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Abstract—Batch is an important pattern in data streams, which
refers to a group of identical items that arrive closely. We find that
some special batches that arrive periodically are of great value.
In this paper, we formally define a new pattern, namely periodic
batches. A group of periodic batches refers to several batches of
the same item, where these batches arrive periodically. Studying
periodic batches is important in many applications, such as caches,
financial markets, online advertisements, networks, etc. This paper
proposes a unified framework, namely the HyperCalm sketch, to
detect batch and periodic batch in data streams. HyperCalm sketch
takes two phases to detect periodic batches. In phase 1, we propose
a time-aware Bloom filter, called HyperBloomFilter (HyperBF), to
detect batches. In phase 2, we propose an enhanced top-k algo-
rithm, called Calm Space-Saving (CalmSS), to report top-kperiodic
batches. Extensive experiments show HyperCalm outperforms the
strawman solutions 4× in term of average relative error and 98.1×
in term of speed. All related codes are open-sourced.

Index Terms—Data mining, data stream, sketch, periodic batch.

I. INTRODUCTION

A. Background and Motivation

BATCH is an important pattern in data streams [2], which is
a group of identical items that arrive closely. Two adjacent

batches of the same item are spaced by a minimum interval
T , where T is a predefined threshold. Although batches can
make a difference in various applications, such as cache [2],
networks [3], and machine learning [4], [5], it is not enough to
just study batches. For instance, in cache systems, with just the
measurement results of batches, we are still not able to devise

Manuscript received 18 July 2023; revised 16 March 2024; accepted 6 May
2024. Date of publication 9 May 2024; date of current version 27 September
2024. This work was supported in part by Key-Area Research and Development
Program of Guangdong Province under Grant 2020B0101390001 and in part by
National Natural Science Foundation of China (NSFC) under Grant U20A20179
and Grant 61832001. An earlier version of this paper titled “HyperCalm Sketch:
One-Pass Mining Periodic Batches in Data Streams” is published in the 39th
IEEE International Conference on Data Engineering (IEEE ICDE 2023) [doi:
10.1109/ICDE55515.2023.00009]. Recommended for acceptance by B. Glavic.
(Corresponding author: Tong Yang.)

Zirui Liu, Xiangyuan Wang, Yuhan Wu, Kaicheng Yang, Hailin Zhang, and
Bin Cui are with the National Key Laboratory for Multimedia Information
Processing, School of Computer Science, Peking University, Beijing 100871,
China.

Tong Yang is with the National Key Laboratory for Multimedia Information
Processing, School of Computer Science, Peking University, Beijing 100871,
China, and also with the Peng Cheng Laboratory, Shenzhen 518066, China
(e-mail: yangtong@pku.edu.cn).

Yaofeng Tu is with the ZTE Corporation, Beijing 100728, China.
Digital Object Identifier 10.1109/TKDE.2024.3399024

any prefetching method and replacement policy. Further mining
some special patterns of batches is of great importance. On the
basis of batches, we propose a new pattern, namely periodic
batch. A group of periodic batches refers to α consecutive
batches of the same item, where these batches arrive periodically.
We call α the periodicity. Finding top-k periodic batches refers
to reporting k groups of periodic batches with the k largest
periodicities.

Studying top-k periodic batches is important in practice. For
example, consider a cache stream formed by many memory
access requests where each request is an item, periodic batches
provide insights to improve the cache hit rate. With the historical
information of periodic batches, we can forecast the arrival time
of new batches, and prefetch the item into cache just before its
arrival. For another example, in financial transaction streams, pe-
riodic transaction batches could be an indicator of illegal market
manipulation [6]. By detecting periodic batches in real time, we
can quickly find those suspicious clients that might be laundering
money. Periodic batches are also helpful in recommendation
systems and online advertisements, where the data stream is
generated when users click or purchase different commodities. A
batch forms when users continuously click or purchase the same
type of commodities. In this scenario, periodic batches imply
users’ seasonal and periodic browsing or buying behaviors [7]
(e.g., Christmas buying patterns that repeat yearly, or seasonal
promotion-related user behaviors). Studying periodic batches
can help us to better understand customer behavior, so that we
can deliver appropriate advertisements promptly to customers.
In addition, periodic batches are also important in networks.
In network stream, most TCP senders tend to send packets in
periodic batches [8]. If we can forecast the arrival time of future
batches, we can pre-allocate resources to them, or devise better
strategies for load balancing. To our knowledge, there is no
existing work studying periodic batches, and we are the first
to formulate and address this problem.

Finding periodic batches is a challenging issue. First, finding
batches is already a challenging issue. Until now, the state-of-
the-art solution to detect batches is Clock-Sketch [2], which
records the last arrival time of recent items in a cyclic array,
and uses another thread to clean the outdated information using
CLOCK [9] algorithm. However, to achieve high accuracy, it
needs to scan the cyclic array very fast, which consumes a lot of
CPU resources. Second, periodic batch is a more fine-grained
definition, and thus finding periodic batches is more challenging
than just finding batches. The goal of this paper is to design
a compact sketch algorithm that can accurately find periodic
batches with small space- and time- overhead.

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Apple. Downloaded on November 01,2024 at 02:40:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9062-6565
https://orcid.org/0009-0003-1321-0293
https://orcid.org/0000-0001-7115-5390
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0001-6381-4026
https://orcid.org/0009-0000-4188-7742
https://orcid.org/0000-0003-1681-4677
mailto:yangtong@pku.edu.cn


LIU et al.: UNIFIED FRAMEWORK FOR MINING BATCH AND PERIODIC BATCH IN DATA STREAMS 5545

B. Our Proposed Solution

This paper proposes a unified framework, called HyperCalm
sketch, to detect batch and periodic batch in data streams in real
time. HyperCalm takes two phases to find top-k periodic batches.
In phase 1, for each item e arriving at time t, we check whether
it is the start of a batch. If so, we query a TimeRecorder queue
to get the arrival time t̂ of the last batch of e, and calculate the
batch intervalV = t− t̂. Then we send this batch and its interval
〈e, V 〉 to the second phase. In phase 2, we check periodicity and
manage to record top-k periodic batches, i.e., top-k 〈e, V 〉 pairs.
In phase 1, we devise a better algorithm than the state-of-the-art
algorithm for detecting batches, Clock-Sketch [2]. In phase 2,
we propose an enhanced top-k algorithm, which naturally suits
our periodic batch detection scenario.

In phase 1, we propose a time-aware version of Bloom fil-
ter, namely HyperBloomFilter (HyperBF for short), to detect
batches. For each incoming item, phase 1 should report whether
the item is the start of a batch. In other words, this is an existence
detection algorithm. In addition, phase 1 should be aware of the
item arrival time to divide a series of the same item into many
batches. Bloom filter [10] is the most well-known memory-
efficient data structure used for existence detection. However,
the existence detection of Bloom filter is only low-dimensional,
i.e., it is agnostic to time dimension. Typical work aware of time
dimension is Persistent Bloom filter (PBF) [11]. It is an elegant
variant of Bloom filter, which uses a set of carefully constructed
Bloom filters to support membership testing for temporal queries
(MTTQ) (e.g., has a person visited a website between 8:30pm
and 8:40pm?). MTTQ and batch detection are different ways
to be aware of time dimension. To enable Bloom filter to be
aware of time, our HyperBF extends each bit in Bloom filter
into a 2-bit cell, doubling the memory usage. Compared to the
standard Bloom filter, HyperBF has the same number of hash
computations and memory accesses for each insertion and query.
The only overhead for time awareness is doubling the memory
usage, which is reasonable and acceptable.

In phase 2, we propose an enhanced top-k algorithm, called
Calm Space-Saving (CalmSS for short), to report top-k periodic
batches. For each incoming batch and its interval, i.e., 〈e, V 〉,
phase 2 should keep periodic batches with large periodicities,
and evict periodic batches with small periodicities. In other
words, phase 2 keeps frequent 〈e, V 〉 pairs, and evicts infre-
quent 〈e, V 〉 pairs, which is is a top-k algorithm. Typical top-k
algorithms include Space-Saving [12], Unbiased Space-Saving
[13], and Frequent [14]. However, their accuracy is significantly
harmed by cold items.1 This problem is more serious in our
scenario of periodic batch detection. This is because one in-
frequent item may have multiple batches, and one frequent item
may also have multiple batches without periodicity. Both the two
cases above increase the number of cold 〈e, V 〉 pairs. To identify
and discard cold items, Cold Filter [17] and LogLogFilter [18]
record the frequencies of all items in a compact data structure.
However, considering the large volume of data stream, this
structure will be filled up very quickly, and needs to be cleaned
up periodically. To ensure the one-pass property of our solution,
it is highly desired to devise a data structure which will never

1Cold items refer to items with small frequencies (i.e., infrequent items), and
hot items refer to items with large frequencies (i.e., frequent items). In practice,
most items are cold items, which appear just several times [15], [16]

be filled up. Instead of recording all items, our solution is to
just record the frequencies of some items in the sliding window.
Rather than using existing sliding window algorithms [19], [20],
[21], this paper designs an LRU queue working together with
Space-Saving because of the following reasons. First, our LRU
queue is elastic: users can dynamically tune its memory usage
to maintain a satisfactory accuracy. Second, our LRU queue
has elegant theoretical guarantees (see details in Section III-C).
Third, our LRU queue can be naturally integrated into the
data structure of Space-Saving (see details in Section III-D):
such combination achieves higher accuracy and higher speed.
Our combination is faster because the LRU queue efficiently
filters most cold items, and thus the complicated replacement
operations incurred by cold items are avoided (see Fig. 15(c)).
Actually, besides the application of periodic batch detection, our
LRU queue can improve the accuracy/speed of any streaming
algorithms. We can handle any case that Cold filter can handle,
and we are both time- and space- more efficient than Cold filter
(Section V-B). All related codes are open-sourced [22].

C. Key Contributions
� We formulate the problem of finding periodic batches in

data streams. We believe this is an important problem.
� We propose an accurate, fast, and memory efficient Hyper-

Calm sketch to detect periodic batches in real time. Both
the two components of HyperCalm, HyperBF and CalmSS,
significantly outperform the SOTA in detecting batches and
finding top-k items, respectively.

� We derive theoretical guarantees for our HyperBF and
CalmSS, and validate our theories using experiments.

� We conduct extensive experiments, and the results show
that HyperCalm outperforms the strawman solutions 4×
in term of error and 98.1× in term of speed.

� We apply HyperCalm to the scenarios of cache and network
measurement, showing that periodic batches can benefit
real-world application. We also integrate HyperCalm into
Apache Flink [23] and Redis [24].

II. BACKGROUND AND RELATED WORK

A. Problem Statement

Batches: A data stream is an infinite sequence of items where
each item is associated with a timestamp. A batch is defined as
a group of identical items in the data stream, where the time
gap between two adjacent batches of the same item must exceed
a predefined threshold T . For convenience, in this paper, two
adjacent batches mean two batches belong to the same item by
default. The arrival time of a batch is defined as the timestamp
of the first item of this batch. We define the interval/time gap
between two adjacent batches as the interval between their
arrival times.

Periodic batches: A group of periodic batches refers to α
consecutive batches of the same item, where these batches arrive
with a fixed time interval. We call α the periodicity. Here, the
“fixed time interval” is not the exact time, but the approximate
(noise-tolerant) time rounded up to the nearest time unit (e.g.,
one millisecond). Finding top-k periodic batches refers to report-
ing k groups of periodic batches with the k largest periodicities.
Note that one item may have more than one group of periodic
batches, and thus can be reported more than once.
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Fig. 1. Example of periodic batches.

Example (Fig. 1): We use an example to further clarify our
problem definition. We focus on two distinct items e1 and e2 in
the data stream. For e1, its 6 batches form a group of periodic
batches. For e2, it has two groups of periodic batches, with the
periodicities of 4 and 5, respectively. Note that some batches of
e2 just have one item.

Discussion: The definition of periodic batches is a design
choice related to final application. We think our definition of
periodic batches is most general, which can benefit many real-
world applications (see Section V-H as an example). However,
certain application may also care about other aspects of periodic
batches, such as batch size and distance. For example, some
application may just want to detect those periodic batches that
are large enough in size. It is not hard to detect those variants of
periodic batches by adding small modification to our solution.
For example, we will discuss how to detect periodic large batches
in Section III-G and demonstrate its application in Section V-I.

B. Related Work

Related work is divided into three parts: 1) algorithms for
batch detection; 2) algorithms for finding top-k frequent items;
and 3) algorithms for mining periodic patterns.

Batch detection: Item batch is defined very recently in [2],
which proposes Clock-Sketch to find batches. Clock-Sketch
consists of an array of s-bits cells. For each incoming item,
it sets the d hashed cells as 2s − 1. For query, if one of the
d hashed cells is zero, it reports a batch. Clock-Sketch uses an
extra thread to cyclically sweep the cell array at a constant speed
and decreases the swept non-zero cells by one. The sweeping
speed is carefully selected to avoid false-positive errors. Besides
Clock-Sketch, some sliding window algorithms can be applied
to find batches, including Time-Out Bloom Filter (TOBF) [25]
and SWAMP [26].

Finding top-k frequent items: To find top-k frequent items
in data streams, existing approaches maintain a synopsis data
structure. There are two kinds of synopses: sketches and KV
tables. 1) Sketches usually consist of multiple arrays, each of
which consists of multiple counters. These counters are used to
record the frequencies of the inserted items. Typical sketches
include CM [27], CU [28], Count [29], and more [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43].
However, sketches are memory inefficient because they record
the frequencies of all items, which is actually unnecessary. 2) KV
tables record only the frequent items. Typical KV table based
approaches include Space-Saving [12], Unbiased Space-Saving
[13], Frequent [14], and more [44]. Space-Saving and Unbiased
Space-Saving record the approximate top-k items in a data
structure called Stream-Summary. However, their accuracy is

Fig. 2. HyperCalm sketch workflow.

significantly degraded by cold items. To address this issue, Cold
Filter [17] uses a two-layer CU sketch to filter cold items.
However, as aforementioned, the structure of Cold Filter will
be filled up very quickly, and cleaning the full Cold Filter will
inevitably incur error and time overhead.

Mining periodic patterns: Although there have been some
algorithms aiming at mining periodicity in time sequence data
[45], [46], [47], [48], [49], [50], [51], their problem definitions
are different from ours. More importantly, most of them do not
meet the requirements of data stream model processing: 1) each
item can only be processed once; 2) the processing time of
each item should be O(1) complexity and fast enough to catch
up with the high speed of data streams. For example, TiCom
[48] defines a periodical problem in an incomplete sequence
data, and develops an iterative algorithm with time complexity
of O(n2). RobustPeriod [46] proposes an algorithm based on
discrete wavelet transform with time complexity of O(n log n).
Further, there are some works which elegantly use Fast Fourier
Transform (FFT) or Auto Correlation Function (ACF) to address
different definitions of periodic items, such as SAZED [49].
These algorithms need to process one item multiple times, and
thus cannot meet the above two requirements.

III. THE HYPERCALM SKETCH

Overview (Fig. 2): The workflow of the HyperCalm sketch
consists of two phases: 1) A HyperBloomFilter (HyperBF)
detecting the start of batches; and 2) A Calm Space-Saving
(CalmSS) recording and reporting top-k periodic batches. In
addition, we design a TimeRecorder queue to record the last
batch arrival time for potential periodic batches. Given an in-
coming item e arriving at time t, we first propose HyperBF to
check whether it is the start of a batch. If so, we query the
TimeRecorder queue to get the arrival time t̂ of the last batch of
e and calculate the batch interval V = t− t̂. 2 Then we update
the arrival time of last batch of e in the TimeRecorder queue to
t. Next, we send e and its batch interval V to CalmSS to detect
top-k periodic batches. We combine the ID of item e and its
interval V to form an entry E = 〈e, V 〉, and insert the entry into
CalmSS. CalmSS reports k groups of periodic batches with the k
largest periodicities, i.e., reports top-k entries with the k largest
frequencies, where each entry is an 〈e, V 〉 pair. We will discuss

2To tolerate noise in batch interval, V is rounded up according to the
regulations described in the parameter setting part of Section V-C.
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TABLE I
SYMBOLS FREQUENTLY USED IN THIS PAPER

Fig. 3. Two examples of HyperBF (d = 2, m = 4, l = 2).

Fig. 4. Optimization using Asynchronous Timeline.

that the insertion time complexity of each component of the
HyperCalm sketch is O(1), and thus its overall time complexity
is also O(1). The main symbols used in this paper are listed in
Table I.

A. The HyperBF Algorithm

Rationale: To enable Bloom filter to be time-aware, the key
technique of HyperBF is to extend every bit in Bloom filter
into a 2-bit cell, and use these cells to compactly record the
approximate last arrival time of recent items. Although we can
also use 3-bit or 4-bit cells, we find that under fixed memory,
using 2-bit cells achieves the best accuracy. Since 2-bit cell
can represent 4 states (0∼3), HyperBF cyclically divides the
timeline into three kinds of time slices (1∼3), and the length of
each time slice is T , where T is the predefined batch threshold
(see Fig. 4(a)). These time slices are recorded in the 2-bit cells
of HyperBF. HyperBF needs to clean all outdated time slices
efficiently. Rather than using an extra thread like Clock-Sketch
[2], HyperBF incidentally cleans the outdated cells during each
insertion. Compared to standard Bloom filter, HyperBF has the

same number of hash computations and memory accesses for
each insertion and query. Further, we propose a novel Asyn-
chronous Timeline technique to significantly reduce the error of
HyperBF. Theoretical guarantees of HyperBF are provided in
Section IV.

Data structure: HyperBF consists of d arrays B1, . . . , Bd.
Each array Bi has m 2-bits cells Bi[1], . . . ,Bi[m], which are
evenly divided into m

l blocks with l 2-bit cells. Each block can
fit into the size of a cache line, and thus could be read or write
through one memory access. When checking one cell, we can
incidentally access the other cells in its block, which does not
incur extra memory accesses. Each array Bi is associated with
a hash function hi(·) that maps an item into a cell in it. As
mentioned above, HyperBF divides the timeline into three kinds
of time slices (1∼3). Each cell stores a time slice (1∼3) or a zero
flag (0). We preserve the zero value of cells as the batch flag:
once an incoming is mapped into a cell with batch flag, a new
batch starts. For example in Fig. 3, HyperBF has 2 cell arrays,
each of which has 4 2-bit cells which are divided into 2 blocks.
For simplicity, each block has l = 2 cells here. In practice, we
can set the block size to any value no more than 64B (l � 256),
i.e., no more than the cache line size. All cells are initialized
to 0.

Insert: For each incoming item e with timestamp t, we first
calculate the current time slice s = � t

T � mod 3 + 1. We cal-
culate the d hash functions to locate the d hashed cells of e:
B1[h1(e)], . . . , Bd[hd(e)]. For each hashed cell, we check the
block which the cell resides, and incidentally clean outdated
cells to zero flag. Specifically, if the current time slice is 1, time
slice 2 is outdated; if the current time slice is 2, time slice 3 is
outdated; if the current time slice is 3, time slice 1 is outdated.
Due to the high speed of the data stream, all outdated cells will
be cleaned in time (see theoretical results in Section IV). After
cleaning, if any one of the d hashed cells is zero flag, HyperBF
reports the start of a batch. Finally, we update all d hashed cells
to the current time slice s.

Example 1 (left of Fig. 3): For item e1 arriving at time slice
snow = 1, we first locate its two hashed cells B1[2] and B2[3]
by calculating h1(e1) and h2(e1). Next, we clean the outdated
cells with value 2. For B1[2], we check all cells in its block (i.e.,
B1[1] and B1[2]), and clean the outdated cell B1[1] to zero. For
B2[3], we clean the outdated cell B2[3] to zero. After cleaning,
since the second hashed cell B2[3] is zero, we report the start of
a batch. Finally, we update the two hashed cells to snow.

Example 2 (right of Fig. 3): For item e2 arriving at time slice
snow = 2, we first locate its two hashed cells B1[3] and B2[4].
Next, we check the blocks which the two hashed cells reside, and
clean the outdated cells with value 3, i.e., clean B1[4] to zero.
Since after cleaning, both the two hashed cells are not zero, we
do not report a batch. Finally, we updateB1[3] andB2[4] to snow.

Error analysis: HyperBF might miss some batches, but the re-
ported batches are always correct. The error of HyperBF comes
from three aspects. 1) The error incurred by hash collision,
which is the cause of false positive error of Bloom filters. 2)
The error incurred by outdated cells that are not cleaned in time.
3) The error incurred by coarse-grained timeline division. We
provide the theoretical analysis of the three kinds of error in
Section IV, proving that the impact of the first two kinds of error
are negligible. For the third error, essentially, our 2-bit time slice
is a coarse-grained timeline division: the gain is extremely high
memory efficiency, and the cost is the fuzzy perception of time.
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Fortunately, the error incurred by fuzzy perception of time can be
significantly reduced by the following Asynchronous Timeline
technique.

Asynchronous Timeline: HyperBF perceives time in a fuzzy
way. When the interval between two adjacent batches is among
T ∼ 2T , HyperBF might not be able to report the second
batch correctly, depending on the relative offset of the timeline.
Specifically, only when the interval span three time slices can
HyperBF be able to report the second batch. This issue is
illustrated in Fig. 4(a). Although the time interval between the
two occurrences of e1 exceeds T , HyperBF cannot correctly
divide them into two batches because the interval span just
two time slices. Therefore, when the current time slice is 1,
time slice 3 is not outdated. To address this issue, we propose
the Asynchronous Timeline technique. Our key idea is to use d
different timeline offsets for the d arrays to enhance the ability
of batch perception. In this way, as long as the interval spans
three time slices in any one of the d timelines, HyperBF can
perceive the second batch correctly. As shown in Fig. 4(b),
after using the Asynchronous Timeline technique, the interval
spans three time slices in the second array. In this example,
HyperBF can correctly perceive the second batch. We derive
theoretical guarantees for Asynchronous Timeline using linear
programming model in Theorem 4.3 in Section IV, proving that
the time division error can be reduced by d times when using d
evenly distributed timelines.

Analysis on computational cost: The insertion operation of
HyperBF requires d hash calculations (h1(e), . . . , hd(e)) and d
memory accesses (B1[h1(e)], . . . ,Bd[hd(e)]). For each memory
access, HyperBF checks l cells within a block and cleans all
outdated cells therein. We will see that this procedure can be
accomplished with SIMD AVX-512 instructions without the
need for looping (Section III-F). Therefore, the time complexity
of HyperBF isO(d). In practice, we usually set d to a small value
(d = 8 by default). Thus, the time complexity of HyperBF can
be approximate to O(1).

B. The TimeRecoder Algorithm

To record the last arrival time of batches, a strawman solution
is to use a huge hash table to store the arrival time of the
last batches for all items. This is memory inefficient, because
most batches are not periodic. To address this issue, we propose
TimeRecorder aiming to only store the time for those batches
that are potential top-k periodic batches. The data structure of
TimeRecorder is essentially a circular queue, which is imple-
mented as a doubly linked list of c nodes. Each node records
an item ID. We build the first hash table index (Index_1) for
TimeRecorder. For each item e in the TimeRecorder queue, we
store the arrival time t̂ of its last batch in Index_1.

For each incoming batch of item e at time t, we first query
Index_1 to check whether the arrival time of its last batch is
recorded. 1) If so, we calculate the batch interval V = t− t̂.
Then we combine the item ID e and its batch interval V to form
an entry E = 〈e, V 〉, and send the entry to CalmSS. Finally, we
update the timestamp of e to the current time t and move it to
the front of the circular queue. 2) If not, we insert e into the
TimeRecorder queue, and store the arrival time t of its last batch
in Index_1. If the TimeRecorder queue is already full before
insertion, we evict the oldest (least recently accessed) item e0 to
make room for e. Note that if e0 has periodic batches (i.e., it is

Fig. 5. Data structure and workflow of CalmSS.

maintained in CalmSS), we still preserve the arrival time of its
last batch in Index_1. For the implementation details, please
see Section III-D.

Our TimeRecorder evicts the following items: 1) Items that
are old and do not show periodicity; and 2) Items whose batches
have long periods, which have little potential to become top-k
periodic batches. The TimeRecorder keeps the items that are
highly likely to have top-k periodic batches, and discard other
items which are the major part of the data stream. Therefore,
our TimeRecoder queue is much more memory efficient than
the above strawman solution.

Analysis on computational cost: In the insertion operation
of TimeRecorder, we first query Index_1 (implemented as
a hash table with O(1) time complexity). If item e exists in
Index_1, we update its last arrival time inIndex_1 and move
it to the front of the circular queue. Notice that we can acquire
the position of e in the circular queue from Index_1. If e is
not in Index_1, we insert it into Index_1 and the front of
the circular queue, and evict the oldest item from the tail of the
circular queue. All these operations can be accomplished with
O(1) time complexity, and thus the overall time complexity of
TimeRecorder is also O(1).

C. The CalmSS Algorithm

Rationale: Phase 2 uses a top-k algorithm to report top-
k periodic batches. The most well-known top-k algorithm is
Space-Saving [12], which works by maintaining a Min-Heap
of m bins. For each incoming entry E1 = 〈e1, V1〉, if it is in
the heap, it increments its counter by one; otherwise, it updates
one of the smallest bins (Emin, fmin) to (E1, fmin + 1). In this
way, each incoming entry increments a counter in Space-Saving.
Recall that in phase 2, most entries are cold entries, which
appear just several times. All increments by cold entries are
unnecessary, and significantly increase the overestimation error.
Therefore, we propose CalmSS to minimize the influence of
cold entries. The key idea of CalmSS is to use a queue to discard
cold entries. The queue records the frequency of entries in the
sliding window. This queue follows the LRU strategy: the least
recently visited cold entry will be discarded, and hot entries will
be moved to Space-Saving. Specifically, each incoming entry
is first inserted into the queue: if it appears too few times in
the sliding window, it will be discarded; otherwise, it will be
moved to Space-Saving. This LRU Queue can be considered as
a guardian of Space-Saving to keep cold entries outside.

Data structure (Fig. 5(a)): CalmSS consists of an LRU queue
and a Space-Saving (it is essentially an Min-Heap): 1) The LRU
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queue uses a sliding window of w bins to keep the recent w
distinct entries. Each bin stores a key-value pair (E, f), where
the key is an entry ID and the value is a small counter recording
the frequency of E. The LRU queue uses a predefined threshold
P (called promotion threshold) to filter out cold entries: Once
the counter of an entryE reachesP , it means it is not a cold entry,
and thus we remove E from the LRU queue and insert it into
the Space-Saving. 2) The Space-Saving uses a Stream-Summary
[12] and a hash table to achieve O(1) time complexity to locate
and update the entries. Similar to the TimeRecoder, we build the
second and third hash table indices (Index_2 and Index_3)
for the LRU queue and the Space-Saving.

Insert (Fig. 5(b)): For each incoming entry E = 〈e, V 〉, we
first query it in the hash indices: 1) If E is in the Space-Saving,
we just increment its counter by one. 2) If E is in the LRU
queue, we increment the small counter ofE in the LRU queue by
one. After increment, if the small counter reaches the predefined
promotion threshold P , we remove E from the LRU queue and
insert (E,P) into the Space-Saving. Specifically, if the Min-
Heap is already full before inserting E, we update the smallest
node (Emin, fmin) in the Space-Saving to (E, fmin + P). 3) If
E is not in the LRU queue, we insert (E, 1) into the LRU queue.
If the LRU queue is already full before inserting E, we evict the
least recently accessed entry to make room for E.

Analysis on computational cost: In the insertion operation
of CalmSS, we first query the hash indices (with O(1) time
complexity) to obtain the positions of entry E in Space-Saving
and LRU queue. Subsequently, we update the frequency of E
in either Space-Saving or LRU queue. If the frequency in the
LRU queue exceeds threshold P , we insert (E,P) into Space-
Saving. Notice that the update operation of Space-Saving has a
time complexity of O(1) [12]. Therefore, the time complexity
of CalmSS is also O(1).

Report: To report top-k periodic batches, CalmSS reports the
k entries with the k largest frequencies in the Min-Heap. The
time complexity of this procedure is O(k). Note that one item
could have multiple groups of periodic batches, and thus could
be reported more than once.

D. Implementation

In our implementation, we combine the three hash indices
(Index_1, Index_2, and Index_3) into one hash table
index Index_all. For each key-value pair in the hash table
Index_all, it includes one key (item ID) e and three values:
1) A timestamp t̂, which is the arrival time of the last batch
of e; 2) Two entry lists List_1 and List_2, which record
the corresponding entries of e (they are essentially some batch
intervals of e) that are in the LRU queue and the Space-Saving
(Min-Heap), respectively. Each node in the two entry lists
uses a pointer to index the location of the LRU queue or the
Space-Saving. 3) A counter recording the sum of several parts:
the number of appearances of e in the TimeRecorder, and the
lengths of the two lists. We delete e from the hash table once
its counter is decremented to zero. In this way, for all items that
have periodic batches, their last batch arrival time is maintained
in Index_all even if they are not in the TimeRecorder queue.

E. Optimization: Bucketized Partition

In the TimeRecorder and CalmSS algorithm, for each
incoming item/entry, we need to first check whether the

item/entry is recorded in TimeRecorder/CalmSS. In the basic
version of HyperCalm, to accelerate the checking process, we
build a hash table to index each item/entry with O(1) time
complexity. However, this data structure doubles the memory
usage, and it is also time inefficient because of many pointer
operations. To address this issue, we propose the Bucketized
Partition optimization, which removes the hash table from our
HyperCalm sketch while maintaining its O(1) time complexity.

Data structure (Fig. 6): As shown in Fig. 6(a), we re-
move the hash table from HyperCalm sketch. As shown in
Fig. 6(b)–(d), the data structure of optimized TimeRecorder/
LRU-Queue/Space-Saving is an array of z buckets. We use a
hash function g(·) to map each item/entry into one bucket in
the array. Each bucket has b slots. In bucketized TimeRecorder
(Fig. 6(b)), each slot stores a 16-bit fingerprint of an item and
a timestamp recording its last batch arrival time. In bucketized
LRU Queue (Fig. 6(c)), each slot stores a 16-bit fingerprint of
an entry and a counter recording its frequency. In bucketized
Space-Saving (Fig. 6(d)), each slot stores an entry ID and a
counter recording its frequency.

Insertion: As shown in Fig. 6(a), we process each item batch
reported by HyperBF in a one-pass manner. For each batch of
item e at time t, we first query the bucketized TimeRecorder to
acquire its last batch arrival time t̂ and calculate its batch interval
V = t− t̂. Then we send the entry E = 〈e, V 〉 to bucketized
CalmSS, which reports top-k frequent entries, i.e., top-k periodic
batches. Specifically, we first check whether E is recorded in
bucketized Space-Saving. If so, we increment its frequency by
one. Otherwise, we insert E into bucketized LRU Queue. Below
we describe the insertion operation of the three algorithms.

1) Bucketized TimeRecorder: Each bucket in bucketized
TimeRecorder works independently as a small circular queue.
The items in each bucket are sorted in time order, i.e., the first
item is the most recent item and the last item is the least recent
item. For each incoming batch of item e at time t, we first
calculate hash function g(e) to locate the g(e)th bucket (called
the hashed bucket of e). Then we calculate a hash function to
acquire the fingerprint fp(e). If e is recorded in the hashed
bucket (i.e., fp(e) is recorded in this bucket), we update its
timestamp to t and move this item to the first slot. Otherwise,
we evict the least recent item (i.e., the last item in the bucket) if
the bucket is full, and then insert (fp(e), t).

Example (Fig. 6(b)): We first calculate hash functions to locate
the hashed bucket and acquire the fingerprint fp(e) = 12. Since
fp(e) is not recorded in the hashed bucket, we evict the least
recent item (23, 7) and then insert (fp(e), t).

2) Bucketized LRU Queue: Similar to bucketized TimeRe-
corder, each bucket in bucketized LRU Queue works inde-
pendently as a small LRU queue. The entries in each bucket
are sorted in time order. For each incoming entry E, we first
calculate hash function g(E) to locate its hashed bucket and
calculate hash function fp(E) to acquire its fingerprint. If E
is recorded in the hashed bucket, we increment its counter by
one and move E to the first slot. If the counter reaches the
promotion threshold P after increment, we remove E from the
bucket and insert (E,P) into Space-Saving. If E is not recorded
in the hashed bucket, we evict the least recent entry, and insert
(fp(E), 1) into this bucket.

Example (Fig. 6(c)): To insert entry E, we first calculate hash
functions to locate its hashed bucket and acquire its fingerprint
fp(E) = 14. Since fp(E) is not recorded in the hashed bucket,
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Fig. 6. Bucketized Partition Optimization (b = 4).

we evict the least recent entry (i.e., the last entry) and insert
(fp(E), 1) into this bucket. After insertion, the entries in this
bucket are also kept in time order.

3) Bucketized Space-Saving: Each bucket in bucketized
Space-Saving works independently as a small Space-Saving. For
each incoming entry E and its frequency P , we first calculate
hash function to locate the hashed bucket. IfE is recorded in this
bucket, we increment its frequency by P . Otherwise, we check
the hashed bucket to find the slot recording the entry with the
smallest frequency, i.e., (Emin, fmin), and then update this slot
to (E, fmin + P).

Example (Fig. 6(d)): To insert entry E with frequency P , we
first calculate hash function to locate its hashed bucket. Since E
is not recorded in the hashed bucket, we evict the least frequent
entry Emin = 〈18, 8〉 and insert (E, 34 + P).

Report: To report top-k periodic batches, we traverse all
buckets in bucketized Space-Saving, and reports the entries with
top-k largest frequencies. The time complexity of this traversal
procedure is O(z × b).

Discussion: Bucketized Partition optimization has the follow-
ing advantages. First, bucketized HyperCalm sketch is more
memory efficient because it removes the hash table index. In
addition, it replaces the IDs in TimeRecorder and LRU Queue
with compact fingerprints, which further saves memory. Second,
bucketized HyperCalm sketch has faster insertion speed. It pro-
cesses each item in a one-pass manner and has O(1) time com-
plexity. Third, bucketized HyperCalm sketch is cache-friendly
and can be further accelerated using SIMD instructions [52]
to achieve better data parallelism, which will be described in
Section III-F.

Analysis on computational cost: In the insertion operation of
Bucketized TimeRecorder/LRU-Queue/Space-Saving, we first
calculate hash function to locate one hashed bucket. Then we
update the timestamp or frequency of the item/entry within its
hashed bucket. The entire insertion operation requires one hash
calculation and one memory access. Therefore, the time com-
plexity of Bucketized TimeRecorder/LRU-Queue/Space-Saving
is O(1).

F. Optimization: SIMD Acceleration

Single instruction, multiple data (SIMD) [52] is a widely-used
data parallel processing technology that can perform the same
operation on multiple data simultaneously. This technology
well suits the data structure of the HyperCalm sketch using

Bucketized Partition. Below we describe how to use SIMD
instructions to accelerate HyperCalm.

HyperBF acceleration: In HyperBF, for each incoming item,
we first locate d hashed blocks and clean all cells in these blocks.
To ensure that outdated cells can be cleaned timely, the block
size is set to 64B (cache line size). In our basic implementation,
we use a loop to clean these cells, which can be accelerated
using SIMD. Currently, AVX-512 instruction set provides 512-
bit wide SIMD registers (ZMM). We can load a block into one
512-bit register and use 512-bit bit operations to efficiently clean
this block, eliminating the complicated loops and improving
efficiency.

Bucketized TimeRecorder/CalmSS acceleration: In bucke-
tized TimeRecorder/LRU-Queue/Space-Saving, we treat the b
slots as uniform data points and uses SIMD instructions to simul-
taneously process them in parallel. To ensure memory continuity,
in each bucket, we record IDs (or fingerprints) and frequencies
(or timestamps) in two arrays separately, which are called the
ID array and the information array. In insertion process, we
first check the ID array. If we find a matched ID/fingerprint,
we update the corresponding frequency/timestamp. Otherwise,
we check the information array to find the item/entry to be
evicted (e.g., the least recent item in TimeRecorder). We can
use SIMD instructions to accelerate three processes: 1) finding
mathed ID/fingerprint; 2) sorting items according to time order;
3) finding the minimum counter. The implementation details can
be found in our supplementary materials [53].

G. Extension: Mining Periodic Large Batches

Motivation: In Section II-A, we define periodic batches with-
out considering the size of batches. Under such definition, a
group of periodic items is also treated as a group of periodic
batches, even if each batch only has one item. However, in many
applications, users are more interested in periodic batches with
large sizes. For example, in the scenario of streaming database,
many data processing requests arrive with periodicity. It is
possible to identify periodic batches and predict the arrival time
of each batch, so as to pre-allocate resources (e.g., CPU and I/O)
to handle the increased load more efficiently. In this scenario, it’s
more beneficial to prioritize pre-allocating resources for larger
batches as opposed to smaller ones due to their higher demand
for resources and their potential to impact system performance
more significantly. Another example can be seen in the context
of network traffic load balancing. Here, the network operator can
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identify periodic batches and schedule these batches to balance
the load (e.g., schedule each batch to the least loaded path). In
this case, the operator only needs to schedule large batches and
can neglect small batches, because only large batches have the
potential to cause load imbalance [54].

In this subsection, we present the definition of periodic large
batches and extend our HyperCalm sketch to identify them.
Specifically, we extend HyperBF to report the size of each batch,
and we only send the batches with large estimated sizes to the
next phase. In this way, we maintain the information of periodic
large batches in CalmSS.

Problem statement: A group of periodic large batches refers
to α consecutive batches of the same item, where these batches
arrive with a fixed time interval, and the size of each batch is
larger than a predefined threshold L. Similar to the definitions
in Section II-A, we define α as the periodicity and define top-k
periodic large batches as the k groups of periodic large batches
with the k largest periodicities.

Data structure: We extend HyperBF to report batch size by
combining it with a Count-Min (CM) sketch [27]. Consider a
HyperBF with d arrays B1, . . . ,Bd, each of which has m 2-bit
cells. We build a CM sketch with d arrays C1, . . . , Cd, each of
which has m counters. In this way, each 2-bit cell is associated
with one counter in CM sketch, and we call this counter as the
associated counter of the cell.

Insert: For each incoming item e arriving at time t, we insert
it into the modified HyperBF as follows. First, we calculate hash
functions to locate the d hashed cells B1[h1(e)], . . . ,Bd[hd(e)]
and their d associated counters C1[h1(e)], . . . , Cd[hd(e)]. For
each hashed cell, we check its block and clean the outdated
cells according to the rule of basic HyperBF described in
Section III-A. In this procedure, if a cell is cleaned to zero,
we additionally clean its associated counter in the CM sketch to
zero. Afterwards, we update all d hashed cells to the current time
slice, and increment each of the d associated counters by one.
We estimate the size of the current batch of e as the minimum
values among the d counters C1[h1(e)], . . . , Cd[hd(e)], and if
the current estimated size exceeds the predefined large batch
threshold L (i.e., its estimated size reaches L+ 1), we report a
large batch of e to the next phase of HyperCalm sketch.

Report: We record periodic large batches and their period-
icities in CalmSS. To report top-k periodic large batches, we
reports the k entries with the k largest frequencies.

Discussion: Recall that in Section II-A, we define the arrival
time of each batch as the arrival time of its first item, and we
use this time to calculate the time interval between two adjacent
batches. However, the extended HyperBF reports a batch to the
next phase only when its estimated frequency reaches L+ 1.
This introduces a time lag in the estimation of the batch’s
arrival time. As different batches might have different item
arrival speed, and the CM sketch has overestimation errors, the
calculated batch interval might not be very accurate. However,
our experimental results show that even with the time lag of batch
arrival time and overestimation error of CM sketch, HyperCalm
still has high accuracy in finding periodic large batches (> 0.96
F1 score).

H. Extension: Dynamic Memory Adjustment

In practice, the density of data streams and the available
memory resources might vary dynamically [55]. It is desirable

Fig. 7. Dynamic memory expansion/compression on HyperBF (m = 4/8,
l = 2, r = 2, current state snow = 3).

to perform on-the-fly reconfiguration on the sketch size to adapt
to these dynamic variations. Towards this goal, we propose the
dynamic memory adjustment operations for HyperBF and Buck-
etized TimeRecorder/LRU-Queue/Space-Saving, by which we
can dynamically compress and expand their sizes by any in-
teger factor. These operations allow us to dynamically adjust
the memory usage for HyperCalm sketch without losing the
previously recorded information. The time complexity of the
memory adjustment operations for HyperBF and Bucketized
TimeRecorder/LRU-Queue/Space-Saving are O(m) and O(z)
respectively.

Dynamic memory adjustment on HyperBF: We introduce
the dynamic memory adjustment operations of HyperBF to
expand/compress its size by any integer factor. 1) To expand
the size of HyperBF by r times, for each of its array Bi, we
perform the memory copy operation to copy its m cells by
r times and get B′

i (with m′ = m× r cells). Then we mod-
ify hash function hi(·) = H(·)%m to h′

i(·) = H(·)%m′. No-
tice that h′

i(·) ∈ {hi(·), hi(·) +m, . . . , hi(·) + (r − 1)×m}.
Therefore, the time information recorded in Bi[hi(e)] can still
be retrieved in B′

i[h
′
i(e)] after expansion. 2) To compress the

size of HyperBF by r times, for each of its array Bi, we first
split its cells into r groups, each of which has m/r cells. Then
we merge every r cells with the same index in the r groups
into one cell and get B′

i (with m′ = m/r cells). For example,
we merge Bi[0],Bi[

m
r ], . . . ,Bi[(r − 1)× m

r ] to B′
i[0], merge

Bi[1],Bi[
m
r + 1], . . . ,Bi[(r − 1)× m

r + 1] to B′
i[1], etc. The

merging operation is performed by taking the most recent state
among the r cells. We set the resulting cell to 0 if the r cells are all
outdated. Finally, we modify hash function hi(·) = H(·)%m to
h′
i(·) = H(·)%m′. Asm is divisible bym′, we havehi(·)%m′ =

h′
i(·). Therefore, the time information recorded in Bi[hi(e)] will

be merged to B′
i[h

′
i(e)] after compression.

Examples (Fig. 7): We take the first array B1 as an example
to further illustrate the procedure of expanding/compressing a
HyperBF by r = 2 times. 1) In the expansion operation, we
just copy B1 by r = 2 times to get B′

1, where B′
1[0] = B′

1[4],
B′
1[1] = B′

1[5], etc. 2) In the compression operation, we first
split B1 into r = 2 groups. Then we merge every r = 2 cells
with the same index in the two groups to get B′

1. Specifically,
we merge B1[0] and B1[4] to get B′

1[0], which is set to the more
recent state B1[4] = 2. Similarly, we merge B1[1] and B1[5] to
get B′

1[1], etc. For B′
1[3], as both B1[3] and B1[7] are outdated,

we set it to 0.
Dynamic memory adjustment on Bucketized TimeRe-

corder/ LRU-Queue/Space-Saving: Similarly, we introduce
the dynamic memory adjustment operations of Bucketized
TimeRecorder/LRU-Queue/Space-Saving. Below we take a
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Fig. 8. Dynamic memory expansion/compression on Bucketized Space-
Saving (z = 3/6, b = 2, r = 2).

bucket array A with z buckets to explain the expan-
sion/compression operations. 1) To expand the memory by r
times, we perform the memory copy operation to copy the z
buckets by r times and get A′ (with z′ = z × r buckets). We
modify hash function g(·) = G(·)%z to g′(·) = G(·)%z′. For
bucketized Space-Saving, when executing the memory copy
operation, for each entry E in bucket A′[i], we compute hash
function to check whether it should be retained in A′[i]. Specif-
ically, we check whether g′(E) = i, and if not, we remove E
from A′[i]. As discussed above, this design guarantees that the
information of item e (or entry) in A[g(e)] can be retrieved in
A′[g′(e)] after expansion. 2) To compress the memory by r times,
we also splitA into r groups, each of which has z/r buckets. We
merge every r buckets with the same index in the r groups into
one bucket and get A′ (with z′ = z/r buckets). In the merging
operation, we preserve the following b fingerprints/entries. For
bucketized TimeRecorder, we preserve the most recent b finger-
prints. For bucketized LRU-Queue, we approximately select the
most recent b fingerprints in a round-robin fashion among the
r bucket and preserve them. For bucketized Space-Saving, we
preserve the most frequent b entries. This design guarantees that
the information of item e (or entry) inA[g(e)] can only be stored
in A′[g′(e)] after compression.

Examples (Fig. 8): We take bucketized Space-Saving as an
example to illustrate the procedure of expanding/compressing a
bucket array A by r = 2 times. 1) In the expansion operation,
we copy A by r = 2 times to get A′. For each entry E, we
calculate hash function g′(E) to check whether it should be
retained in its bucket. As g′(〈35, 3〉) = 3, we delete 〈35, 3〉 from
A′[0]. Similarly, as g′(〈75, 2〉) = 0, we delete 〈75, 2〉 fromA′[3].
2) In the compression operation, we split A into r = 2 groups
and merge every two buckets with the same index to get A′. For
example, when merging A[0] and A[3] to get A′[0], we preserve
the b = 2 entries with the largest frequencies.

IV. MATHEMATICAL ANALYSIS

In this section, we provide theoretical analysis for HyperCalm
sketch, and validate our theoretical analyses using experiments.
We focus on the following four issues.
� How accurate can HyperBF detect batches? We de-

rive the error bound of HyperBF in Lemma 4.4 and
Theorem 4.1, and conduct experiments to validate our
bound in Fig. 10(b). The results show that both theoretical
and experimental error are smaller than 0.01 in common
cases.

Fig. 9. Error rate analysis of HyperBF.

Fig. 10. Error rate of HyperBF.

Fig. 11. Error of CalmSS.

Fig. 12. Time division error of HyperBF.

� How accurate can CalmSS detect top-k periodic batches?
We derive the error bound of CalmSS in Theorem 4.2, and
conduct experiments to validate our bound in Fig. 11. The
results show that both theoretical and experimental error
rate are smaller than 0.01 in common cases.

� Is the Asynchronous Timeline technique of HyperBF ef-
fective? We theoretically analyze the accuracy gain of
Asynchronous Timeline technique in Theorem 4.3, and con-
duct experiments to validate it in Fig. 12. Both theoretical
and experimental results show that Asynchronous Timeline
technique improves the accuracy of HyperBF.

� How accurate can bucketized Space-Saving report the pe-
riodicity of periodic batches? We derive the error bound
of bucketized Space-Saving in Theorems 4.4 and 4.6, and
conduct experiments to validate the theoretical bounds.

A. Error Rate of HyperBF

We first prove the error rate of HyperBF in Theorem 4.1.
A data stream can be formulated by two variables: density α
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and activity β, where density α is the number of distinct items
observed at each moment, and activityβ is the number of distinct
items emerging/dying per unit time. Consider two consecutive
time interval T1 and T2. The numbers of distinct items observed
in T1 and T2 are α+ βT1 and α+ βT2, respectively. And the
number of distinct items observed in the two intervals is α+
β(T1 + T2). Most data streams can be formulated by these two
variables. Take CAIDA [56] dataset as an instance, Fig. 10(a)
shows the average number (±5std) of distinct items observed
in time intervals of different length. We can see that the linear
relationship almost holds where α = 3195.2 and β = 35238.9.
Next, consider two adjacent occurrences of item e at t1 and t2,
where t2 − t1 > 2T . LetK = � t2

T � − � t1
T �. Letγn = α+ βnT

denote the number of distinct items observed in a time interval
of length nT .

As shown in Fig. 9, consider two adjacent occurrences of an
item e in the data stream. Assume the timestamps of the two
occurrences are t1 and t2, respectively. Assume t2 − t1 > 2T ,
meaning that the second occurrence of e is the start of a batch
and there is no time division error. Next, we derive the error
rate of HyperBF in Theorem 4.1 (and Lemma 4.4), which is
defined as the probability that HyperBF does not report a batch
at t2. The detailed proofs are provided in our supplementary
materials [53].

Lemma 4.4: Let P be the probability that a certain hashed
cell of item e (e.g., Bi[hi(e)]) is zero at t2. Let m′ =
m
l−1 and uj =

⌈
j−2
3

⌉
. Let K1 = �K

3 � − 1, K2 = �K−1
3 � −

1, and K3 = �K−2
3 � − 1. Then the lower bound of P is

P ′ = P ′
1 + P ′

2 + P ′
3, where P ′

1 =
∑K1

k=0 (e
− γ3k+2

m − e−
γ3k+3

m ),

P ′
2 =

∑K2

k=0(e
− γ3k+3

m − e−
γ3k+4

m )(1− e−
γu3k+3

m′ ), and P ′
3 =∑K3

k=0(e
− γ3k+4

m − e−
γ3k+5

m )(1− e−
γu3k+4

m′ ).
Theorem 4.1: We define the error rate E of HyperBF (without

Asynchronous Timeline) as the probability that HyperBF does
not report a batch at t2. Then we have:

E � (1− P ′)
d

where P ′ is the lower bound in Lemma 4.4.
Experimental analysis (Fig. 10(b)): We conduct experiments

on CAIDA [56] to validate the bound in Lemma 4.4. We use
the HyperBF that just has one array (d = 1), and allocate 4
KB of memory to it (m = 16000). The results show that the
experimental error rate is always well bounded by theoretical
bound. As the volume of CAIDA data stream is very large,
almost all outdated cells in HyperBF can be cleaned promptly.
Therefore, the experimental error rate does not vary with K. As
K grows larger, our theoretical bound becomes more accurate.
Note that we only focus on a single array of HyperBF here. If
we use the HyperBF consisting of d = 8 arrays, the error rate
will be < 0.01.

B. Error Rate of CalmSS

We define the error rate ζ of CalmSS as the probability that a
cold item fails to be discarded by LRU queue, i.e., the probability
that a cold item enters the top-k algorithm in CalmSS. Next, we
derive the upper bound of ζ.

We assume the data stream consists of two types of items:
cold items and hot items, and all items of the same type have
the same arrival speed. The data stream is essentially the sum
of many independent Poisson processes of two kinds (hot items

and cold items). Let λh and λc be the parameters of the two
Poisson processes, respectively. Let nh and nc be the number
of distinct hot items and cold items, respectively. Notice that
nh 	 w and nc 	 w. Therefore, we can assume that in a short
time interval, all arriving items are distinct. Consider a cold
item e, we assume all items that arrives between the time when
e enters the LRU queue and the time when e is removed from the
LRU queue are distinct hot items. Here, we assume all of these
items are hot because we want to derive an upper bound of ζ.
Cold items only promote the LRU queue to discard e, resulting in
a smaller ζ. We derive the error upper bound of CalmSS in The-
orem 4.2. The detailed proofs are provided in our supplementary
materials [53].

Theorem 4.2. For a cold item e, the probability ζ that it fails
to be discarded by CalmSS, i.e., the error rate of CalmSS, is

ζ =

(
w−1∑
x=0

1

x!
· Rx

(R+ 1)x+1
· Γ(x+ 1)

)P−1

where R = nhλh

λc
, and Γ(z) represents the Gamma function.

Experimental analysis (Fig. 11): We conduct experiments to
validate our theoretical bound in Theorem 4.2. We set w = 16,
P = 4, and generate the data stream using two kinds of Poisson
processes where nh = 50 and nc = 1. The results show that
the experimental error rate is always bounded by the theoretical
upper bound. Note that whenR < 50, the intensity of cold items
λc is smaller than the intensity of hot items λh, meaning that cold
items are actually not cold. Therefore, when R is small, CalmSS
has large theoretical and experimental error.

As R increases, our data stream assumption will be closer to
truth. When R > 50, λc < λh, meaning that the cold items are
really cold. When R = 125, the theoretical error rate is 10−2

and the experimental error rate is 10−4, showing that CalmSS is
highly effective in filtering cold items in real cases.

C. Effectiveness of Asynchronous Timeline

Theorem 4.3: After using the Asynchronous Timeline tech-
nique, the time division error is minimized when the d timelines
are evenly distributed, i.e., when the timeline offset for the ith

array is oi =
(i−1)

d T , where the minimized error is reduced by
d times compared to the synchronous version.

Detailed proofs are in our supplementary materials [53].
Experimental analysis (Fig. 12): We conduct experiments on

CAIDA [56] to validate Theorem 4.3. We set the batch threshold
T to 1.454 μs, and fix the memory usage of HyperBF to 50 KB.
We find that Asynchronous Timeline technique significantly
improves the accuracy of HyperBF. We also find that when using
Asynchronous Timeline, HyperBF using d evenly distributed
timelines is more accurate than HyperBF using d randomly
distributed timelines.

For example, when using d = 8 arrays, the RR of the basic
HyperBF is 61%, while that of the HyperBF using Asynchronous
Timeline is about 80%. Specifically, the RR of the HyperBF
using randomly distributed timelines is 80.07%, while that of
the HyeprBF using evenly distributed timelines is 81.95%.

D. Error Rate of Bucketized Space-Saving

We theoretically analyze the error of bucketized Space-Saving
in estimating the periodicities of periodic batches. We first
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Fig. 13. Accuracy of bucketized space-saving.

prove bucketized Space-Saving inherits the property of basic
Space-Saving in Theorem 4.4. Then we derive an error bound
that is related to the parameters of bucketized Space-Saving in
Theorem 4.6 The detailed proofs are provided in our supple-
mentary materials [53].

Theorem 4.4: For an arbitrary entry E that is recorded in
bucketized Space-Saving, let f and f̂ be the real and estimated
frequency of E respectively (i.e., f and f̂ are the real and
estimated periodicities of periodic batch E). We have that

0 � f̂ − f � fmin

where fmin is the smallest counter in the hashed bucket of E.
Theorem 4.5: For an arbitrary entry E with real frequency

f > γ||f ||1, let P be the probability that E is recorded in
bucketized Space-Saving. We have that

P � 1− 1

bγz

where ||f ||1 is the frequency sum of all entries, b is the number
of slots in each bucket, and z is the number of buckets.

Theorem 4.6: For an arbitrary entry E that is recorded in
bucketized Space-Saving, let f and f̂ be the real and estimated
frequency of E respectively. We have that

Pr

(
f̂ − f � ε · ||f ||1

S

)
� 1− 1

ε

where ||f ||1 is the frequency sum of all entries, and S = zb is
the number of slots in bucketized Space-Saving.

Experimental analysis (Fig. 13): We conduct experiments
using CAIDA [56] dataset to validate the theoretical bounds
in Theorems 4.5 and 4.6, where we set b = 16. Fig. 13(a) shows
the experimental and theoretical probability in Theorem 4.5. We
can see that the experimental probability is well bounded by the
theoretical bound, and when γ||f ||1 > 500, both the experimen-
tal and theoretical probability are larger than 90%. Fig. 13(a)
shows the experimental and theoretical guaranteed probability
in Theorem 4.6. We can see that the experimental guaranteed
probability is well bounded by the theoretical probability.

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to validate the effective-
ness of HyperCalm and its benefits to real-world applications.
Our experiments focus on the following five issues.
� Can HyperBF accurately and efficiently detect batches?

We compare HyperBF with SOTA Clock-Sketch [2],
SWAMP [26], and Time-Out Bloom filter [25]. The re-
sults show that the accuracy and speed of HyperBF al-
ways outperform SOTA under the same memory usage.
(Section V-A)

� Can CalmSS accurately and efficiently detect top-k items?
We compare CalmSS with SOTA Space-Saving [12], Un-
biased Space-Saving [13], and Cold filter [17]. The results
show that the accuracy and speed of CalmSS always out-
perform SOTA under the same memory. (Section V-B)

� Can HyperCalm accurately and efficiently detect periodic
batches? We combine the SOTA algorithms in detecting
batches and finding top-k items to form one strawman solu-
tion for finding periodic batches, and compare HyperClam
against it. The results show that HyperCalm outperforms
the strawman solutions 4× in term of average relative error
and 98.1× in term of speed. (Section V-C)

� Can periodic batches benefit real-world application? We
apply the HyperCalm sketch to two applications: cache
(Section V-H) and network measurement (Section V-I).
The results show that HyperCalm can well improve the hit
rates of LFU/LRU caches, and it achieves high accuracy in
detecting network anomalies.

� Can HyperCalm work well in mainstream streaming frame-
work and database? We implement HyperCalm on top of
Apache Flink [23] (Section V-J) and Redis [24] (Section
V-K), showing that HyperCalm can be easily deployed into
popular streaming processing framework and KV database.

We implement HyperCalm sketch and the other algorithms
with C++. We use three datasets: small-scale CAIDA dataset
with 30 M items (default), large-scale CAIDA dataset with 1.5G
items, Criteo dataset with 45 M items. For more details about
the platform, setting, datasets, and metrics, please refer to our
supplementary materials [53].

A. Experiments on HyperBF

Parameter setting: We compare HyperBF with Clock-Sketch
[2], SWAMP [26], and Time-Out Bloom filter (TOBF) [25].
We set d = 8 and l = 32 by default. For CAIDA, we set the
time-based batch threshold T to 0.72 seconds. For Criteo, we
set the count-based batch threshold T to 40,000. Under such
settings, there are about 0.96M batches in CAIDA dataset, and
about 4.9M batches in Criteo dataset.

Accuracy of detecting batches (Fig. 14(a)): We find that
HyperBF always achieves the best accuracy. In fact, HyperBF,
Clock, and TOBF always have 100% PR, but HyperBF achieves
better RR than Clock and SWAMP. SWAMP always has 100%
RR because it reports all unrecorded items as batches, but its PR
is less than 40% as it suffers high false positive errors. When
using 256 KB of memory, HyperBF achieves 97% F1 score,
significantly outperforms Clock (90%), SWAMP (28%), and
TOBF (73%).

Impact of cell line size (l) (Fig. 14(b)): We find that a larger
value of cell line size l goes with higher RR of HyperBF, and
when the cell line size exceeds 8, HyperBF achieves the optimal
accuracy. When setting l = 2 and using more than 256 KB of
memory, the RR of HyperBF decreases as the memory usage
increases because the outdated cells are not cleaned in time.
The two curves of l = 8 and l = 16 are highly in coincidence,
meaning that l = 8 is already enough to achieve the optimal
accuracy.

Impact of number of arrays (d) (Fig. 14(c)): We find that
HyperBF performs well when using d = 4 or d = 8 arrays.
When the memory usage is small, smallerd goes with higher RR.
This is because when the total memory usage is fixed, smaller

Authorized licensed use limited to: Apple. Downloaded on November 01,2024 at 02:40:52 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: UNIFIED FRAMEWORK FOR MINING BATCH AND PERIODIC BATCH IN DATA STREAMS 5555

Fig. 14. Performance of HyperBF (CAIDA).

Fig. 15. Performance of CalmSS (CAIDA).

d leads to larger size of each array, and thus leads to less hash
collisions in each array. When the memory usage is large, larger
d goes with higher Recall Rate. This is because if the array size
is too small, the outdated cells cannot be cleaned in time, which
compromises the accuracy of HyperBF. When setting d = 8 and
using 256 KB of memory, the RR of HyperBF exceeds 95%.

Impact of Asynchronous Timeline (Fig. 14(d)): We find that
Asynchronous Timeline can significantly improve the RR of Hy-
perBF. Here, the Asynchronous Timeline technique uses d evenly
distributed timelines. When using 256 KB of memory, HyperBF
using Asynchronous Timeline achieves 97% RR, significantly
outperforms that of the basic version (82%).

Processing speed (Fig. 14(e)): We find that HyperBF is faster
than other algorithms. The results show that under different
memory constraints, the throughput of HyperBF is always 21
Mops, while that of TOBF and SWAMP are about 15 Mops and
12 Mops, respectively. The throughput of Clock drops rapidly
with the increase of memory usage because when using more
memory, Clock needs to clean more cells per insertion. When
using 1024 KB of memory, the throughput of Clock is only
one-third of that of HyperBF.

B. Experiments on CalmSS

Parameter setting: We compare CalmSS with Space-Saving
(SS) [12], Unbiased Space-Saving (USS) [13], and Cold filter
[17] + Space-Saving (CF+SS). For CalmSS, we set w = 16 and
P = 4 by default. We set k = 100 and conduct the experiments
using CAIDA.

Accuracy of finding top-k items (Fig. 15(a)): We find that
CalmSS always has better RR than SS, USS, and CF+SS. The
RR of CalmSS reaches 78% even if the memory size is only
32 KB, while that of SS and USS are about 50%. As the memory
size exceeds 128 KB, the RR of CalmSS is very close to 100%.
The RR of CF+SS is smaller than ours because the large volume
of data stream fill it up very quickly.

Frequency estimation for top-k items (Fig. 15(b)): We find
that CalmSS always achieves smaller ARE than SS, USS, and
CF+SS. When using 32 KB of memory, the ARE of CalmSS is

0.1, about 4 times lower than that of the other algorithms. When
using 512 KB of memory, the ARE of CalmSS is 7.5× 10−4,
while that of SS, USS, CF+SS are 1.8× 10−3, 1.1× 10−3, and
2.1× 10−2, respectively.

Processing speed (Fig. 15(c)): We find that CalmSS is slightly
faster than USS and significantly faster than SS and CF+SS.
CF+SS is slow because Cold filter needs extra memory accesses
and hash computation. Surprisingly, CalmSS is faster than SS
and USS because it sends only hot items to Space-Saving,
resulting in fewer memory accesses to Space-Saving.

Impact of LRU queue length (w) (Fig. 15(d)): We find that
CalmSS performs well when the length of the LRU queue w is
just 8. When using 256 KB memory, the RR of CalmSS using an
LRU queue of length w = 8 is 91%, while that of Space-Saving
(w = 0) is 77%. Since the three curves of w = 8, w = 16, and
w = 32 are highly in coincidence, we conclude that w = 8 is
enough to achieve satisfactory accuracy.

Impact of promotion threshold (P) (Fig. 15(e)): We find that
the optimal promotion threshold P is 4 or 6. When using 256
KB memory, the RR of CalmSS with P = 2 or P = 4 is about
92%, while that of Space-Saving (P = 0) is 76%. Note that the
optimal P is highly correlated with the dataset.

C. Experiments on HyperCalm

Parameter setting: We combine the state-of-the-art Clock-
Sketch and Unbiased Space-Saving to form a strawman solution
for finding top-k periodic batches (Clock+USS), and compare
our HyperCalm with it. The parameters (including memory
proportion) of HyperCalm and the strawman solution are empir-
ically set so that they achieve relatively good performance. For
HyperBF, we set d = 8 and l = 32. For CalmSS, we set P = 7.
We set k = 200 by default.

1) Setting on CAIDA: We set the time-based batch threshold
T to 0.072 millisecond. Each batch interval V is rounded to the
nearest multiple of 0.72 millisecond. Under such settings, there
are about 4.1M periodic batches in CAIDA.

2) Setting on Criteo: We set the count-based batch threshold
T to 20,000. Each batch interval V is rounded to the nearest
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Fig. 16. Performance of HyperCalm (CAIDA and Criteo).

Fig. 17. Performance of HyperCalm on large-scale dataset.

multiple of 100,000. Under such settings, there are about 14.7M
periodic batches in Criteo dataset.

Accuracy of finding periodic batches (Fig. 16(a)–(b)): We
find that the RR of HyperCalm always outperforms the straw-
man solution on two datasets. On CAIDA, when using 60 KB
of memory, the RR of HyperCalm is 94%, while that of the
strawman solution is 78%. On Criteo, when using 800 KB
of memory, the RR of HyperCalm is 90%, while that of the
strawman solution is 85%.

Periodicity estimation of periodic batches (Fig. 16(c)–(d)):
We find that HyperCalm always has smaller ARE than the
strawman solution on two datasets. On CAIDA, when using
60 KB of memory, the ARE of HyperCalm is about 6.9× 10−3,
which is 4 times lower than that of the strawman solution. On
Criteo, when using 800 KB of memory, the ARE of HyperCalm
is about 1.3× 10−4, which is 4.6 times lower than that of the
strawman solution.

Processing speed (Fig. 16(e)): We find that the processing
speed of HyperCalm always outperforms the strawman solution
on two datasets. When using 60 KB of memory, the throughput
of HyperCalm is 8.54 Mops, which is 98.1 times higher than
that of the strawman solution. The gap between HyperCalm and
Clock+USS is huge because Clock needs to clean many cells
per insertion, which is very inefficient.

Experiments on large-scale dataset (Fig. 17): We find that on
large-scale dataset, HyperCalm still has high accuracy in find-
ing periodic batches and fast insertion speed. In this experiment,
we use the 1-hour CAIDA dataset with 1.5G items, and build
larger HyperCalm sketch to detect periodic batches. We can see
that when using 512 KB memory, HyperCalm achieves 99% RR
and 12.4 Mops throughput.

Time for detecting batches and periodic batches (Fig. 18):
We evaluate the time for HyperBF to detect item batches
(Fig. 18(a)) and the time for HyperCalm to report periodic
batches (Fig. 18(b)). As shown in Fig. 18(a), the reaction time
for HyperBF to detect batches is always < 0.25 microsecond.
For example, when using 64 KB memory, the detection time for
HyperBF with/without SIMD acceleration is only 0.047/0.191

Fig. 18. Time for detecting batches and periodic batches.

TABLE II
MAXIMUM PERFORMANCE IMPROVEMENT (Δ) SATISFYING THE CONDITION OF

p-value< 0.005

microsecond. The detection time of HyperBF is very short be-
cause HyperBF processes items in a one-pass manner withO(1)
time complexity, which is very efficient. As shown in Fig. 18(b),
the time for HyperCalm to report top-k (k = 200) periodic
batches is always < 1.6 millisecond. For example, when using
256 KB memory, the reporting time for HyperCalm with/without
the Bucketized Partition Optimization is 0.879/0.0034millisec-
ond. The reporting time for Bucketized HyperCalm is longer
because it needs to traverse the entire bucket array withO(z × b)
time complexity to select the top-k entries (periodic batches). By
contrast, basic HyperCalm can directly report the most frequent
k entries from the Stream-Summary structure (a doubly-linked
list sorted by frequency) with O(k) time complexity. In sum-
mary, our framework achieves microsecond-level batch detec-
tion and millisecond-level periodic batch reporting, which it very
efficient.

Performance improvement in statistical significance tests
(Table II): We add statistical tests to show the significance of
our HyperBF and HyperCalm on detecting batches and periodic
batches over existing methods. 1) For batch detection task, we fix
the memory usage of HyperBF and existing methods (Clock [2],
SWAMP [26], TOBF [25]) to 32 KB, and repeat the experiments
100 times to collect 100 sets of paired samples on F1 Score and
Throughput. Next, we use these samples to conduct Wilcoxon
signed-rank test [57]. We define our one-sided alternative hy-
pothesis such that the difference between the paired samples
(e.g., the F1-Score/Throughput difference between HyperBF
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Fig. 19. Performance of bucketized partition optimization.

and Clock) is stochastically greater than a distribution symmetric
about Δ. We carry out multiple tests and use binary search
to find the maximum performance improvement Δ satisfying
the condition of p-value < 0.005, which are displayed in
Table II. The results show that HyperBF demonstrates a sig-
nificant improvement (p-value < 0.005) in both F1 Score
(up to +81.85%) and Throughput (up to +11.99 M/s) compared
to existing methods. 2) For periodic batch detection task, we
fix the memory usage of HyperCalm (with Bucketized Partition
Optimization) and existing method (Clock+USS) to 32 KB. Sim-
ilarly, we collect 100 sets of samples on Recall and Throughput,
and carry out multiple Wilcoxon signed-rank tests to find the
maximum performance improvement Δ satisfying p-value
< 0.005. The results show that HyperCalm demonstrates a
significant improvement (p-value < 0.005) in both Recall
(+43.75%) and Throughput (+9.18 M/s) compared to existing
method (Clock+USS).

D. Experiments on Bucketized Partition Optimization

We evaluate the performance of Bucketized CalmSS on find-
ing top-k items under the setting of Section V-B. We evalu-
ate the performance of HyperCalm sketch using Bucketized
TimeRecorder, LRU-Queue, and Space-Saving on finding pe-
riodic batches under the setting of Section V-C. By default, we
allocate 3 KB memory to HyperBF, and allocate the rest memory
to Bucketized TimeRecorder, LRU-Queue, and Space-Saving
in a ratio of 7:1:7. We set the number of slots per bucket in
TimeRecorder, LRU-Queue, and Space-Saving to 32, 32, and
16, respectively, and we use 16-bit fingerprints in TimeRecorder
and LRU-Queue.

Accuracy on finding top-k items (Fig. 19(a)–(b)). We find
that our Bucketized Partition technique effectively improves the
Recall Rate and ARE of CalmSS on finding top-k items: When
using 30 KB memory, Bucketized Partition improves the Recall
Rate of CalmSS from 83% to 98%, and improves the ARE from
0.046 to 0.010.

Accuracy on finding periodic batches (Fig. 19(c)–(d)). We find
that our Bucketized Partition technique effectively improves the
Recall Rate and ARE of HyperCalm on finding periodic batches:
When using 32 KB memory, Bucketized Partition improves the
Recall Rate of HyperCalm from 57% to 95%, and improves
the ARE from 0.583 to 0.039. As discussed in Section III-E,
Bucketized HyperCalm achieves memory efficient by removing
the hash table index, and thus achieves higher accuracy under
the same memory usage.

Processing speed (Fig. 19(e)). We find that Bucketized Hyper-
Calm sketch has faster speed than the basic version: When using
32 KB memory, Bucketized Partition improves the insertion
speed from 7.65 Mops to 12.48 Mops. Bucketized HyperCalm

Fig. 20. Impact of number of slots per CalmSS bucket (b).

Fig. 21. Impact of SIMD acceleration.

is faster because it reduces the number of memory access, and
avoid complicated pointer operations.

Impact of number of slots per bucket in CalmSS (b) (Fig. 20).
We find that larger b goes with higher accuracy and slower
speed: This is because using large buckets allows us to better
approximate the theoretical results of basic Space-Saving, but
this requires us to probe more slots simultaneously. In practice,
when using 32-bit ID, we recommend to set b = 16, so that the
access of each bucket can be accelerated with AVX-512 SIMD
instructions (Section V-E).

E. Experiments on SIMD Optimization

We evaluate the speed improvement of the SIMD optimization
described in Section III-F. For HyperBF, we set d = 8 and
l = 256. Under such setting, each block of HyperBF is of
512-bit, which can be accelerated using AVX-512 instructions.
We use Bucketized TimeRecorder, LRU-Queue, and CalmSS,
where we use 16-bit fingerprints and set their numbers of slots
per bucket to 32, 32, and 16, respectively. Under such setting,
the IDs/fingerprints in each bucket occupy 512 bits, which again
can be accelerated with AVX-512 instructions.

Speed of HyperBF (Fig. 21(a)): We find that SIMD instruc-
tions improve the speed of HyperBF by 25.7%∼26.1%. When us-
ing 16 KB memory, the insertion throughput of HyperBF without
and with SIMD acceleration are 21.04 Mops and 26.50 Mops,
respectively. We can see that SIMD instructions effectively

Authorized licensed use limited to: Apple. Downloaded on November 01,2024 at 02:40:52 UTC from IEEE Xplore.  Restrictions apply. 



5558 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

Fig. 22. Performance of dynamic memory adjustment.

optimize the speed of HyperBf by using 512-bit vectorization
operations on each block.

Speed of HyperCalm (Fig. 21(b)): We find that SIMD instruc-
tions improve the speed of HyperCalm by 30.3%∼37.6%. When
using 32 KB memory, the insertion throughput of HyperCalm
sketch without and with SIMD acceleration are 9.07 Mops and
12.48 Mops. We can see that SIMD instructions effectively
optimize the speed of HyperCalm by accelerating HyperBF and
accelerating the access to the buckets of TimeRecorder/LRU-
Queue/Space-Saving.

F. Experiments on Dynamic Memory Adjustment

We conduct experiments to evaluate the performance of
HyperBF/HyperCalm under dynamic memory adjustment op-
erations. We conducted experiments using CAIDA dataset.
Initially, we build HyperBF/HyperCalm and insert the first
10% of the dataset into them. Subsequently, we execute the
expansion/compression operations on HyperBF/HyperCalm to
expand/compress them by different ratios (r). Afterwards, we
proceed to insert the remaining 90% of the dataset. We report the
time taken by the expansion and compression operations, along
with the final Recall Rate for detecting batches and periodic
batches.

Performance of HyperBF on dynamic memory adjustment
(Fig. 22(a)–(b)): We find that HyperBF can flexibly manage
the trade-off between its accuracy and memory usage via the
memory adjustment operations. Moreover, the memory adjust-
ment operations of HyperBF can be efficiently completed within
milliseconds. In Fig. 22(a), we build an initial HyperBF of 16
KB, and expand it by four different ratios (r = 2, 4, 8, 16). The
results show that by expanding its size by r = 2 times, HyperBF
improves its Recall Rate from 81.5% to 94.0%, and it only takes
0.38ms to complete the expansion operation. In Fig. 22(b),
we build an initial HyperBF of 256 KB, and compress it by
four different ratios (r = 2, 4, 8, 16). The results show that after
compressing HyperBF by r = 2 times, its Recall Rate only drops
from 97.4% to 97.3%, and it only takes 2.26ms to complete the
compression operation.

Performance of HyperCalm on dynamic memory adjustment
(Fig. 22(c)–(d)): We find that HyperCalm sketch can flexibly
manage the trade-off between its accuracy and memory usage
via the memory adjustment operations, and it also achieves
millisecond-level memory adjustment. In Fig. 22(c), we build an
initial HyperCalm of 16 KB, and expand it by four different ratios
(r = 2, 4, 8, 16). Specifically, we perform the expansion oper-
ation on all of its components (HyperBF, Bucketized TimeRe-
corder, Bucketized LRU-Queue, and Bucketized Space-Saving).
The results show that by expanding its size by r = 2 time,
HyperCalm improves its Recall Rate from 67.3% to 91.6%,

and it only takes 0.32ms to complete the expansion operation.
In Fig. 22(d), we build an initial HyperCalm of 256 KB, and
compress it by four different ratios (r = 2, 4, 8, 16). The results
show that after compressing HyperCalm by r = 2 times, its
Recall Rate only drops from 98.7% to 98.2%, and it only takes
3.74ms to complete the compression operation.

G. Experiments on Mining Periodic Large Batches

We evaluate the performance of our extended HyperCalm
sketch in estimating batch sizes and mining periodic large
batches. The experiments are conducted using CAIDA dataset
under the setting in Section V-C. By default, we use 
log(L)�-bit
counters in our CM sketch.

Batch size distribution (Fig. 23(a)): We first study the batch
size distribution in CAIDA dataset. We can see that the batch size
distribution is highly skewed, where most batches are of small
sizes and only a few batches have large sizes. For example,
there are 70.1%/91.8% batches whose sizes are smaller than
4/16. Therefore, after efficiently filtering small batches, we can
significantly reduce the memory overhead of TimeRecorder and
CalmSS.

Accuracy on estimating batch sizes (Fig. 23(b)). We find that
the extended HyperBF achieves high accuracy on estimating
batch sizes for small batches: We evaluate the ARE of the
estimated size for the batches whose real sizes are not larger
than L. We can see that when using 512 KB total memory, the
ARE for batches whose sizes are smaller than 16 is < 0.018.

Accuracy on finding large batches (Fig. 23(c)). We find that
the extended HyperBF achieves high accuracy on finding large
batches: When using 1024 KB memory, extended HyperBF
achieves > 0.963 F1 score on reporting batches whose sizes are
larger than 8. Thus, extended HyperBF can accurately detect
periodic large batches.

Accuracy on finding periodic large batches (Fig. 23(d)). We
find that the extended HyperCalm achieves high accuracy on
finding periodic large batches: When using 128 KB total mem-
ory, our HyperCalm achieves > 95% Recall Rate in finding
periodic batches with sizes larger than 8.

Accuracy on periodicity estimation for periodic large batches
(Fig. 23(e)). We find that the extended HyperCalm achieves high
accuracy on estimating the periodicity of periodic large batches:
When using 512 KB total memory, the ARE for periodic batches
with sizes larger than 8 is 0.048.

H. Applying HyperCalm to Cache Systems

We apply HyperCalm to a simulated cache system. Hyper-
Calm yields two insights to optimize cache performance. First,
with the help of real-time batch detection, we can find out the
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Fig. 23. Performance of estimating batch sizes and mining Periodic Large Batches (PLB).

Fig. 24. Optimization to cache replacement policy.

batches that are still active now. When cache is full, we do
not discard those items that still have active batches because
they are highly likely to arrive again in the near future. Second,
with the historical knowledge of periodic batches, we can fore-
cast the arrival time of new batches, so as to prefetch data into
cache before their arrival. We implement a fully associative
cache simulator that mimics the behavior of a hardware cache.
We use CAIDA [56] and treat source IP address (4 bytes) as
memory access request. We use the measurement results of
HyperCalm to improve the cache hit rate as described above.

Experiments on LFU (Fig. 24(a)). We find that HyperCalm
significantly improves the hit rate of LFU with small memory
overhead, and HyperCalm outperforms Clock-Sketch [2] in both
hit rate and processing speed: We set the memory of HyperCalm
and Clock to 20 KB. The results show that HyperCalm always
has higher hit rate than Clock and the LFU baseline. With the
cache size of 1280, the hit rate of HyperCalm is 67%, while that
of Clock and LFU are 60% and 48%.

Experiments on LRU (Fig. 24(b)). We find that HyperCalm
improves the hit rate of LRU, and the hit rate grows higher as
the memory of HyperCalm grows larger: We set the cache size to
640 lines (about 80 KB) and change the memory of HyperCalm.
The results show that HyperCalm always has higher hit rate than
the LRU baseline. When using 20 KB of memory, HyperClam
improves the hit rate from 41% to 45%.

I. Applying HyperCalm to Network Measurement

We apply our HyperCalm sketch to the scenario of network
traffic measurement. In this scenario, each item in the data
stream is a packet in the network traffic, whose ID is defined
as the 5-tuple of a flow. We deploy one HyperCalm sketch on
each hop (e.g., switch) inside the network to report periodic
large batches and some batch-level information (e.g., batch size,
sequence number range, etc.). A central analyzer periodically
collects these information from all switches, and further analyze
these information to identify abnormal events. We focus on two
abnormal events: packet drops and inflated queuing delays. The

experiments are conducted using CAIDA [56] dataset, where we
simulate two switches connected by a link. To create abnormal
events, we configure the link to proactively drop packets or
increase the packet intervals for some batches. Then we analyze
the batch-level information of periodic large batches reported
by upstream/downstream switches to find abnormal events.

Finding packet drops (Fig. 25(a)–(b)). We find that Hyper-
Calm achieves > 95% F1 score in finding packet drops: In this
experiment, we configure HyperCalm to report the size and the
TCP Sequence Number range for each batch, which is imple-
mented by adding three fields to each slot in LRU-Queue/Space-
Saving. The analyzer first use the Sequence Number range to
trace each batch, and it reports a batch experiencing packet drops
if its size suddenly decreases. We can see that even with 32
KB memory, HyperCalm still achieves nearly 90% F1 score on
finding packet drops. We also evaluate the ARE of HyperCalm in
estimating batch sizes in Fig. 25(b). We can see that when using
512 KB memory, HyperCalm achieve < 10−4 ARE, showing
that HyperCalm has high accuracy in estimating batch sizes.

Finding inflated queuing delays (Fig. 25(c)–(d)). We find
that HyperCalm achieves > 95% F1 score in finding inflated
queuing delays: In this experiment, we configure HyperCalm
to report the timespan and the TCP Sequence Number range
for each batch, which is implemented by adding four fields
to each slot in LRU-Queue/Space-Saving. The analyzer first
use the Sequence Number range to trace each batch, and it
reports a batch experiencing inflated queuing delay if its timspan
suddenly increases. We can see that when using 128 KB memory,
HyperCalm achieves > 90% F1 score in finding inflated delays.
We also evaluate the ARE of HyperCalm in estimating batch
timespans in Fig. 25(c). We can see that when using 512 KB
memory, HyperCalm achieves < 2× 10−4 ARE, showing that
HyperCalm has high accuracy in estimating batch timespans.

J. Integration into Apache Flink

Experimental setup: We run the experiments at a Flink cluster
with 1 master and 5 workers using CAIDA [56]. We deploy a
Hadoop Distributed File System (HDFS) with one NameNode
(master) and 5 DataNodes (workers) in our cluster. Each node
has 4 virtual CPU cores of Intel XEON Platinum 8369B, and
8 GB main memory. The job manager and each task manager
of Flink are configured with 1 GB of memory. Each node uses
Flink 1.13.1, Java 11 and Hadoop 2.8.3 running on Ubuntu 20.04
LTS. All experiments are repeated 10 times and average (±std)
throughput is plotted.

Experimental results (Fig. 26): We find that HyperCalm
can smoothly work on top of Flink framework. As shown in
Fig. 26(a), in local mode experiments, the throughput linearly
increases up to 3 parallel instances (parallelism). Afterwards, the
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Fig. 25. Performance of HyperCalm on network measurement.

Fig. 26. Throughput on apache flink.

Fig. 27. Throughput in Redis.

throughput growth becomes less linear. As shown in Fig. 26(b),
in cluster mode, the throughput linearly scales up with more
nodes used in the cluster.

K. Integration into Redis Database

We implement HyperCalm in Redis database, a popular in-
memory data structure store widely used by database, cache,
and streaming engine, showing that HyperCalm can be easily
integrated into mainstream KV databases.

Experimental setup: We implement our HyperBF/CalmSS/
HyperCalm using Redis module, where we provide API for
users to create sketches, insert items, and query top-k periodic
batches. The experiments are conducted on a machine with dual
18-core CPUs (36 threads, Intel(R) Core(TM) i9-10980XE CPU
@ 3.00GHz) and 125GB DRAM memory.

Experimental results (Fig. 27): We find HyperBF/
CalmSS/HyperCalm achieve 0.234/0.227/0.115 Mops insertion
throughput in Redis, which are not affected by memory usage.
This is because the speed bottleneck of Redis lies in the
communication with Redis server rather than sketch insertion,
and thus the memory has little effect on throughput.

VI. CONCLUSION

This paper proposes a new pattern in data streams, namely
periodic batches, which is useful in many applications. We
propose the HyperCalm sketch, to accurately detect batches

and periodic batches in real time. The two key components
of HyperCalm, HyperBF and CalmSS, significantly outperform
state-of-the-art solutions in detecting batches and finding top-k
items, respectively. We provide theoretical guarantees for Hy-
perBF and CalmSS. Extensive experimental results demonstrate
the effectiveness of our approach. All related codes are available
at GitHub [22].
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