v.s. λb.
Figure 7: Simulations results on Mininet.

Locating loops (Figure 7b): We find that LightGuardian
achieves high accuracy in locating loops. We randomly gen-
erate 10M packets belonging to 0.1M different flows, and
let 10% flows loop between two randomly selected adja-
cent switches. For each flow, we query it in the reconstructed
sketches and locate the switches where P

L exceeds a threshold.
The results show that when using 0.8MB of memory, F1 score
reaches about 0.99.
Locating abnormal jitters (Figure 7c): We find that Light-
Guardian achieves high accuracy in locating abnormal jitters.
We randomly generate 10M packets belonging to 10K dif-
ferent flows. To simulate jitters on the switch, we randomly
choose two links, and split each of them into two parallel links
with different speed. In this way, the flows passing through
the slow link will suffer jitters, which leads to a sharp increase
in their inter-arrival time in the next-hop switch. The results
show that when using more than 20KB of memory, the F1
score is close to 1.

8.3.2 Simulations for Robustness
Next, we focus on the robustness of LightGuardian. The net-
work topology here is the same as Mininet. We set w = 216.
And in each experiment, we randomly select λb end-hosts and
shut them down9. Then we observe how many sketches can
be fully-reconstructed (recovered) in the global analyzer. The
metrics we used here are: 1) Full-Recovery Rate (FRR): the
probability of recovering all sketches; 2) Recovering-Sketch
Rate (RSR): the ratio of the number of recovered sketches
to the number of all sketches; From Figure 7d, we find that
our system is robust to survive several device failures. When
λb = 4, the FRR is still >60%. Even if half of the end-hosts
break down (λb = 8), the analyzer still stands a chance of

9Normal end-hosts still send packets to broken end-hosts, but broken
end-hosts cannot send packets to others.

recovering all sketches (FRR > 0). And the RSR slowly de-
creases as λb increases. When λb = 7, the analyzer can recon-
struct more than 90% sketches.

9 Conclusion and Future Work
In this paper, we present LightGuardian, a full-visibility,
lightweight, in-band network telemetry system. LightGuardian
designs the SuMax sketch to capture per-flow per-hop statis-
tics on the programmable data plane, and use the constant-
sized sketchlet to aggregate the statistics to any end-host,
which can then perform both the device-local and the network-
wide analysis. Experiments on a testbed and mininet simula-
tions show that our system is able to perform 4 local measure-
ment tasks, 3 network-wide tasks, and 3 anomalies locating
tasks with high accuracy and consistently low overhead.

In the future work, we plan to design a mechanism to au-
tomatically adjust the system parameters according to the
current traffic characteristics; we plan to conduct large-scale
simulations; we plan to design and evaluate other methods
of transferring sketches; we plan to offload the reconstruc-
tion and forwarding modules in end-host to smart NIC; we
plan to deploy our system in cloud networking; and we also
plan to use our measurement results to further improve the
performance of congestion control, load balancing, and traffic
scheduling.

Acknowledgment
We would like to thank the anonymous reviewers and our
shepherd, Z. Morley Mao, for their thoughtful suggestions.
This work is supported by National Natural Science Founda-
tion of China (NSFC) (No. U20A20179), and the project of
"FANet: PCL Future Greater-Bay Area Network Facilities for
Large-scale Experiments and Applications" (No. LZC0019).

1002 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Minlan Yu. Network telemetry: towards a top-down
approach. ACM SIGCOMM Computer Communication
Review, 49(1):11–17, 2019.

[2] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang
Zhou, Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui
Gao, and Yongguang Zhang. Serverswitch: a pro-
grammable and high performance platform for data
center networks. In Nsdi, volume 11, pages 2–2, 2011.

[3] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corrup-
tion in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pages 362–375, 2017.

[4] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong,
and Srinivasan Keshav. Quartz: a new design element
for low-latency dcns. ACM SIGCOMM Computer Com-
munication Review, 44(4):283–294, 2014.

[5] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett,
Karthick Jayaraman, Todd Millstein, Yuval Tamir, and
George Varghese. Finding network misconfigurations
by automatic template inference. In 17th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 20), pages 999–1013, 2020.

[6] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
Netbouncer: Active device and link failure localization
in data center networks. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation
({NSDI} 19), pages 599–614, 2019.

[7] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin
Chang, Kang Chen, Hai Jiang, and Yongwei Wu. X-
rdma: Effective rdma middleware in large-scale pro-
duction environments. In 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pages
1–12. IEEE, 2019.

[8] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen
Tian, and Weicheng Sun. Pias: Practical information-
agnostic flow scheduling for data center networks. In
Proceedings of the 13th ACM workshop on hot topics
in networks, pages 1–7, 2014.

[9] Li Chen, Justinas Lingys, Kai Chen, and Feng
Liu. Auto: Scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization. In Pro-
ceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 191–
205, 2018.

[10] Phillipa Gill, Navendu Jain, and Nachiappan Nagap-
pan. Understanding network failures in data centers:
measurement, analysis, and implications. In Proceed-

ings of the ACM SIGCOMM 2011 conference, pages
350–361, 2011.

[11] Xin Wu, Daniel Turner, Chao-Chih Chen, David A
Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.
Netpilot: automating datacenter network failure mitiga-
tion. In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures,
and protocols for computer communication, pages 419–
430, 2012.

[12] Qishi Wu, Sajjan Shiva, Sankardas Roy, Charles Ellis,
and Vivek Datla. On modeling and simulation of game
theory-based defense mechanisms against dos and ddos
attacks. In Proceedings of the 2010 spring simulation
multiconference, pages 1–8, 2010.

[13] JD Case, Mark Fedor, Martin Lee Schoffstall, and
James Davin. Rfc1157: Simple network management
protocol (snmp), 1990.

[14] Nick G Duffield and Matthias Grossglauser. Trajectory
sampling for direct traffic observation. IEEE/ACM
transactions on networking, 9(3):280–292, 2001.

[15] Vyas Sekar, Michael K Reiter, Walter Willinger, Hui
Zhang, Ramana Rao Kompella, and David G Andersen.
Csamp: a system for network-wide flow monitoring.
2008.

[16] Vyas Sekar, Michael K Reiter, and Hui Zhang. Revis-
iting the case for a minimalist approach for network
flow monitoring. In Proceedings of the 10th ACM SIG-
COMM conference on Internet measurement, pages
328–341, 2010.

[17] Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes
Felter, and John Carter. Opensample: A low-latency,
sampling-based measurement platform for commodity
sdn. In 2014 IEEE 34th International Conference on
Distributed Computing Systems, pages 228–237. IEEE,
2014.

[18] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[19] Sajad Shirali-Shahreza and Yashar Ganjali. Flexam:
flexible sampling extension for monitoring and security
applications in openflow. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 167–168, 2013.

[20] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1003

[21] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In ACM SIGCOMM Computer Commu-
nication Review, volume 45, pages 139–152. ACM,
2015.

[22] Hongyi Zeng, Ratul Mahajan, Nick McKeown, George
Varghese, Lihua Yuan, and Ming Zhang. Measuring
and troubleshooting large operational multipath net-
works with gray box testing. Mountain Safety Res.,
Seattle, WA, USA, Rep. MSR-TR-2015-55, 2015.

[23] Petr Lapukhov and Aijay Adams. Netnorad: Trou-
bleshooting networks via end-to-end probing.
https://engineering.fb.com/networking-tra
ffic/netnorad-troubleshooting-networks-v
ia-end-to-end-probing/, Febrary 2016.

[24] Amogh Dhamdhere, David D Clark, Alexander
Gamero-Garrido, Matthew Luckie, Ricky KP Mok,
Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C
Snoeren, and Kc Claffy. Inferring persistent interdo-
main congestion. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data
Communication, pages 1–15, 2018.

[25] Graham Cormode and Shan Muthukrishnan. An im-
proved data stream summary: the count-min sketch and
its applications. Journal of Algorithms, 55(1), 2005.

[26] Cristian Estan and George Varghese. New directions
in traffic measurement and accounting: Focusing on
the elephants, ignoring the mice. ACM Transactions
on Computer Systems (TOCS), 21(3), 2003.

[27] Moses Charikar, Kevin Chen, and Martin Farach-
Colton. Finding frequent items in data streams. In
International Colloquium on Automata, Languages,
and Programming, pages 693–703. Springer, 2002.

[28] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 conference
on ACM SIGCOMM 2016 Conference. ACM, 2016.

[29] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM SIGCOMM, pages 561–575. ACM, 2018.

[30] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketch-
learn: relieving user burdens in approximate measure-
ment with automated statistical inference. In Proceed-
ings of the 2018 Conference of the ACM Special In-
terest Group on Data Communication, pages 576–590.
ACM, 2018.

[31] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Aug-

mented sketch: Faster and more accurate stream pro-
cessing. In Proceedings of the 2016 International Con-
ference on Management of Data, pages 1449–1463,
2016.

[32] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and
Xiaoming Li. Pyramid sketch: A sketch framework for
frequency estimation of data streams. Proceedings of
the VLDB Endowment, 10(11):1442–1453, 2017.

[33] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. Beaucoup: Answering many
network traffic queries, one memory update at a time.
In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 226–239, 2020.

[34] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang,
Bin Cui, Yafei Dai, and Gong Zhang. Wavingsketch:
An unbiased and generic sketch for finding top-k items
in data streams. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 1574–1584, 2020.

[35] Tal Mizrahi, Gidi Navon, Giuseppe Fioccola, Mauro
Cociglio, Mach Chen, and Greg Mirsky. Am-pm: Effi-
cient network telemetry using alternate marking. IEEE
Network, 33(4):155–161, 2019.

[36] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[37] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong
Geng, Changhoon Kim, and David Mazières. Millions
of little minions: Using packets for low latency net-
work programming and visibility. ACM SIGCOMM
Computer Communication Review, 44(4):3–14, 2014.

[38] Cisco Nexus 9000 Series NX-OS Programmability
Guide. https://www.cisco.com/c/en/us/td/d
ocs/switches/datacenter/nexus9000/sw/92x/p
rogrammability/guide/b-cisco-nexus-9000-s
eries-nx-os-programmability-guide-92x/b
-cisco-nexus-9000-series-nx-os-programma
bility-guide-92x_chapter_0100001.html#id_
95566.

[39] John Sonchack, Oliver Michel, Adam J Aviv, Eric
Keller, and Jonathan M Smith. Scaling hardware accel-
erated network monitoring to concurrent and dynamic
queries with* flow. In 2018 {USENIX} Annual Techni-
cal Conference ({USENIX}{ATC} 18), pages 823–835,
2018.

[40] Bob Lantz, Brandon Heller, and Nick McKeown. A
network in a laptop: rapid prototyping for software-
defined networks. In Proceedings of the 9th ACM SIG-

1004 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://engineering.fb.com/networking-traffic/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://engineering.fb.com/networking-traffic/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://engineering.fb.com/networking-traffic/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://engineering.fb.com/networking-traffic/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_0100001.html#id_95566

COMM Workshop on Hot Topics in Networks, pages
1–6, 2010.

[41] P4 behavior model. https://github.com/p4lan
g/behavioral-model.

[42] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvi-
sor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 113–126. ACM, 2017.

[43] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, Shan Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In
Proceedings of the Symposium on SDN Research,
pages 164–176, 2017.

[44] Qun Huang and Patrick PC Lee. Ld-sketch: A dis-
tributed sketching design for accurate and scalable
anomaly detection in network data streams. In IEEE
INFOCOM 2014-IEEE Conference on Computer Com-
munications, pages 1420–1428. IEEE, 2014.

[45] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang
Dharmapurikar, and Abdul Kabbani. Counter braids: a
novel counter architecture for per-flow measurement.
ACM SIGMETRICS Performance Evaluation Review,
36(1):121–132, 2008.

[46] Minlan Yu, Lavanya Jose, and Rui Miao. Software
defined traffic measurement with opensketch. In NSDI,
volume 13, 2013.

[47] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory
Valiant. Sketching linear classifiers over data streams.
In Proceedings of the 2018 International Conference
on Management of Data, pages 757–772, 2018.

[48] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao,
Rui Zhang, Yanwei Xu, and Gong Zhang. Toward
nearly-zero-error sketching via compressive sensing.
In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX As-
sociation, April 2021.

[49] Zaoxing Liu, Samson Zhou, Ori Rottenstreich,
Vladimir Braverman, and Jennifer Rexford. Memory-
efficient performance monitoring on programmable
switches with lean algorithms. In Symposium on Algo-
rithmic Principles of Computer Systems, pages 31–44.
SIAM, 2020.

[50] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center
networks. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and
Technologies, pages 481–495, 2016.

[51] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[52] Michael T Goodrich and Michael Mitzenmacher. In-
vertible bloom lookup tables. In 2011 49th Annual
Allerton Conference on Communication, Control, and
Computing (Allerton), pages 792–799. IEEE, 2011.

[53] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based perfor-
mance diagnosis for network functions. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 390–403, 2020.

[54] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. Flowradar: A better netflow for data centers. In
NSDI, 2016.

[55] Leo Cloutier. Apparatus and method for correcting
jitter in data packets, August 4 1998. US Patent
5,790,543.

[56] Siu-Ping Chan, C-W Kok, and Albert K Wong. Multi-
media streaming gateway with jitter detection. IEEE
Transactions on Multimedia, 7(3):585–592, 2005.

[57] Tom McBeath. Method and apparatus for monitoring
latency, jitter, packet throughput and packet loss ratio
between two points on a network, June 14 2011. US
Patent 7,961,637.

[58] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed network monitoring and debugging with
switchpointer. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18), pages 453–456, 2018.

[59] Ivan Morandi, Francesco Bronzino, Renata Teixeira,
and Srikanth Sundaresan. Service traceroute: tracing
paths of application flows. In International Conference
on Passive and Active Network Measurement, pages
116–128. Springer, 2019.

[60] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin
Gao, and Randy Bush. A measurement study on the
impact of routing events on end-to-end internet path
performance. ACM SIGCOMM Computer Communi-
cation Review, 36(4):375–386, 2006.

[61] Ying Zhang, Zhuoqing Morley Mao, and Jia Wang. A
framework for measuring and predicting the impact of
routing changes. In IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communica-
tions, pages 339–347. IEEE, 2007.

[62] Kanak Agarwal, Eric Rozner, Colin Dixon, and John
Carter. Sdn traceroute: Tracing sdn forwarding without
changing network behavior. In Proceedings of the third
workshop on Hot topics in software defined networking,
pages 145–150, 2014.

[63] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In 12th {USENIX} Symposium on Operat-

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1005

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

ing Systems Design and Implementation ({OSDI} 16),
pages 233–248, 2016.

[64] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,
Wes Felter, Kanak Agarwal, John Carter, and Ro-
drigo Fonseca. Planck: Millisecond-scale monitor-
ing and control for commodity networks. ACM SIG-
COMM Computer Communication Review, 44(4):407–
418, 2014.

[65] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know
what your packet did last hop: Using packet histories
to troubleshoot networks. In 11th {USENIX} Sympo-
sium on Networked Systems Design and Implementa-
tion ({NSDI} 14), pages 71–85, 2014.

[66] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica.
Confluo: Distributed monitoring and diagnosis stack
for high-speed networks. In 16th {USENIX} Sympo-
sium on Networked Systems Design and Implementa-
tion ({NSDI} 19), pages 421–436, 2019.

[67] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner,
and John Lockwood. Fast hash table lookup using
extended bloom filter: an aid to network processing.
ACM SIGCOMM Computer Communication Review,
35(4):181–192, 2005.

[68] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha,
Rajeev Alur, and Boon Thau Loo. Quantitative net-
work monitoring with netqre. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pages 99–112, 2017.

[69] Omid Alipourfard, Masoud Moshref, and Minlan Yu.
Re-evaluating measurement algorithms in software. In
Proceedings of the 14th ACM Workshop on Hot Topics
in Networks, pages 1–7, 2015.

[70] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers
in data centers. In Proceedings of the 2016 ACM SIG-
COMM Conference, pages 129–143, 2016.

[71] Xuemei Liu, Meral Shirazipour, Minlan Yu, and Ying
Zhang. Mozart: Temporal coordination of measure-
ment. In Proceedings of the Symposium on SDN Re-
search, pages 1–12, 2016.

[72] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Ste-
fano Vissicchio, and Laurent Vanbever. Stroboscope:
Declarative network monitoring on a budget. In 15th
{USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 18), pages 467–482,
2018.

[73] Benoit Claise. Cisco systems netflow version 9. Tech-
nical report, 2004.

[74] Peter Phaal, Sonia Panchen, and Neil McKee. Inmon
corporation’s sflow: A method for monitoring traffic in
switched and routed networks. Technical report, 2001.

[75] Pavlos Nikolopoulos, Christos Pappas, Katerina Argy-
raki, and Adrian Perrig. Retroactive packet sampling
for traffic receipts. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 3(1):1–
39, 2019.

[76] Fangfan Li, Arian Akhavan Niaki, David Choffnes,
Phillipa Gill, and Alan Mislove. A large-scale analysis
of deployed traffic differentiation practices. In Pro-
ceedings of the ACM Special Interest Group on Data
Communication, pages 130–144. 2019.

[77] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 334–350. 2019.

[78] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In ACM SIGCOMM Computer Commu-
nication Review, volume 45. ACM, 2015.

[79] Pietro Marchetta, Alessio Botta, Ethan Katz-Bassett,
and Antonio Pescapé. Dissecting round trip time on the
slow path with a single packet. In International Con-
ference on Passive and Active Network Measurement,
pages 88–97. Springer, 2014.

[80] Andreas Wundsam, Dan Levin, Srini Seetharaman, and
Anja Feldmann. Ofrewind: Enabling record and re-
play troubleshooting for networks. In USENIX Annual
Technical Conference, pages 327–340. USENIX Asso-
ciation, 2011.

[81] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C
Snoeren. Passive realtime datacenter fault detection
and localization. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation
({NSDI} 17), pages 595–612, 2017.

[82] Srinivasan Seshan, Mark Stemm, and Randy H Katz.
Spand: Shared passive network performance discovery.
In USENIX Symposium on Internet Technologies and
Systems, pages 1–13, 1997.

[83] Srinivas Narayana, Anirudh Sivaraman, Vikram
Nathan, Prateesh Goyal, Venkat Arun, Mohammad
Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. Language-directed hardware design for network
performance monitoring. In Proceedings of the
Conference of the ACM Special Interest Group on
Data Communication, pages 85–98, 2017.

[84] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Pro-
ceedings of the 2018 Conference of the ACM Special

1006 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Interest Group on Data Communication, pages 357–
371, 2018.

[85] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Dream: dynamic resource allocation
for software-defined measurement. ACM SIGCOMM
Computer Communication Review, 44(4), 2015.

[86] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Scream: Sketch resource allocation
for software-defined measurement. In Proceedings of
the 11th ACM Conference on Emerging Networking
Experiments and Technologies, pages 1–13, 2015.

[87] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai,
Feng Zhu, and Yungang Bao. Omnimon: Re-
architecting network telemetry with resource efficiency
and full accuracy. In Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communica-
tion, pages 404–421, 2020.

[88] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yu-
liang Li, Gianni Antichi, Minian Yu, and Michael
Mitzenmacher. Pint: Probabilistic in-band network
telemetry. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures,
and protocols for computer communication, pages 662–
680, 2020.

[89] The open virtual switch website. http://openvswi
tch.org.

[90] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, S Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In
Proceedings of the Symposium on SDN Research.
ACM, 2017.

[91] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rot-
tenstreich. Efficient measurement on programmable
switches using probabilistic recirculation. In 2018
IEEE 26th International Conference on Network Pro-
tocols (ICNP), pages 313–323. IEEE, 2018.

[92] Graham Cormode. Sketch techniques for approxi-
mate query processing. Foundations and Trends in
Databases. NOW publishers, 2011.

[93] Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang.
Data streaming algorithms for efficient and accurate
estimation of flow size distribution. ACM SIGMET-
RICS Performance Evaluation Review, 32(1):177–188,
2004.

[94] Kyu-Young Whang, Brad T Vander-Zanden, and
Howard M Taylor. A linear-time probabilistic counting
algorithm for database applications. ACM Transac-
tions on Database Systems (TODS), 15(2):208–229,
1990.

[95] eBPF - Introduction, Tutorials Community Resources.
https://ebpf.io.

[96] P4-16 Language Specification. https:
//p4.org/p4-spec/docs/P4-16-v1.2.1.ht
ml#sec-checksums.

[97] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George
Porter, and Alex C Snoeren. Inside the social net-
work’s (datacenter) network. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 123–137, 2015.

[98] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In Proceedings of the ACM SIG-
COMM 2010 conference, pages 63–74, 2010.

[99] The CAIDA Anonymized Internet Traces. http://
www.caida.org/data/overview/.

[100] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,
Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen
Shen, Yongqing Xi, et al. Flow event telemetry on
programmable data plane. In Proceedings of the An-
nual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 76–89, 2020.

[101] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. ACM SIGCOMM Computer Communica-
tion Review, 43(4):435–446, 2013.

[102] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication, pages
221–235, 2018.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1007

http://openvswitch.org
http://openvswitch.org
https://ebpf.io
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/

APPENDIX
A Algorithm
Algorithm 1: Insertion of SuMax sketch

Input: A new packet 〈 f ,α,β〉.
1 ω←+∞;
2 for i = 0→ d−1 do
3 if Asum

i [Hi(f)]+α < ω then
4 ω← Asum

i [Hi(f)]+α ;
5 Asum

i [Hi(f)]← ω;
6 else if Asum

i [Hi(f)]< ω then
7 Asum

i [Hi(f)]← ω;
8 end
9 Amax

i [Hi(f)]←max{β,Amax
i [Hi(f)]};

10 end

B Proof of Theorem 6.1

Theorem B.1 After receiving sketchlets with a ratio of θ,
SuMax can report valid results with a ratio of (1− (1−θ)d).
Specifically, when the result is valid, the estimated flow size
has the following error bounds.

Pr
{
|n̂ f −n f |> ε

}
<

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d ,

where d and w are parameters of SuMax (see Table 2), n f and
n̂ f are the real and estimated flow size, and m is the number
of inserted packets.

Proof B.1 Let A1[H1(f)], · · ·Ad [Hd(f)] be the values of d
mapped buckets. Let V1, · · · ,Vd be d indicating random vari-
ables, where Vi indicates whether the i-th mapped bucket is
received. Since the reported result of SuMax is valid as long
as at least one buckets is received, the probability of acquiring
a valid result is:

Pr{valid}= Pr
{

V1 = 1∨·· ·∨Vd = 1
}

= 1−
d

∏
i=1

Pr
{

Vi = 0
}
= 1− (1−θ)d

The expected number of packets mapped to each bucket is
m
w +n f . Since SuMax uses a conservative update method, not
every packet increments the value of the bucket. Thus the
value of each bucket satisfies:

E(Ai[Hi(f)])<
m
w
+n f

According to the Markov inequality, we can derive that:

Pr
{∣∣Ai[Hi(f)]−n f

∣∣> ε
}
<

E(Ai[Hi(f)]−n f)

ε
<

m
wε

According to the total probability rule, we have

Pr
{
|n̂ f −n f |> ε

}
=

d

∑
i=1

Pr{ζi} ·Pr
{
|n̂ f −n f |> ε | ζi

}
<

d

∑
i=1

(d
i

)
θi(1−θ)d−i

1− (1−θ)d ·
(m

wε

)i
=

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d

where ζi indicates that there are i valid buckets after the
reconstruction process.

C Evaluation Metrics

1) Average Relative Error (ARE): 1
|Ψ| ∑ fi∈Ψ

|ni−n̂i|
ni

, where
ni is the real statistics of flow fi, n̂i is the estimated statistics
of flow fi, and Ψ is the flow set.
2) Recall Rate (RR): The ratio of the number of correctly
reported instances to the number of all correct instances.
3) Precision Rate (PR): The ratio of the number of correctly
reported instances to the number of all reported instances.
4) F1 Score: 2×PR×RR

PR+RR .

5) Relative Error (RE): |Est.−True|
True , where Est. and True are

the estimated and true statistics, respectively.
6) Weighted Mean Relative Error (WMRE) [42, 93]:
∑

z
i=1 |ni−n̂i|

∑
z
i=1

ni+n̂i
2

, where ni and n̂i are the real and estimated event

probabilities respectively, and z is the number of events.

D Additional Experimental Results

D.1 Experiments on SuMax
Flow size estimation (Figure 11a): We find that the ARE of
SuMax is higher to CM and close to CU. When using 768KB
of memory, for the largest 500 flows, the ARE of SuMax is
17.1 times lower than CM and only 0.1 times higher than CU.
Memory overhead (Figure 11b): We find that the memory
overhead of SuMax grows sub-linearly with the number of
generated packets, which guarantees the scalability of Light-
Guardian. We conduct this experiment in the flow size es-
timation task. We vary the number of generated packets in
the network, and record how much memory SuMax needs
to achieve 0.01 ARE. Table 3 further studies the memory
overhead of SuMax in various tasks.
Delay distribution (Figure 12a-12e): We find that for differ-
ent datasets, SuMax always achieves performance similar to
CU. Figure 12a-12b show that the WMRE of SuMax is lower
than CM and close to CU, which means SuMax has a stable
performance. Figure 12c-12e show that when using 6MB of
memory and varying the top-k flows, the WMRE of SuMax
is similar to CU and lower than CM.
Last arrival time (Figure 12f-12g): We find that when using
768KB of memory, the Average Absolute Error (AAE) is less
than 12ms; and when using 3MB of memory, the AAE is
less than 1.5ms. Figure 12g further illustrated that when using

1008 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

768KB of memory, the estimated results are absolutely correct
for 87% packets.

Table 3: Memory usage of SuMax in various tasks.

Task Target error Memory (MB)
Flow size estimation 0.01 ∼ 0.1
Flow size distribution 0.05 ∼ 0.4

Cardinality 0.005 ∼ 0.2
Entropy 0.001 ∼ 0.8

Delay distribution 0.05 ∼ 0.8
Max inter-arrival 0.01 ∼ 50
Last arrival time 0.01 ∼ 0.8

D.2 Simulations on Mininet
We demonstrate the specific PR and RR experimental results
in § 8.3.

200 400 600 800
0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Memory usage (KB)

 threshold=0.9 threshold=0.7
 threshold=0.5 threshold=0.3
 threshold=0.1

(a) PR v.s. memory usage.

200 400 600 800
0.8

0.9

1.0

R
ec

al
l

Memory usage (KB)

 threshold=0.9 threshold=0.7
 threshold=0.5 threshold=0.3
 threshold=0.1

(b) RR v.s. memory usage.
Figure 8: Accuracy of locating blackholes.

Locating blackholes (Figure 8a-8b): We find that Light-
Guardian achieve high accuracy in locating blackholes. The
results show that higher threshold goes with lower PR and
higher RR. When using 800KB of memory (216 buckets), the
PR and RR reach 0.982 ∼ 0.997 and 0.998 ∼ 0.999 respec-
tively.

200 400 600 800
0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Memory usage (KB)

 threshold=3 threshold=5
 threshold=7 threshold=9

(a) PR v.s. memory usage.

200 400 600 800
0.6

0.8

1.0

R
ec

al
l

Memory usage (KB)

 threshold=3 threshold=5
 threshold=7 threshold=9

(b) RR v.s. memory usage.
Figure 9: Accuracy of locating loops.

Locating loops (Figure 9a-9b): We find that LightGuardian
achieve high accuracy in locating loops. The results show that
higher threshold goes with higher PR and lower RR. When
using 800KB of memory, the PR and RR reaches 0.988 ∼
0.994 and 0.993∼ 0.998 respectively.
Locating abnormal jitters (Figure 10a-10b): We find that
LightGuardian achieve high accuracy in locating jitters. The
results show that higher threshold goes with higher PR and

0 10 20 30 40 50

0.8

0.9

1.0

Pr
ec

is
io

n

Memory usage (KB)

 threshold=1.3 threshold=1.5
 threshold=1.7 threshold=1.9

(a) PR v.s. memory usage.

0 10 20 30 40 50

0.7

0.8

0.9

1.0

R
ec

al
l

Memory usage (KB)

 threshold=1.3 threshold=1.5
 threshold=1.7 threshold=1.9

(b) RR v.s. memory usage.
Figure 10: Accuracy of locating abnormal jitters.

lower RR. When using more than 500KB of memory, both PR
and RR are close to 1.0. When using 50KB of memory (212

buckets), the PR and RR reach 0.998 ∼ 0.999 and 0.994 ∼
0.999 respectively.

D.3 Testbed Experiments
We further extend the experiments in § 8.2.
Bandwidth overhead v.s. λc (Figure 13a): We find that the
bandwidth overhead of LightGuardian can be dynamically
adjusted by the carrying probability λc. We vary the carry-
ing probability λc from 1

64 to 8
64 , and measure the bandwidth

overhead. The results show that compared with INT, Light-
Guardian only uses 1.5% to 12.4% bandwidth. When the av-
erage packet size becomes smaller (e.g., when encountering
DDos attacks) and the number of the packets increases, our
LightGuardian can adjust the bandwidth overhead by reducing
λc. INT does not have this ability.
Required time (RT) v.s. λc (Figure 13b): We find that the
time required to construct the sketches can be dynamically
adjusted by the carrying probability λc. We generate 36Gbps
traffic between two end-hosts in the same rack, and vary λc
from 1

64 to 8
64 . The results show that as λc increases, the

required time decreases.
Required packets (RP) v.s. λc (Figure 13c): We find that
the packets required to reconstruct the sketches can be dy-
namically adjusted by the carrying probability λ. The results
show that the packets required to aggregate 90% and 99%
sketchlets is negatively correlated to λc.
FCT v.s. flow size (Figure 14b): We find that LightGuardian
has little impact on the FCT for the flows of any size. We
measure the average FCT of flows of different sizes under 90%
traffic load. We divide the flows into five groups according
to their sizes: (0, 0.01MB), (0.01, 0.1MB), (0.1MB, 1MB),
(1MB, 10MB) and (10MB, 100MB), and calculate the average
FCT of each group. The results show that even for the flows
of 100MB, the average FCT is no more than 40ms.
RP/RT v.s. w (Figure 14c-14d): We find that the required
packets and the required time to reconstruct the sketches
can be dynamically adjusted by w. We vary the number of
sketchlets on the TOR switch from 212 to 216 and measure
the number of the required packets and the required time to
achieve certain reconstruction rates. The results show that
both the required time and the required packets grow linearly
with the number of sketchlets.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1009

102 103 104

0.00

0.01

0.02

0.03

A
R

E

Top-K

 SuMax (ours) CM
 CU

(a) Flow size estimation.

0 2 4 6 8 10
0

200

400

600

800

M
em

or
y

U
sa

ge
 (K

B
)

Packets (M)

 SuMax (ours) CM
 CU

(b) Memory overhead.

0 1000 2000 3000
10-2

10-1

W
M

R
E

Memory usage (KB)

 SuMax (ours)

(c) Flow size distribution.

Figure 11: Experimental results of the SuMax sketch in device-local tasks.

102 103 104

0.0

0.1

0.2

0.3

0.4

0.5

W
M

R
E

Memory usage (KB)

 SuMax (ours) CM
 CU

(a) Distribution (Union).

102 103 104

0.0

0.1

0.2

0.3

0.4

W
M

R
E

Memory usage (KB)

 SuMax (ours) CM
 CU

(b) Distribution (Mixed).

101 102 103 104

0.000

0.002

0.004

0.006

W
M

R
E

Top-K

 SuMax (ours) CM
 CU

(c) Distribution (χ2).

101 102 103 104

0.000

0.001

0.002

0.003

W
M

R
E

Top-K

 SuMax (ours) CM
 CU

(d) Distribution (Union).

101 102 103 104

0.000

0.001

0.002

0.003

W
M

R
E

Top-K

 SuMax (ours) CM
 CU

(e) Distribution (Mixed).

102 103 104 105

0

10

20

30

40

A
A

E
(m

s)

Memory usage (KB)

 d=2 d=3
 d=4 d=5

(f) Last arrival time.

102 103 104 105

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ay

Memory usage (KB)

 d=2 d=3
 d=4 d=5

(g) Last arrival time.

102 103 104

0

10

20

30

40

50

A
R

E

Top-K

 216 bucks 217 bucks
 218 bucks

(h) Max inter-arrival time.

Figure 12: Experimental results of the SuMax sketch in network-wide tasks.

0.00 0.04 0.08 0.12
0.00

0.04

0.08

0.12

R
el

at
iv

e
ba

nd
w

id
th

Carrying probability

 W1 W2

(a) Bandwidth v.s. λc.

0.00 0.04 0.08 0.12
0

10

20

30

Ti
m

e
(s

ec
on

ds
)

Carrying probability

 90% W1 99% W1
 90% W2 99% W2

(b) RT v.s. λc.

0.00 0.04 0.08 0.12
0

4

8

12

16

pa

ck
et

s
(M

)

Carrying probability

 90% W1 99% W1
 90% W2 99% W2

(c) RP v.s. λc.

Figure 13: Impact of carrying probability λc.

0 1 2 3 4
0

25

50

75

100

R
ec

on
st

ru
ct

io
n

ra
te

 (%
)

Time (seconds)

 Core Agg Edge

(a) Reconstruction (W2).

104 105 106 107 108

0

10

20

30

40

A
ve

ra
ge

 F
C

T
(m

s)

Flow size

 W1 (ours) W1
 W2 (ours) W2

(b) FCT v.s. flow size.

0.0 2.0x104 4.0x104 6.0x104
0

1

2

3

4

re

qu
ire

d
pa

ck
et

s
(M

)

buckets (w)

 Reconstruction rate=90%
 Reconstruction rate=99%

(c) RP v.s. w.

0.0 2.0x104 4.0x104 6.0x104
0

2

4

6

8

Ti
m

e
(s

ec
on

ds
)

buckets (w)

 Reconstruction rate=90%
 Reconstruction rate=99%

(d) RT v.s. w.

Figure 14: Experimental results on the testbed.

1010 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Related Work
	Measurement Tasks
	Related Work

	LightGuardian Overview
	Device-local Sketch Design: SuMax
	Motivation
	Rationale and Design Space for Sketches
	Data Structure and Operations
	Configuration of SuMax Sketch

	Transmission of Sketchlets
	Splitting the Sketch into Sketchlets.
	Probabilistically Carrying Sketchlets.
	Sketchlets Selection: K+chance Selection.

	Reconstruction and Analysis
	End-host Modules
	Network-wide Analysis with SuMax

	Prototype Implementation
	SuMax on Programmable Switches
	Workflow
	Challenge of Sketching Stage

	End-host Components

	Experimental Results
	Experiments on SuMax
	Testbed Experiments
	Simulations
	Simulations on Mininet
	Simulations for Robustness

	Conclusion and Future Work
	Algorithm
	Proof of Theorem 6.1
	Evaluation Metrics
	Additional Experimental Results
	Experiments on SuMax
	Simulations on Mininet
	Testbed Experiments

