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Abstract
1 Network traffic measurement is central to successful net-
work operations, especially for today’s hyper-scale networks.
Although existing works have made great contributions, they
fail to achieve the following three criteria simultaneously:
1) full-visibility, which refers to the ability to acquire any
desired per-hop flow-level information for all flows; 2) low
overhead in terms of computation, memory, and bandwidth;
and 3) robustness, meaning the system can survive partial
network failures. We design LightGuardian to meet these
three criteria. Our key innovation is a (small) constant-sized
data structure, called sketchlet, which can be embedded in
packet headers. Specifically, we design a novel SuMax sketch
to accurately capture flow-level information. SuMax can be
divided into sketchlets, which are carried in-band by pass-
ing packets to the end-hosts for aggregation, reconstruction,
and analysis. We have fully implemented a LightGuardian
prototype on a testbed with 10 programmable switches and
8 end-hosts in a FatTree topology, and conduct extensive
experiments and evaluations. Experimental results show that
LightGuardian can obtain per-flow per-hop flow-level informa-
tion within 1.0∼ 1.5 seconds with consistently low overhead,
using only 0.07% total bandwidth capacity of the network.
We believe LightGuardian is the first system to collect per-
flow per-hop information for all flows in the network with
negligible overhead.

1 Introduction

Network traffic measurement is central to successful network
operations, especially for today’s hyper-scale networks with
more than 105 devices [1–6]. Meanwhile, at end-hosts, know-
ing the traffic information in the core of the network can also
benefit application performance [7–9]. To infer application
performance and user experience, the community consensus
is to measure at flow-level granularity. Thus, an ideal mea-
surement system is expected to achieve: 1) full-visibility,
which we define as the ability to acquire any desired per-hop

1Co-primary authors: Yikai Zhao, Kaicheng Yang, and Zirui Liu. Cor-
responding authors: Tong Yang (yangtongemail@gmail.com) and Yi Wang
(wy@ieee.org).

flow-level information2 for all flows. Typical desired informa-
tion includes routing path, per-hop latency, jitters, and packet
drops. 2) lightweight in terms of computation, memory, and
bandwidth, independent of the scale of network and the traffic
dynamics; 3) robustness: the system should survive partial
network failures, including link failures, device failures, and
bandwidth depletion [6, 10–12].

Although existing works have made great contributions,
they fail to meet the above criteria simultaneously. We
coarsely characterize them into four categories:

• Partial/Sampling solutions [13–17] only sample pack-
ets or flows, or collect detailed statistics based on a pre-
configured list of conditionals [18, 19]. For instance, Ev-
erflow [20] samples each SYN packet, and Cisco switches
use the “match” keyword to specify which network flows
need to be counted. Therefore, only a subset of the network
traffic is measured with questionable accuracy.

• Probing solutions [6,21–24] measures the states of devices
or links by sending probing packets, and only these probes
are measured.

• Sketch-based solutions [25–34] collects the information
of every packet in a compact data structure, namely sketch,
on network devices. Current sketches are unable to collect
important flow-level information, such as jitters and packet
drops, and are not robust to network failures, particularly
device failures. Most prior sketches cannot be implemented
on P4-capable switches (§ 2.2).
• In-band solutions carry information in every packet header.

AM-PM [35] cannot achieve full-visibility with only one bit
per packet. Although INT [36, 37] can potentially achieve
full-visibility, its bandwidth and processing overhead grows
quickly with the scale of the network. In both the postcard
[38] (mirroring packets on each switch) or the passport [36]
mode (mirroring packets on only the sink switches), the
number of packets is at least doubled, which is a huge
burden for the network. *Flow [39] uses a cache to group
packet-level telemetry information according to the flow
IDs. But its bandwidth overhead is still proportional to the
number of packets.

2In this paper, per-hop flow-level information means per-flow per-hop
information.
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In summary, no existing work can achieve full-visibility with-
out considerable performance overhead, and none focuses on
lightweight and robust collection mechanism of network-wide
flow-level information.

We design LightGuardian to meet the above three criteria
simultaneously. Our key innovation is a (small) constant-sized
data structure, called sketchlet. A sketchlet is a fragment of
the sketch data structure on network devices (physical or
virtual), carried in-band in a packet’s header. At the end-host,
LightGuardian collects the sketchlets, reconstructs the original
sketch, and consequently obtains the accurate measurement
results of all flows.

To support and make full use of sketchlets, LightGuardian
incorporates three key techniques:
• Accurate & versatile device-local sketches: As current

sketches fail to capture important flow-level statistics (per-
hop latency and jitters), we design a novel sketch: the
SuMax sketch to support common measurement tasks, as
well as new tasks of operational importance. With our in-
sight that recording both the sum and the maximum can
accurately perform these tasks (§ 4.2), we design the sketch
with two types of cells: the sum cells and the maximum
cells. SuMax can be readily deployed on programmable
network devices, and we have fully implemented it on a
P4-capable switch (§ 7.1). Although SuMax is not the only
way to measure flow-level statistics, it can support almost
all measurement tasks thanks to its versatility.

• In-band telemetry with sketchlets: We propose a novel
approach that combines in-band telemetry and device-local
sketches. An INT-enabled device appends measurement
data to each packet. INT alone consumes an enormous
amount of bandwidth and multiplies the number of pack-
ets (§ 2.2). On the other hand, for sketch-based solutions,
although sketch is a compact coding of flow-level infor-
mation, the size of a sketch should be sufficiently large to
ensure accuracy, thus cannot be embedded in packet head-
ers. Combining the advantages of both approaches, our key
novelty is to split the sketch with flow-level information
into constant-sized sketchlets that can be embedded into
selected packet headers. Since the number of flows in the
network is much smaller than that of packets and the sketch
is a compactly coded representation of flow-level statistics,
the bandwidth overhead of sketchlets is significantly lower
than that of INT, while accurate flow-level measurement
can still be retrieved.

• Incremental network-wide aggregation: The receiving
end-hosts can either forward the sketchlets to a global ana-
lyzer, or reconstruct the sketch locally to obtain measure-
ment information of flows and devices inside the network.
The information can assist end-host applications in perfor-
mance optimization in a distributed fashion, which lessens
the burden on the centralized network control/management
plane. To guarantee robustness, we design the reconstruc-
tion algorithm to be tolerant of losses and reordering of

sketchlets. Our algorithm can approximate a sketch with
a subset of its sketchlets, and the reconstruction accuracy
is incrementally improved with more arriving sketchlets.
Our experimental results show that 80% sketchlets can
achieve an accurate estimation (§ 8.1), while collecting
80% sketchlets only needs 1.0∼ 1.5 seconds.

To the best of our knowledge, LightGuardian is the first
system to measure per-flow per-hop latency distribution and
detect abnormal jitters with high accuracy for all flows on
every participating network device, while maintaining low
overhead. It also collects useful traffic data for operations and
diagnostics previously unavailable in existing systems. Since
LightGuardian aims to measure various per-hop flow-level
information, after detecting end-to-end problems, users can
use our system to locate culprit network devices. Besides,
LightGuardian’s on-device mechanism is not limited to phys-
ical devices, and can be readily used in cloud networking
environments with virtualized network functions.

We have fully implemented a LightGuardian prototype on a
testbed with 10 Tofino switches and 8 end-hosts in a FatTree
topology. As a whole, our prototype can obtain per-flow per-
hop information within 1.0∼ 1.5 seconds with consistently
low overhead (0.07% of total bandwidth) on the network. We
also conduct large-scale simulations using mininet [40] and
P4 behavior model [41], confirming the correctness, robust-
ness, and performance of LightGuardian. We release all source
code anonymously 3.

In this paper, we make four key contributions:
We propose sketchlets and design a lightweight in-band
telemetry system. Using sketchlets, our system makes the
entirety of traffic information in the core of the network avail-
able at end-hosts for analytics and diagnostics. LightGuardian
is lightweight, which takes up negligible bandwidth, and it
can aggregate all sketchlets within 4 seconds.
We design the SuMax sketch to support common and
more important measurement tasks with high accu-
racy. For common tasks (e.g., flow size estimation), SuMax
achieves 6.78 times smaller error rate. Further, LightGuardian
can locate the culprit devices in the context of packet drops,
inflated latency, and abnormal jitters, achieving almost 100%
accuracy with less than 0.5MB memory.
We design an incremental reconstruction algorithm to
achieve robustness and failure tolerance. Our experimen-
tal results show that, even when 50% end-hosts fail, the an-
alyzer can still reconstruct 89% of all sketches. In addition,
device and link failures do not affect the reconstruction of
sketches of other devices (§ 8.3.2).
We implement a LightGuardian prototype and make it
open-source. We also build a testbed and conduct extensive
experiments, which confirms that our system can reach the
design criteria.

3 https://github.com/Light-Guardian/LightGuardian
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Table 1: Comparison with the state-of-the-arts. In this table, “Impl.” refers to implementation platforms; “P4 BM” refers to P4
behavior model [41]; “RMT” refers to Re-configurable Match Tables; and “PFPH” refers to “Per-Flow and Per-Hop”.

Measurement Tasks CM FlowRadar EverFlow INT AM-PM LightGuardian

Device-
local

Flow Size X X × X × X
Flow Size Distr. X X × X × X

Entropy X X × X × X
Cardinality X X × X × X

Network-
wide

PFPH Latency Distr. × × × X × X
PFPH Packet Drops × × × X × X

PFPH Jitters × × × X × X
Forwarding Path × X X X × X

Impl. RMT switches X × × X X X
P4 BM X X × X X X

2 Background and Related Work

2.1 Measurement Tasks
Existing measurement tasks can be classified into two cat-
egories: device-local measurement tasks and network-wide
measurement tasks. Device-local measurement tasks refer
to measuring flow-level information in a single node (an
end-host, a switch or a router), and there have been various
sketch-based solutions, such as sketches of CM [25], CU [26],
Count [27], UnivMon [28], Elastic [29], SketchLearn [30],
SketchVisor [42], and more [32–34, 43–48]. However, there
are very few sketches designed for network-wide measure-
ment tasks. This paper focuses on the following four network-
wide measurement tasks.
1) Estimating Latency: We aim to estimate per-flow per-
hop latency distribution. Existing works acquire end-to-end
latency by sending probing packets. And they monitor spe-
cific flows by tracking their packets [49]. However, these
solutions can hardly locate the victim flows and the culprit
devices simultaneously. In contrast, per-flow per-hop latency
distribution can help a lot but is more challenging.
2) Detecting Packet Drops: There are three causes of packet
drops: random drops, loops, and blackholes. For random
drops, the state-of-the-art LossRadar [50] uses a Bloom fil-
ter [51] and an Invertible Bloom Lookup Table (IBLT) [52] to
accurately find drops. LossRadar works excellently in many
cases. However, it consumes a lot of memory when a large
flow drops many packets, which frequently happens when
there are network misconfigurations [53]. For loops and black-
holes, the state-of-the-art FlowRadar [54] also uses a Bloom
filter and an IBLT, sharing the same advantages and shortcom-
ings as that of LossRadar.
3) Detecting Abnormal Jitters: Jitters refer to drastic
changes of packet inter-arrival time of a given flow. We aim to
find abnormal jitters in the per-flow per-hop manner. Jitters are
often caused by queuing, congestion, high bandwidth load, or
network attacks. It can significantly affect the performance of
streaming media (e.g., audio, video, music). To detect jitters,
end-to-end methods [55–57] have been proposed. However,
they cannot work in the per-flow per-hop manner.

4) Tracing Forwarding Path: We aim to trace the forward-
ing path of any flow. Given a flow, tracing forwarding path
can check whether the actual forwarding path is consistent
with expectation. It can help test and/or debug new network
protocols and network architectures, solutions for network
congestion, load balance, and flow scheduling. Existing works
for tracing forwarding path include FlowRadar [54], Switch-
Pointer [58], Service traceroute [59], and more [60–63].

2.2 Related Work
As shown in Table 1, compared with the state-of-the-art so-
lutions, only our system supports device-local and network-
wide measurement tasks, and it is implemented in both RMT
switches (e.g., Tofino) and P4 behavior model, achieving per-
flow per-hop measurements. In this section, we mainly in-
troduce the following four categories of measurement solu-
tions. For other measurement solutions, please refer to refer-
ences [64–72].
Partial/Sampling Solutions. Many measurement sys-
tems [14–17,20,46,73–76] are developed by sampling packets.
Sampling can significantly reduce the overhead of both time
and space, but inevitably sacrifices accuracy and misses impor-
tant events. Typical systems include NetFlow [73], sFlow [74],
OpenSketch [46], OpenSample [17], Everflow [20], NitroS-
ketch [77], and more [14–16, 76]. The state-of-the-art Univ-
Mon [28] obtains elegant theoretical guarantees using a mul-
tiple sample solution at the cost of high time complexities.
Sampling solutions probably miss many small flows, and thus
cannot achieve the ideal goal of fully-visibility.
Probing Solutions. These solutions monitor the net-
work by sending tailored packets. Typical systems include
Pingmesh [78], NetBoncer [6], NetSonar [22], NetNorad [23],
and more [24, 79–82]. Recently, AM-PM [35] gains wide
recognition in industry. AM-PM divides packet streams into
time periods, and the middle packet in each period is essen-
tially a probing packet. Therefore, it only records per-period
packet information, but is unaware of flow-level informa-
tion. Probing solutions cannot achieve the ideal goal of fully-
visibility because they cannot measure per-flow information.
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Step 1: Capture flow-level statistics with 
the new sketch we designed. 
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Figure 1: LightGuardian Overview and Workflow.

Sketch-based Solutions. There are a great number of sketch-
based solutions, which can be further divided into three cat-
egories. First, design and optimization of sketch algorithms.
Typical solutions include sketches of CM [25], CU [26],
Count [27], Elastic [29], and more [28, 30–32, 34]. But they
cannot measure the latency and jitters. Some are implemented
in P4 behavior model, but only a very few (BeauCoup [33],
Elastic [29]) are fully implemented in real programmable
switches . Due to the limitations of RMT (Re-configurable
Match Tables) based programmable switches, e.g., limited
concurrent memory access, single stage memory access, and
etc., the implementation in real switches is significantly more
challenging. Thus, we aim to design a new sketch to sup-
port both device-local and network-wide measurement tasks,
while can be easily implemented in RMT switches. Sec-
ond, measurement systems with dedicated sketches. Typical
solutions include FlowRadar [54], SketchLearn [30], NitroS-
ketch [77], and more [33, 46, 50]. The dedicated sketches can
barely achieve fully-visibility. Third, measurement systems
with shining features. Typical solutions include Marple [83],
Sonata [84], DREAM [85], Scream [86], and OmniMon [87].
By carefully designing the resource manager and telemetry
operator, OmniMon [87] achieves both resource efficiency
and high accuracy. Our SuMax sketch can also be applied in
OmniMon. All existing solutions do not focus on the overhead
with aggregating sketches all over the network.
In-band Telemetry Solutions. They insert packet-level in-
formation into every packet. Well-known solutions include
INT [36] and its successor PINT [88]. INT is considered as the
most promising solution for network measurement because
of two reasons. First, it can achieve fully-visibility because it
is flexible to carry any desired packet-level information. Sec-
ond, it can be implemented in RMT switches in a per-packet
manner. However, its bottleneck lies in the aggregation of
INT information. The INT information is distributed in every
network packet, and it is obviously very challenging to ag-
gregate that per-packet information. INT has two aggregation
strategies: postcard and passport, which mirror every packet

with only INT information in each switch or only the sink
switches. Although the INT information in each packet is
small (e.g., 100 bytes), the total bandwidth overhead is huge.
What is worse, the number of packets in the network will
be doubled, which is a heavy burden for packet processing.
Another in-band telemetry solution *Flow [39] uses a cache
to group packet-level telemetry information according to the
flow IDs. In this way, some information (e.g., 5-tuple flow ID)
in one group is recorded only once. However, its bandwidth
overhead is still proportional to the number of packets.

3 LightGuardian Overview
As shown in Figure 1, LightGuardian captures flow-level statis-
tics on each participating network device (physical or virtual)4

using sketches. The devices periodically split the sketches
into sketchlets and send the sketchlets to the end-hosts by
piggybacking them in headers of appropriate packets. Then
at the receiving end, the end-hosts batch the sketchlets into
groups and send them to a global analyzer when the network
load is low. Finally, the analyzer reconstructs the sketches and
perform analysis.
1) Capture flow-level statistics with novel sketches. Light-
Guardian captures flow-level statistics by deploying our
SuMax sketch on each participating device. Every packet is
processed into the sketch without sampling. Typical collected
statistics include the flow size (number of packets/bytes), per-
hop delay distribution, the arrival time of the last packet, and
the maximum inter-arrival time. The above statistics are used
for detecting packet drops and measuring per-hop latency
and maximum inter-arrival time, which are essential tasks for
industrial community. To support more tasks, we can also
include more collected statistics, e.g., the number of out-of-
order packets, the highest sequence number, and etc.
2) Split sketches into sketchlets and send them to the
end-hosts. The participating devices periodically split their

4Since most legacy switches and routers do not have programmable
dataplane capabilities, they cannot participate in LightGuardian (and their
existence in the network will not hinder the functions of LightGuardian).
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sketches into sketchlets and send them to the end-hosts.
Specifically, at the start of each measurement interval, the
devices initiate a new SuMax sketch to record the flow-level
statistics. In the end, the sketches are divided into sketchlets of
several bytes (24 bytes in our implementation). Each sketch-
let is one column5 (or several columns) of the sketch. Each
switch then attaches these sketchlets to appropriate incoming
packets. Specifically, we choose the packets that have not yet
carried a sketchlet with a fixed probability (e.g., 0.05).

3) [Optional] Batch sketchlets and forward to a global
analyzer. LightGuardian has two working modes: 1) Local
analysis mode, where each end-host uses local sketchlets to
perform analysis for local applications; 2) Global analysis
mode, where a global analyzer collects all sketchlets and per-
forms analysis for network operators. If an end-host does
not want to perform local analysis, it can choose to forward
sketchlets to a global analyzer. A system daemon process
running on each end-host strips sketchlets off the packets,
and maintains the received sketchlets. When the process has
collected enough sketchlets, it batches the received sketchlets
into groups and forward them to the global analyzer. For Light-
Guardian, more than 350 sketchlets are grouped into a UDP
packet and share 42 bytes packet header, which significantly
reduces the number of additional packets for measurement.

4) Reconstruct sketches and perform analysis. The end-
host or the global analyzer (or end-hosts) can reconstruct the
sketchlets into sketches and perform further analysis. The pro-
cess of reconstructing sketches proceeds simultaneously with
the process of collecting sketchlets. After collecting enough
sketchlets, the analyzer can perform accurate estimation using
the partially reconstructed sketch. According to our experi-
ments, after receiving 55% sketchlets, our LightGuardian re-
ports 90% valid results, while the average relative error (ARE)
is only 0.088. Further, the estimation results are incrementally
refined with more and more sketchlets collected, the ARE re-
duces to 1×10−2, 1×10−3, 2×10−4 when 80%, 90%, and
100% sketchlets are received, respectively.

In this way, LightGuardian well achieves the three mentioned
design goals. For full-visibility, LightGuardian deploys SuMax
sketch on each network device to monitor various per-flow
per-hop information for all flows. For low overhead, Light-
Guardian uses small and constant-sized sketchlets to transmit
measurement information, which makes the in-band overhead
grow sub-linearly with the network/traffic scale. For robust-
ness, the reconstruction process of LightGuardian does not
require collecting all sketchlets whereas providing desirable
accuracy. Besides, any end-host with limited computation re-
sources can play the role of the global analyzer, which makes
our system robust.

5A sketch consists of multiple bucket arrays, and a column refers to the
buckets with the same index in each array.

4 Device-local Sketch Design: SuMax

4.1 Motivation
We design the SuMax sketch to achieve accurate measurement
of flow-level information on network devices of different plat-
forms: software (CPU, or OVS [89]), P4 behavior model [41],
programmable switches. To make LightGuardian widely ap-
plicable, this paper focuses on P4 behavior model and pro-
grammable switch platforms, as the software implementation
is straightforward. Using P4 also ensures our implementation
can be compiled to available and future P4 back-ends, such
as SmartNIC, FPGA and GPU.

UnivMon [28] and HashPipe [90] are implemented in P4
behavior model, but can hardly be implemented in RMT
switches. To address these issues, Basat et al. proposed us-
ing a recirculate method [91], inevitably incurring complex-
ities and degradation of switch throughput. BeauCoup [33]
and Elastic [29] have been implemented in RMT switches
(i.e., Tofino switches) by complicated designs and programs.
Further, the above four sketches cannot be directly used for
network-wide measurement tasks, such as estimating latency
and jitters. We found CM [25] is the most friendly sketch
for programmable switches. On the one hand, we optimize
its accuracy under the constraints of programmable switches.
On the other hand, we extend its functions to support both
device-local and network-wide tasks. In the meantime, we try
to keep the designed sketches as simple as possible.

4.2 Rationale and Design Space for Sketches
We first introduce the well-known CM sketch [25]. It is a typ-
ical sketch algorithm that sums packet attributes (e.g., packet
number, bytes number). It uses d counter arrays A0, · · · ,Ad−1.
For each array, it has a hash function Hi(·) to map a flow6

uniformly and randomly into a counter. When a packet of
flow f with attribute value α arrives, CM selects the counter
Ai[Hi( f )] for each array Ai and increments these counters by
α. To query the attribute sum of flow f , CM returns the mini-
mum value among A0[H0( f )], · · · ,Ad−1[Hd−1( f )], which is
still a sum of attributes of some flows. Therefore, CM has
only over-estimation errors. Similarly, the CU sketch [26] in-
crements only the smallest counter(s), significantly improving
the accuracy but not supporting pipeline implementation.

We propose to record both of the sum value and the maxi-
mum value7 to support versatile tasks. We insist that all packet
attributes can be accurately estimated by keeping only the
sum and maximum values. We also insist that either sum or
maximum value is indispensable. For example, sketches of
CM, CU, Count, FlowRadar cannot be used to find maximum
latency or inter-arrival time and last arrival time, because they
only record the sum value without maximum value.

6A flow has many packets sharing the same flow ID, which can be any
combination of 5-tuple: source IP address, source port, destination IP address,
destination port, protocol type.

7Note that [92] also suggests that the sketch algorithm can be used to find
the maximum value in a sequence.
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Table 2: Symbols frequently used in this paper.

Symbol Meaning
f An arbitrary flow

α
An attribute that needs to be recorded in the
sum cell (e.g., packet size)

β
An attribute that needs to be recorded in the
maximum cell (e.g., arrival time)

d SuMax consists of d bucket arrays
w Each array consists of w buckets
Ai The i-th bucket array

Asum
i [·] The sum cell in a bucket

Amax
i [·] The maximum cell in a bucket
Hi A hash function from a flow to {0, · · · ,w}

4.3 Data Structure and Operations
Data Structure (Figure 2): Our SuMax consists of d
bucket arrays A0, · · · ,Ad−1. Each array Ai contains w buckets
Ai[0], · · · ,Ai[w−1]. Each bucket has two cells: a sum cell and
a maximum cell, recording the sum value and the maximum
value of attributes, respectively. Each array Ai is associated
with a hash function Hi(.) that maps a flow into one of its
buckets. To support various tasks, we may need more than
one sum value or maximum value in each bucket. For conve-
nience, we only show using one sum value and one maximum
value. Table 2 lists the frequently used symbols in this paper.
Insertion: To achieve high accuracy and support pipeline
implementation, we propose an approximate conservative
update strategy as follows. To record a packet of flow f with
attribute α and β (〈 f ,α,β〉, α will be accumulated and β will
be compared with the maximum), we first maintain a current
minimum value ω and initialize it to ∞. For each array Ai,
we select a bucket Ai[Hi( f )] by computing the hash function
Hi( f ). For each selected bucket Ai[Hi( f )], we check its sum
cell Asum

i [Hi( f )] and update it as follows:

• If Asum
i [Hi( f )]+α < ω, update the current minimum value

ω = Asum
i [Hi( f )]+α, and set the cell to ω.

• If Asum
i [Hi( f )]+α > ω, and Asum

i [Hi( f )]< ω, set the cell
to ω.

• If Asum
i [Hi( f )]> ω, we keep the cell unchanged.

For the maximum cell Amax
i [Hi( f )], we just set it to

max{Amax
i [Hi( f )],β}. The pseudo-code of the insertion op-

eration is shown in Algorithm 1 in Appendix A.
Query: Given a flow f , SuMax returns two results: one sum
value estimation and one maximum value estimation. The
sum estimation is the minimum value among Asum

0 [H0( f )]
, · · · , Asum

d−1[Hd−1( f )]. The maximum value estimation is the
minimum value among Amax

0 [H0( f )] , · · · , Amax
d−1[Hd−1( f )].

Example (Figure 2): To record a packet 〈 f ,α = 3,β = 4〉,
SuMax updates the d (d = 3) buckets A0[H0( f )], A1[H1( f )],
A2[H2( f )] as follows. For the bucket [6,3], we increase 6 to
9, set ω to 9, and set 4 to max{4,3}. For the bucket [9,7], as
9 > ω and 7 > 4, we keep this bucket unchanged. For the
bucket [3,5], as 3+α < ω, we update ω to 6 and update 3 to

!"
!#
!$

6 3
9 7

3 5new packet
%, ' = ), * = +

SuMax sketch !$[ℋ$(/)]

9 4
9 7

6 5

a bucket a sum cell a maximum cell

!#[ℋ#(/)]

Figure 2: An example of SuMax.

ω = 6; as 4 < 5, we do not change the maximum cell. After
the insertion, when query flow f , SuMax returns min{9 ,9
,6} = 6 as the sum estimation, and returns min{4 ,7 ,5} = 4
as the maximum value estimation.
Analysis: Our SuMax uses an approximate conservative up-
date strategy to achieve both accuracy and pipeline friendly.
Note that the conservative update strategy (CU) cannot be
implemented in the pipeline because it needs the traceback
operations to only increase the smallest counter(s). Our idea
is to use the current minimum value to approximate the global
minimum value. In each insertion process, with more and
more counters accessed, the current minimum value will be
closer and closer to the global minimum value, and thus the
updated counter will be closer and closer to CU. Actually, the
first array is updated following the rule of CM, and the last
array is updated following the rule of CU. Since the coun-
ters in the last few arrays tend to have smaller values, they
are more likely to be returned as query results. Therefore,
SuMax can be viewed as an intermediate between CM and
CU, and its error is also bounded between them, but closer to
CU. As there are no tracebacks in our SuMax, it can be easily
implemented in the switch pipeline.

4.4 Configuration of SuMax Sketch
In current implementation, we design each bucket as follows.
Each bucket consists of four parts:

• a flow-size cell (sum cell) recording the flow size;
• λd delay cells (sum cells) recording the per-hop delay dis-

tribution, each one of which is associated with a predefined
delay time interval;

• an interval cell (maximum cell) recording the maximum
inter-arrival time;

• a last-time cell (maximum cell) recording the arrival time
of the last packet of a flow.

All cells are initialized to zero. When the cells of a bucket are
going to update, they should be updated as follows. Let tnow
be the ingress timestamp of this packet, tlast be the value of
the last-time cell, and tinterval = tnow− tlast . When tlast = 0, we
consider the current packet as the first packet of a flow, and
set tinterval = 0. First, we increment the flow-size cell by 1.
Second, we select one cell from the λd delay cells according
to the packet delay, and increment this cell by 1. Third, we
compare the value in the interval cell with tinterval and update
it accordingly. Fourth, we update the last-time cell to tnow.
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5 Transmission of Sketchlets
In this section, we show the transmission procedure of sketch-
lets in each participating network device. First, we split
sketches into sketchlets. Second, we sample packets to carry
sketchlets. Third, we select a sketchlet to be carried using our
selection strategy and insert it into the packet.

5.1 Splitting the Sketch into Sketchlets.
LightGuardian deploys two SuMax sketches (one active and
one idle) on each device. The active sketch is used to record
flow-level information, while the idle sketch is split into
sketchlets for transmission. After a fixed time interval (e.g.,
5s), we interchange these two sketches. We use an active-bit
to indicate which sketch is active. The active-bit is flipped
periodically, and the current interval is set to 5 seconds.

We split the idle sketch column by column, so that each
sketchlet contains a column of buckets. Each sketchlet is
associated with 1) a Sketchlet ID indicating the column index;
2) a Device ID; and 3) the active-bit indicating which one
of the two sketches it belongs to. The analyzer will sort the
received sketchlets (bucket columns) according to the Device
ID, active-bit, and Sketchlet ID.

5.2 Probabilistically Carrying Sketchlets.
Given an incoming packet, the device first checks the packet
header: if it has already carried a sketchlet, no more sketch-
lets will be carried. Otherwise, the device calculates a fixed
carrying probability λc (e.g., 0.05) to determine whether this
packet should carry a sketchlet. Each device samples only a
part of the packets to carry sketchlets with λc, so that every
device has a similar opportunity for packet transmission.

The packet format is shown in Figure 1. If a packet is
selected to carry sketchlet, we insert the sketchlet between
the TCP header and the application-layer message. First, we
use a bit in the TCP header (carry-bit) to indicate whether
this TCP packet carries a sketchlet. Second, we add a field to
record the device ID (16 bits). Third, we add a field to record
the sketchlet ID and the active-bit.

5.3 Sketchlets Selection: K+chance Selection.
Once the device determines the incoming packet should carry
a sketchlet, we need an algorithm to choose a sketchlet. In-
band telemetry solutions will lose measurement information
when packet drops happen. To address this issue, we can send
a sketchlet several times at the cost of more bandwidth usage.
An effective solution is to use a counter array. Specifically,
each counter corresponds to a sketchlet, indicating the num-
ber of times this sketchlet has been carried. For the incoming
packet, we locate several counters by computing hash func-
tions, find the smallest counter among them, and choose the
corresponding sketchlet to carry. As mentioned above, simi-
lar to the CU sketch, this solution cannot be implemented in
current P4-programmable switches, and thus we propose a
new algorithm namely k+chance selection.

The k+chance selection uses k arrays, each of which is an
N-bit array. For each array, each bit corresponds to a sketchlet.
All bits are initialized to 0. Whenever we need to select one of
the N sketchlets, we access the k arrays one by one. For each
array, we randomly choose a bit: if it is zero, we choose the
corresponding sketchlet and set this bit to 1; Otherwise, we
access the next array. In the worst case, we do not find a zero
bit after accessing all the k arrays, and we randomly choose
one sketchlet to transmit. In this way, we only need to record
an array ID in each sketchlet, which just takes dlog(k+1)e
bits (2∼3 bits). By contrast, when using the simple round-
robin, we need to record the column ID (usually 32 bits) in
each sketchlet. K+chance selection is an approximately fair
selection algorithm for hardware platforms. Our experiments
show that k+chance selection works well ( § 8.1).

6 Reconstruction and Analysis
In this section, we first describe the two modules at the end-
hosts: forwarding module and reconstruction module. These
two modules can work in isolation or in parallel. Then we
elaborate on how to obtain device-local measurements and
network-wide analysis using SuMax.

6.1 End-host Modules
Reconstruction Module. This module dynamically classi-
fies the received sketchlets into groups according to their
device IDs and active-bits, and sorts the sketchlets in each
group by their sketchlet IDs. In this way, the end-host recon-
structs a sketch for each group. Note that the reconstructed
sketches might be incomplete because some sketchlets are
still in the network or missing. Fortunately, an incomplete
sketch can also be used to answer queries: each query will
access d buckets, some of which may not have been received
yet. We consider the values in these buckets as invalid, and
report the minimum value among the other valid buckets. As
long as one of the d buckets is valid, we can report a valid
result. Otherwise, we report the result of invalid. In this way,
after some sketchlets are collected, the end-host then uses
these reconstructed sketches to perform further analysis. Our
experimental results (see § 8.1) show that 55% sketchlets
can report 90% valid results and achieve accurate estimation
(ARE < 0.1). The following theorem provides theoretical
guarantees for the reconstruction process.

Theorem 6.1 After receiving sketchlets with a ratio of θ,
SuMax can report valid results with a ratio of (1− (1−θ)d).
Specifically, when the result is valid, the estimated flow size
has the following error bounds.

Pr
{
|n̂ f −n f |> ε

}
<

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d

where d and w are parameters of SuMax (see Table 2), n f and
n̂ f are the real and estimated flow size, and m is the number
of inserted packets.
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The module can reconstruct the following four widely-
studied [28, 29, 54] device-local measurements:
• Flow Size Estimation. We return the minimum value of

the d mapped flow-size cells.
• Flow Size Distribution. We use the MRAC [93] algorithm

with the first bucket array in SuMax as input.
• Entropy. We compute −∑(ni · i

m log i
m ) based on the flow

size distribution, where ni is the number of flows with size
of i, and m = ∑(i ·ni).

• Cardinality. We calculate the number of flows using the
method of linear counting [94].
We believe the main advantage of this approach is that

the measurement is done in a distributed fashion, without a
centralized control or management plane.
Forwarding Module. End-hosts use this module to forward
sketchlets to a global analyzer for network-wide analysis.
Each end-host groups the received sketchlets into batches.
The end-host will send a batch of sketchlets to the analyzer
when appropriate. 1) When the bandwidth usage is high, the
end-host does not send sketchlets. 2) When the number of the
accumulated sketchlets reaches a threshold, or the end-host
has not sent any sketchlets for a certain period, it will send
all the accumulated sketchlets to the network-wide analyzer.
The network-wide analyzer reconstructs the sketches as the
end-hosts do, and then performs the network-wide analysis.

6.2 Network-wide Analysis with SuMax
For the following four network-wide analysis tasks, we need
to access different SuMax cells for different tasks. To perform
network-wide analysis tasks, we have two steps. First, the
network operator detects abnormal end-to-end incidents (e.g.,
TCP duplicate ACKs, TCP timeout8), and report the victim
flows to the network-wide control plane analyzer. Second,
based on the network topology, the analyzer further investi-
gates the sketches on the switches in the forwarding path of
the victim flow as to locate the specific culprit device or link.
Locating Inflated Latency. Locating inflated latency refers
to finding out the culprit switch, and the victim flow when
inflated end-to-end latency occurs. First, the end-host detects
abnormal incidents of inflated end-to-end latency, and reports
the ID of the victim flow. Second, the analyzer queries the per-
hop latency distribution of this flow by accessing the delay
cells in the corresponding reconstructed sketches. In this way,
it can easily locate the culprit switches with inflated latency
(e.g., a switch on which 80% packets have > 10µs latency).
Locating Packet Drops. As mentioned above, there are three
main packet drops behaviors: random drops, loops, and black-
holes. Random drops may result from hardware failures (e.g.,
faulty interfaces in switches). Loops may result from the mis-
configuration of the forwarding table, which leads the pack-
ets of the victim flows forever loop among several switches.

8Some tools provided by the OS (e.g., ePBF [95]) can help operators to
easily detect these abnormal incidents.

Blackholes may result from forwarding entries corruption
in culprit switches. After detecting end-to-end packet drops
from TCP re-transmission, timeout, or ping probe loss, the
end-host (sender) reports the flow ID to the analyzer. To lo-
cate the culprit switch, the analyzer queries the victim flow
in every sketch on the forwarding path by accessing the flow-
size cells. 1) If the flow size suddenly drops to 0 after passing
a switch, we report the switch as a blackhole. For example,
suppose there are five switches (s1 ∼ s5) on the forward-
ing path. If the estimated flow sizes on the five switches are
100,100,100,0,0, respectively, we report s4 as a blackhole.
2) If the flow size is abnormally large on several switches, we
infer a loop happens on them. For the same example with five
switches, if the flow sizes are 100,100,5000,5000,0, respec-
tively, we infer that s3 and s4 probably be involved in a loop.
3) If the flow size slightly decreases after passing a switch,
we infer that the switch suffers random packet drops. For the
same example, if the flow sizes are 100,100,95,95,95, we
infer random packet drops happen on s3.
Locating Abnormal Jitters. After detecting end-to-end vari-
ation in the packet inter-arrival time of a flow, the end-host
reports the flow ID to the analyzer. The analyzer queries the
maximum inter-arrival time of that flow, and finds out the
culprit switches on which the result is abnormally large.
Finding Abnormal Forwarding Path. When an end-host
receives a packet which carries a sketchlet not belonging to
the switches on the expected forwarding path, we report this
packet suffers abnormal forwarding.

7 Prototype Implementation
In this section, we first describe the workflow and difficulties
we face when implementing a LightGuardian prototype on a
programmable switch (Tofino-40GbE). On each switch, we
develop SuMax and the sketchlet transmission mechanism
using P4 [96]. Then we overview the components in the end-
hosts: the kernel modules to collect and forward the sketchlets.

7.1 SuMax on Programmable Switches
All existing sketches can be implemented in the software (e.g.
middleboxes, virtual network appliances, etc.), but most of
them cannot be deployed on programmable switches, which
limits their applicability outside of cloud networking envi-
ronments. For LightGuardian, since deployability is crucial to
achieving full-visibility in all network environments, we first
show that SuMax can be deployed on programmable switches
by implementing it on a Tofino-40GbE switch.

7.1.1 Workflow
On the switch, we design the workflow (relevant to Light-
Guardian) (Figure 3) as follows: we put Decision Making
Stage in the ingress pipeline, and Sketching Stage and Sketch-
let Generation Stage are placed in the egress pipeline.

The Decision Making Stage decides the following:
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Figure 3: Workflow on an RMT switch.

• Active sketch, i.e. which sketch should be inserted into. As
mentioned in § 5.1, we deploy two SuMax sketches on each
switch, and use the active-bit to identify the active sketch.
Note that the data plane of the switch cannot periodically
update the active-bit. Therefore, we run a process in the
switch control plane to periodically flip it. As the flipping
is asynchronous, we forbid carrying sketchlets in the last
second in each measurement interval.

• Fitness for sketchlets, i.e. whether the packet should carry
a sketchlet. The fitness conditions are: 1) the packet is
not carrying a sketchlet; 2) For each packet, we use its
5-tuple and its ingress timestamp to calculate a 16-bit
hash value (CRC16), and only when the value falls within
[0,λc216), the packet is selected to carry a sketchlet. λc is
a pre-configured parameter, and the second condition is
approximately allowing a packet to carry sketchlet with a
probability of λc

• Sketchlets selection. As described in § 5.3, we use the
k+chances selection algorithm to select a sketchlet to carry.
Thus, we need to randomly select a bit for each bit array. In
Tofino switches, we can only achieve pseudo-randomness:
we still use CRC16 to generate approximately random
numbers, and choose reasonable polynomials of CRC16
to generate multiple approximately independent random
numbers. Due to limitation of Tofino switch, we set k = 1.
In the Sketching Stage, we place two sketches: one idle

and one active. Their status is periodically flipped. These
two sketches are two match-action tables placed in the egress
pipeline, so each packet will pass them sequentially. For each
packet, the sketch table checks the active-bit. If the active-bit
indicates the current sketch is active, we hash the flow ID to
update the corresponding cells to record packet information.
The update procedures of SuMax are challenging on Tofino,
and we highlight the difficulties below (§ 7.1.2).

The Sketch Generation Stage reads the selected sketchlet
and writes it into the metadata if the packet is selected.

7.1.2 Challenge of Sketching Stage
SuMax records multiple packet attributes (e.g., flow size, de-
lay distribution, last arrival time, maximum inter-arrival time).
This requires multiple cells in each bucket. In Tofino switches,
the cells in SuMax are stored in registers. A switch has 12
Match-Action Units (MAU), each of which contains up to two

!"
!#

SuMax delay part

SuMax interval part

< 100'( 100'(~1*(
1*(~10*( > 10*(
Four delay (sum) cells

sketchlet #2

register

Switch

!"

register
!#!,!-

sketchlet #3 An interval 
(maximum) cell

Figure 4: Sketch implementation on an RMT switch.

256KB registers. Since 6 MAUs are used in other stages, only
6 MAUs (12 registers) can be used in the Sketching stage.
The main challenge is that, each incoming packet can only
access each register exactly once, and each access can only
read/write up to 64 consecutive bytes.

Thus, we have to assign the cells in a single bucket to
multiple registers. In other words, we need to divide SuMax
into parts. We use two examples, the measurement of latency
distribution (sum) and that of maximum packet inter-arrival
time, to illustrate our solution.
Latency distribution. We use the delay part of SuMax to
perform this task. As shown in Figure 4, this part consists
of d = 2 bucket arrays, each of which has w = 215 buckets.
Each bucket has λd = 4 sum cells (32-bit), each of which
corresponds to a predefined delay range. To make full use of
the registers, we observe that:
• The four cells in each bucket should not be assigned to a

single register. Since each 256KB register stores up to 216

32-bit cells, using a single register will limit the size of the
sketch (up to 214), which compromises the accuracy.

• Using four registers to store the four cells in each bucket
cannot be implemented on Tofino switch. As each switch
has two sketches, each of which contains at least two bucket
arrays, so we need at least 16 registers, while at most 12
registers are available in the Sketching stage.
Thus, we propose to use one register to store two cells in

each bucket, as shown in Figure 4. We divide each bucket
array into two registers, the first contains the first two cells
of each bucket, and the second contains the remaining two
cells. We group 4 cells in the same column into a sketchlet. In
this way, either the active or the idle sketch is updated, each
register is accessed only once for a packet.
Packet inter-arrival time is a task of measuring the maxi-
mum value, and its implementation is much easier. As shown
in Figure 4, we set d = 4 and w = 216. For each bucket array,
all 32-bit interval-cells are assigned to one register. We still
group the 4 interval-cells in the same column into a sketchlet.

7.2 End-host Components
LightGuardian needs to implement three functions on the end-
hosts: sending packets, receiving packets, reconstruction and
performing analysis.
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Sending packets: In the current implementation, Light-
Guardian inserts sketchlets between the Ethernet header and
the IP header. However, we should emphasize that this is
mainly due to hardware limitation: TCP checksum recalcula-
tion on Tofino is unreliable currently.

We also add the carry-bit after the Ethernet header, because
there is no space in the Ethernet header. To implement this
design, we program a Linux kernel module on the end-host,
which registers a new packet type ETH_P_SKETCHLET in the
Layer-3 protocol stack and modifies the Ethernet type of each
packet to be sent to ETH_P_SKETCHLET, and allocates extra
space for the carry-bit.
Receiving packets: We implement another Linux kernel
module to handle ETH_P_SKETCHLET packets. This module
decides whether the packet carries a sketchlet by checking
the carry-bit, and records the sketchlet in the stderr.
Reconstruction and Forwarding We implement a forward-
ing module for end-hosts to forward the sketchlets to a cen-
tralized analyzer. It reads stderr every 1 millisecond. When
the process finds the number of sketchlets in the log exceeds a
threshold (dependant on Maximum Transmission Unit (MTU)
of the network), or when a timeout is reached, the module
generates a packet containing all the received sketchlets of the
current interval, and sends it to the central analyzer. For ex-
ample, when MTU is 9KB, the threshold is set to 350 packets
(∼8.4KB). We set the timeout to 100 milliseconds.

Finally, analysis can be performed on the end-host or the
centralized analyzer with the same sketch reconstruction al-
gorithm described in § 6.1.

8 Experimental Results
We conduct extensive experiments on a testbed and using
mininet [40]. We focus on the following four key issues.
• How accurate can our SuMax sketch measure per-flow

statistics? We implement our SuMax sketch using C++,
and use the CAIDA datasets to evaluate the accuracy of
SuMax for seven measurement tasks.

• How much is the overhead of sending and aggregat-
ing sketchlets? We generate network traffic following the
widely used traffic distributions (WEB [97] and DCTCP
[98]). We evaluate the aggregation time, the bandwidth
overhead, and the impact on network performance (e.g.,
RTT, FCT).

• How accurate can LightGuardian detect network
anomalies? We use mininet to simulate a network, and
evaluate the accuracy of LightGuardian in locating black-
holes, loops, and abnormal jitters.

• Is LightGuardian resilient to network failures? We eval-
uate the performance of LightGuardian when end-hosts fail,
or some sketchlets are missing.

We conduct the experiments using the following metrics:
ARE, RR, PR, F1 Score, RE, and WMRE. We explain the
details of these metrics in Appendix C.

8.1 Experiments on SuMax
We use the anonymized IP traces collected in 2018 from
CAIDA [99]. The dataset contains 6M packets belonging to
0.9M different flows. We set d = 3 by default, which means
there are 3 bucket arrays in SuMax.
Flow size estimation (Figure 5a): We find that the accuracy
of SuMax is higher than CM and close to CU. When using
96KB of memory, the ARE of SuMax is 6.78 times lower
than CM, and 1.75 times higher than CU. We further study
how the flow sizes affect the accuracy (see Figure 11a in
Appendix D.1), and find that the results hold for both large
and small flows.
Robustness (Figure 5b-5c): We find that partially recon-
structed SuMax can provide accurate estimation. We set the
memory to 768KB and measure the valid query rate and the
ARE of the largest 1K flows. The results show that 55% re-
constructed SuMax can report >90% valid results with <0.1
ARE, and 80% reconstructed SuMax can report >99% valid
results with <0.01 ARE.
Other device-local tasks (Figure 5d-5e): We find that be-
sides flow size estimation, SuMax also achieves good per-
formance in other device-local measurement tasks, including
estimating cardinality, flow size distribution (see Figure 11c
in Appendix D.1), and entropy.
Delay distribution (Figure 5f): We find that the accuracy of
SuMax is higher than CM and close to CU. We generate the
delay of each packet according to the chi-square distribution.
We set λd = 8 and vary w from 210 to 217. For other delay
distribution, please refer to Figure 12a-12e in Appendix D.1.
Maximum inter-arrival time (Figure 5g): We find that
SuMax achieves <10 ARE when using more than 6MB of
memory, and <0.3 ARE when using more than 12MB of mem-
ory. Since when abnormal incidents happen, the maximum
inter-arrival time will rapidly increase dozens or hundreds
times, <10 ARE is accurate enough to locate problems. We
further study how the flow sizes affect the accuracy (see Fig-
ure 12h in Appendix D.1), and find that the results hold for
both large and small flows.
k+chance Selection (Figure 5h): We find that k+chance Se-
lection can effectively reduce the number of packets required
by the reconstruction process. According to the results, a
larger k goes with fewer required packets, which demonstrates
the effectiveness of our algorithm. We also find that the larger
the w, the better the optimization effect.
We further study the memory overhead of SuMax, and find
that its memory overhead grows sub-linearly with the network
scale, which guarantees the scalability of LightGuardian (see
Figure 11b and Table 3 in Appendix D.1).

8.2 Testbed Experiments
We evaluate LightGuardian on the testbed described in § 7.
Take the delay distribution measurement task as an instance,
the SuMax sketch we used contains d = 2 bucket arrays, each
of which has w = 215 buckets, and each bucket contains 4
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Figure 5: Experimental results on SuMax and the selection algorithm.

delay cells. This sketch also supports locating packet drops
and all the mentioned local measurement tasks. Similarly,
we can use another SuMax to locate abnormal jitters. By
default, we set the carrying probability λc to 1

16 , and set k = 1
for k+chance selection. We use two traffic distributions W1
(DCTCP [98]) and W2 (WEB [97]), which are widely used
in existing works [8, 100–102]. On each switch, the number
of the sketchlets is 216, and each sketchlet is 24 bytes.
Bandwidth overhead v.s. traffic load (Figure 6a): We find
that our system saves substantial bandwidth than INT. We
compare LightGuardian with a kind of INT that inserts 20-
bytes per-packet information into the packet headers at each
hop. The results show that the bandwidth overhead of Light-
Guardian ranges from 13.8Mbps to 25.7Mbps, which is only
about 0.07% of the total bandwidth. The bandwidth overhead
of INT ranges from 211Mbps to 394Mbps. Compared with
INT, our LightGuardian saves more than 93.5% bandwidth.
We also study how the carrying probability λc affects the
bandwidth usage (see Figure 13a-13c in Appendix D.3).
FCT v.s. traffic load (Figure 6b): We find that Light-
Guardian has little impact on the network. We vary the band-
width usage from 50% to 90%, and measure the average
Flow Completion Time (FCT) before and after deploying
LightGuardian. Under workload W1, after deploying Light-
Guardian, the average FCT increases by 8.3% at 50% traffic
load, and 1.8% at 90% traffic load. Under workload W2, af-
ter deploying LightGuardian, the average FCT increases by
16.3% at 50% traffic load, and 5.6% at 90% traffic load. Even
under 90% traffic load, LightGuardian still achieves <5ms
FCT. We also study the impact of the flow size on the average
FCT (see Figure 14b in Appendix D.3).
Per-hop latency v.s. traffic load (Figure 6c): We find that
LightGuardian has little impact on the network. We test the
per-hop latency before and after deploying LightGuardian in
the network. We vary the bandwidth usage from 0% to 90%,

and measure the average per-hop latency of 104 packets using
the ping -f instruction. The results show that at 0% traffic
load, after deploying LightGuardian, per-hop latency increases
1.6µs. At 90% load, per-hop latency increases at most 3.1µs.
Reconstruction rate v.s. time (Figure 6d): We find that the
sketches in LightGuardian can be quickly reconstructed. We
use 90% of the total bandwidth and measure the reconstruc-
tion rate on each switch over time. The results show that
under workload W1, the analyzer aggregates 90% sketchlets
on the edge switches, the aggregation switches, and the core
switches in 1.3, 1.7 and 2.1 seconds, respectively; and it aggre-
gates 99% sketchlets in 2.1, 2.8 and 3.6 seconds, respectively.
The results under workload W2 (as shown in Figure 14a in
Appendix D.3) are similar. Other results related to sketch
reconstruction are shown in Figure 14c-14d in Appendix D.3.

8.3 Simulations
8.3.1 Simulations on Mininet
We evaluate LightGuardian’s performance in locating black-
holes, loops, and abnormal jitters through Mininet case studies.
Our setup in Mininet consists of 16 hosts, 20 switches, and
48 links in a Fat-Tree topology. We only show the results as
F1 scores. For more specific PR and RR results, please refer
to Appendix D.2.
Locating blackholes (Figure 7a): We find that Light-
Guardian achieves high accuracy in locating blackholes. We
randomly generate 10M packets belonging to 0.1M different
flows. We create two blackholes by shutting down two links.
And we reconstruct the sketchlets in a fixed time interval (5s)
into sketches. For each flow, we query it in the reconstructed
sketches to locate the culprit switches where the ratio P

L is
below a threshold. Here, for any switch, P is the estimated
flow size, and L is the estimated flow size in the last-hop
switch. The results show that when using 0.8MB of memory
(216 buckets), F1 score can reach 0.99.
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(c) Per-hop latency v.s. load.
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Figure 6: Experimental results on the testbed.
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Figure 7: Simulations results on Mininet.

Locating loops (Figure 7b): We find that LightGuardian
achieves high accuracy in locating loops. We randomly gen-
erate 10M packets belonging to 0.1M different flows, and
let 10% flows loop between two randomly selected adja-
cent switches. For each flow, we query it in the reconstructed
sketches and locate the switches where P

L exceeds a threshold.
The results show that when using 0.8MB of memory, F1 score
reaches about 0.99.
Locating abnormal jitters (Figure 7c): We find that Light-
Guardian achieves high accuracy in locating abnormal jitters.
We randomly generate 10M packets belonging to 10K dif-
ferent flows. To simulate jitters on the switch, we randomly
choose two links, and split each of them into two parallel links
with different speed. In this way, the flows passing through
the slow link will suffer jitters, which leads to a sharp increase
in their inter-arrival time in the next-hop switch. The results
show that when using more than 20KB of memory, the F1
score is close to 1.

8.3.2 Simulations for Robustness
Next, we focus on the robustness of LightGuardian. The net-
work topology here is the same as Mininet. We set w = 216.
And in each experiment, we randomly select λb end-hosts and
shut them down9. Then we observe how many sketches can
be fully-reconstructed (recovered) in the global analyzer. The
metrics we used here are: 1) Full-Recovery Rate (FRR): the
probability of recovering all sketches; 2) Recovering-Sketch
Rate (RSR): the ratio of the number of recovered sketches
to the number of all sketches; From Figure 7d, we find that
our system is robust to survive several device failures. When
λb = 4, the FRR is still >60%. Even if half of the end-hosts
break down (λb = 8), the analyzer still stands a chance of

9Normal end-hosts still send packets to broken end-hosts, but broken
end-hosts cannot send packets to others.

recovering all sketches (FRR > 0). And the RSR slowly de-
creases as λb increases. When λb = 7, the analyzer can recon-
struct more than 90% sketches.

9 Conclusion and Future Work
In this paper, we present LightGuardian, a full-visibility,
lightweight, in-band network telemetry system. LightGuardian
designs the SuMax sketch to capture per-flow per-hop statis-
tics on the programmable data plane, and use the constant-
sized sketchlet to aggregate the statistics to any end-host,
which can then perform both the device-local and the network-
wide analysis. Experiments on a testbed and mininet simula-
tions show that our system is able to perform 4 local measure-
ment tasks, 3 network-wide tasks, and 3 anomalies locating
tasks with high accuracy and consistently low overhead.

In the future work, we plan to design a mechanism to au-
tomatically adjust the system parameters according to the
current traffic characteristics; we plan to conduct large-scale
simulations; we plan to design and evaluate other methods
of transferring sketches; we plan to offload the reconstruc-
tion and forwarding modules in end-host to smart NIC; we
plan to deploy our system in cloud networking; and we also
plan to use our measurement results to further improve the
performance of congestion control, load balancing, and traffic
scheduling.
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APPENDIX
A Algorithm
Algorithm 1: Insertion of SuMax sketch

Input: A new packet 〈 f ,α,β〉.
1 ω←+∞;
2 for i = 0→ d−1 do
3 if Asum

i [Hi( f )]+α < ω then
4 ω← Asum

i [Hi( f )]+α ;
5 Asum

i [Hi( f )]← ω;
6 else if Asum

i [Hi( f )]< ω then
7 Asum

i [Hi( f )]← ω;
8 end
9 Amax

i [Hi( f )]←max{β,Amax
i [Hi( f )]};

10 end

B Proof of Theorem 6.1

Theorem B.1 After receiving sketchlets with a ratio of θ,
SuMax can report valid results with a ratio of (1− (1−θ)d).
Specifically, when the result is valid, the estimated flow size
has the following error bounds.

Pr
{
|n̂ f −n f |> ε

}
<

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d ,

where d and w are parameters of SuMax (see Table 2), n f and
n̂ f are the real and estimated flow size, and m is the number
of inserted packets.

Proof B.1 Let A1[H1( f )], · · ·Ad [Hd( f )] be the values of d
mapped buckets. Let V1, · · · ,Vd be d indicating random vari-
ables, where Vi indicates whether the i-th mapped bucket is
received. Since the reported result of SuMax is valid as long
as at least one buckets is received, the probability of acquiring
a valid result is:

Pr{valid}= Pr
{

V1 = 1∨·· ·∨Vd = 1
}

= 1−
d

∏
i=1

Pr
{

Vi = 0
}
= 1− (1−θ)d

The expected number of packets mapped to each bucket is
m
w +n f . Since SuMax uses a conservative update method, not
every packet increments the value of the bucket. Thus the
value of each bucket satisfies:

E(Ai[Hi( f )])<
m
w
+n f

According to the Markov inequality, we can derive that:

Pr
{∣∣Ai[Hi( f )]−n f

∣∣> ε
}
<

E(Ai[Hi( f )]−n f )

ε
<

m
wε

According to the total probability rule, we have

Pr
{
|n̂ f −n f |> ε

}
=

d

∑
i=1

Pr{ζi} ·Pr
{
|n̂ f −n f |> ε | ζi

}
<

d

∑
i=1

(d
i

)
θi(1−θ)d−i

1− (1−θ)d ·
( m

wε

)i
=

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d

where ζi indicates that there are i valid buckets after the
reconstruction process.

C Evaluation Metrics

1) Average Relative Error (ARE): 1
|Ψ| ∑ fi∈Ψ

|ni−n̂i|
ni

, where
ni is the real statistics of flow fi, n̂i is the estimated statistics
of flow fi, and Ψ is the flow set.
2) Recall Rate (RR): The ratio of the number of correctly
reported instances to the number of all correct instances.
3) Precision Rate (PR): The ratio of the number of correctly
reported instances to the number of all reported instances.
4) F1 Score: 2×PR×RR

PR+RR .

5) Relative Error (RE): |Est.−True|
True , where Est. and True are

the estimated and true statistics, respectively.
6) Weighted Mean Relative Error (WMRE) [42, 93]:
∑

z
i=1 |ni−n̂i|

∑
z
i=1

ni+n̂i
2

, where ni and n̂i are the real and estimated event

probabilities respectively, and z is the number of events.

D Additional Experimental Results

D.1 Experiments on SuMax
Flow size estimation (Figure 11a): We find that the ARE of
SuMax is higher to CM and close to CU. When using 768KB
of memory, for the largest 500 flows, the ARE of SuMax is
17.1 times lower than CM and only 0.1 times higher than CU.
Memory overhead (Figure 11b): We find that the memory
overhead of SuMax grows sub-linearly with the number of
generated packets, which guarantees the scalability of Light-
Guardian. We conduct this experiment in the flow size es-
timation task. We vary the number of generated packets in
the network, and record how much memory SuMax needs
to achieve 0.01 ARE. Table 3 further studies the memory
overhead of SuMax in various tasks.
Delay distribution (Figure 12a-12e): We find that for differ-
ent datasets, SuMax always achieves performance similar to
CU. Figure 12a-12b show that the WMRE of SuMax is lower
than CM and close to CU, which means SuMax has a stable
performance. Figure 12c-12e show that when using 6MB of
memory and varying the top-k flows, the WMRE of SuMax
is similar to CU and lower than CM.
Last arrival time (Figure 12f-12g): We find that when using
768KB of memory, the Average Absolute Error (AAE) is less
than 12ms; and when using 3MB of memory, the AAE is
less than 1.5ms. Figure 12g further illustrated that when using
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768KB of memory, the estimated results are absolutely correct
for 87% packets.

Table 3: Memory usage of SuMax in various tasks.

Task Target error Memory (MB)
Flow size estimation 0.01 ∼ 0.1
Flow size distribution 0.05 ∼ 0.4

Cardinality 0.005 ∼ 0.2
Entropy 0.001 ∼ 0.8

Delay distribution 0.05 ∼ 0.8
Max inter-arrival 0.01 ∼ 50
Last arrival time 0.01 ∼ 0.8

D.2 Simulations on Mininet
We demonstrate the specific PR and RR experimental results
in § 8.3.
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Figure 8: Accuracy of locating blackholes.

Locating blackholes (Figure 8a-8b): We find that Light-
Guardian achieve high accuracy in locating blackholes. The
results show that higher threshold goes with lower PR and
higher RR. When using 800KB of memory (216 buckets), the
PR and RR reach 0.982 ∼ 0.997 and 0.998 ∼ 0.999 respec-
tively.
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Figure 9: Accuracy of locating loops.

Locating loops (Figure 9a-9b): We find that LightGuardian
achieve high accuracy in locating loops. The results show that
higher threshold goes with higher PR and lower RR. When
using 800KB of memory, the PR and RR reaches 0.988 ∼
0.994 and 0.993∼ 0.998 respectively.
Locating abnormal jitters (Figure 10a-10b): We find that
LightGuardian achieve high accuracy in locating jitters. The
results show that higher threshold goes with higher PR and
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Figure 10: Accuracy of locating abnormal jitters.

lower RR. When using more than 500KB of memory, both PR
and RR are close to 1.0. When using 50KB of memory (212

buckets), the PR and RR reach 0.998 ∼ 0.999 and 0.994 ∼
0.999 respectively.

D.3 Testbed Experiments
We further extend the experiments in § 8.2.
Bandwidth overhead v.s. λc (Figure 13a): We find that the
bandwidth overhead of LightGuardian can be dynamically
adjusted by the carrying probability λc. We vary the carry-
ing probability λc from 1

64 to 8
64 , and measure the bandwidth

overhead. The results show that compared with INT, Light-
Guardian only uses 1.5% to 12.4% bandwidth. When the av-
erage packet size becomes smaller (e.g., when encountering
DDos attacks) and the number of the packets increases, our
LightGuardian can adjust the bandwidth overhead by reducing
λc. INT does not have this ability.
Required time (RT) v.s. λc (Figure 13b): We find that the
time required to construct the sketches can be dynamically
adjusted by the carrying probability λc. We generate 36Gbps
traffic between two end-hosts in the same rack, and vary λc
from 1

64 to 8
64 . The results show that as λc increases, the

required time decreases.
Required packets (RP) v.s. λc (Figure 13c): We find that
the packets required to reconstruct the sketches can be dy-
namically adjusted by the carrying probability λ. The results
show that the packets required to aggregate 90% and 99%
sketchlets is negatively correlated to λc.
FCT v.s. flow size (Figure 14b): We find that LightGuardian
has little impact on the FCT for the flows of any size. We
measure the average FCT of flows of different sizes under 90%
traffic load. We divide the flows into five groups according
to their sizes: (0, 0.01MB), (0.01, 0.1MB), (0.1MB, 1MB),
(1MB, 10MB) and (10MB, 100MB), and calculate the average
FCT of each group. The results show that even for the flows
of 100MB, the average FCT is no more than 40ms.
RP/RT v.s. w (Figure 14c-14d): We find that the required
packets and the required time to reconstruct the sketches
can be dynamically adjusted by w. We vary the number of
sketchlets on the TOR switch from 212 to 216 and measure
the number of the required packets and the required time to
achieve certain reconstruction rates. The results show that
both the required time and the required packets grow linearly
with the number of sketchlets.
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Figure 11: Experimental results of the SuMax sketch in device-local tasks.
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Figure 12: Experimental results of the SuMax sketch in network-wide tasks.
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Figure 13: Impact of carrying probability λc.
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Figure 14: Experimental results on the testbed.
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