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ABSTRACT
Learnable embedding vector is one of the most important applica-
tions in machine learning, and is widely used in various database-
related domains. However, the high dimensionality of sparse data in
recommendation tasks and the huge volume of corpus in retrieval-
related tasks lead to a large memory consumption of the embedding
table, which poses a great challenge to the training and deploy-
ment of models. Recent research has proposed various methods to
compress the embeddings at the cost of a slight decrease in model
quality or the introduction of other overheads. Nevertheless, the
relative performance of these methods remains unclear. Existing
experimental comparisons only cover a subset of these methods and
focus on limited metrics. In this paper, we perform a comprehensive
comparative analysis and experimental evaluation of embedding
compression. We introduce a new taxonomy that categorizes these
techniques based on their characteristics and methodologies, and
further develop amodular benchmarking framework that integrates
14 representative methods. Under a uniform test environment, our
benchmark fairly evaluates each approach, presents their strengths
and weaknesses under different memory budgets, and recommends
the best method based on the use case. In addition to providing
useful guidelines, our study also uncovers the limitations of current
methods and suggests potential directions for future research.
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1 INTRODUCTION
In recent years, embedding techniques have been widely used in
database-related research areas, such as cardinality estimation [48,
61], query optimization [8, 118], language understanding [43], en-
tity resolution [21], document retrieval [34], graph learning [45,
105] and advertising recommendation [68]. These applications, es-
pecially recommendation [30, 32, 82, 108] and retrieval [24, 42, 77,
97], often rely on large amount of embedding vectors to learn seman-
tic representations and extract meaningful patterns and similarities.
However, the sheer volume of learnable vectors poses considerable
storage challenges in practical deployment scenarios. For exam-
ple, Meta [71] proposed a deep learning recommendation model
(DLRM) equipped with billions of embedding vectors that can take
96 terabytes memory to serve.

The management of these large amount of learnable vectors has
become a critical concern for database communities (e.g., cloud-
native vector database [27]). One way to address the issue is to
involve multiple distributed instances, which may also bring signifi-
cant communication overheads [69, 93]. Another way is to compress
the embedding vectors without compromising the accuracy or the
utility of models. During the past few years, various compression
methods have been proposed, including hashing, quantization, and
so on. However, the performance and the effectiveness of these
techniques remain largely unexplored. It is still an open question
for data scientists to select from existing compression techniques
when the storage of embeddings becomes unbearable.

Figure 1: An example of input data for DLRMs.

In this paper, we study the above problem by revisiting the em-
bedding compression methods under recommendation and retrieval
scenarios since they have the most severe learnable vector storage
pressure due to the high-dimensional sparse data [58] and the huge
volume of corpus. Figure 1 illustrates an example of input data
for DLRMs, which consists of multiple columns of categorical and
numerical features, along with a column of target labels. A typical
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Figure 2: (a) A typical DLRM. (b) A typical retrieval-augmented LLM. (c) An example of inter-feature compression, the original
8 features now share 4 embeddings. (d) An example of intra-feature compression, each embedding is compressed individually.

DLRM vectorizes the categorical features into dense embeddings
and feeds them along with numerical features into a downstream
neural network to make predictions, as shown in Figure 2(a). The
embedding layer maintains trainable embedding vectors for all
categorical features. It also provides embedding read and write
primitives which are similar to the key-value storage [99, 114, 115].
Unfortunately, most existing key-value storage compression tech-
niques [13, 80] are not suitable for DLRMs because of several special
characteristics of embeddings, such as skew distribution of embed-
ding popularity [68, 69, 81, 96, 111, 113], frequently accessing and
updating of multiple embeddings especially during training. For
example, if trained on the Criteo dataset, embeddings are accessed
and updated more than 30 times per epoch, with the most popular
embeddings being updated almost every iteration. To address the
memory issue, many embedding compression methods have been
proposed and can be classified into two categories: inter-feature
compression and intra-feature compression.

Considering that the storage bottleneck is mainly caused by the
increasing number of unique features, inter-feature compression
forces features to share embeddings within a limited mem-
ory space, as shown in Figure 2(c). Inter-feature compression is
commonly used in industrial applications [114], and it requires an
encoding function to maintain the mapping from features to em-
beddings. According to whether the encoding function is predeter-
mined or updated during training, we further divide these methods
into static encoding [74, 84, 109] and dynamic encoding [14, 17, 40].

Inspired by features’ different importance, intra-feature com-
pression assigns each feature an individually compressed
embedding. Figure 2(d) shows an example, where each feature
has its own embedding of distinct dimensions, and the final em-
beddings are obtained by projection or padding. According to the
compression paradigm, intra-feature compression can be further
divided into quantization, dimension reduction, and pruning. Quan-
tization is a common compression method in deep learning models
that uses data types with fewer bits [28, 53]. Dimension reduc-
tion [25, 64, 117] and pruning [46, 64] provide features with embed-
dings of different dimensions and sparsities, respectively.

Despite the existence of numerous proposed embedding com-
pression methods, a thorough evaluation and analysis remains
lacking. To the best of our knowledge, no previous work provides a

comprehensive overview of this field. The experiments of existing
approaches are often limited to specific cases with restricted met-
rics and settings. Consequently, the advantages, disadvantages, and
applicability of these compression methods have yet to be explored.
While benchmarks for DLRMs have been established [75, 121],
they primarily focus on model design and do not consider em-
bedding compression. The absence of a comprehensive evaluation
framework for various compression methods makes it difficult to
reproduce and compare existing techniques, which significantly
undermines the practical value of research in this domain.

In addition to DLRMs, retrieval models also have large embed-
ding tables for similarity-based embedding search. Although exist-
ing work focuses more on designing efficient embedding search
algorithms [7, 79, 86], the emergence of retrieval-augmented large
language models (LLMs) [4, 29, 52] brings new challenges to embed-
ding vector storage. A typical retrieval-augmented LLM is shown
in Figure 2(b). Since LLMs already consume a lot of memory [5, 78],
embedding tables cannot be stored in GPUs or other accelerators,
resulting in high search latency. It is currently unclear whether
existing learnable vector compression methods are suitable for
embeddings generated from retrieval models.

Motivated by the aforementioned issues in this research field,
we aim to provide an in-depth analysis and a comprehensive ex-
perimental evaluation of embedding compression methods. In this
paper, we carry out experiments using a unified evaluation frame-
work to uncover the strengths and weaknesses of each method in
various scenarios. We summarize our contributions as follows:
• We propose a new taxonomy of embedding compressionmethods

according to their unique properties. On this basis, we provide a
new perspective to understand and analyze their characteristics.

• We construct a unified modular evaluation framework for exper-
iments. We build a general pipeline that can implement a wide
variety of compression methods without much effort.

• We comprehensively evaluate representative embedding com-
pression methods using rich metrics in DLRM scenarios. We
further discuss the strengths and weaknesses of these methods.

• We apply the embedding compression methods to a retrieval-
augmented LLM and analyze their performance.

• We discuss the guidelines, challenges, and promising research
directions of embedding compression methods.
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2 PRELIMINARIES
2.1 DLRM
The general architecture of DLRM is depicted in Figure 2(a). A
DLRM consists of two parts: an embedding layer mapping each cate-
gorical feature into a dense embedding vector, and a neural network
containing interaction layers and fully connected layers. Numerical
features are fed along with embeddings into the neural network.
Many works have been done to improve the performance of the
neural network part, such as WDL [15], DCN [90], and DIN [119].

In DLRMs, the categorical feature 𝑥 can be interpreted as a one-
hot vector by encoding function I(𝑥) to obtain the corresponding
row vector 𝑒 from the embedding table 𝐸 ∈ R𝑛×𝑑 by 𝑒 = I(𝑥)𝑇 𝐸;
or 𝑒 = E(I(𝑥)) where E denotes the embedding layer function.
Using 𝑘 to denote the number of categorical feature fields, and 𝑥𝑛𝑢𝑚
to denote numerical features, the downstream neural network is a
function 𝑓 with parameters 𝜃 that inputs embeddings and outputs
predictions �̂� = 𝑓 (𝑒𝑖1 , 𝑒𝑖2 , ..., 𝑒𝑖𝑘 , 𝑥𝑛𝑢𝑚 ;𝜃 ) for the loss function L.
After the forward pass, optimizer such as Adam [44] is applied to
update the embeddings and other model parameters. In summary,
the optimization of DLRM can be formalized as:

min
𝐸,𝜃
E(𝑋,𝑦)∼DL(𝑦, 𝑓 (E(I(𝑥)), 𝑥𝑛𝑢𝑚 ;𝜃 )) . (1)

The notations are detailed in Table 1.

2.2 Retrieval-augmented LLM
The general structure of retrieval-augmented LLM is depicted in Fig-
ure 2(b). A typical model [4, 29, 52] consists of three parts: a retrieval
model [42, 77, 100], an embedding search algorithm [7, 79, 86], and
an LLM [5, 51, 78]. The retrieval model has two encoders 𝑓𝑞 , 𝑓𝑑 that
encode queries 𝑞 and all documents 𝐷 into embeddings separately.
The embedding search algorithm 𝑆 takes query embedding 𝑓𝑞 (𝑞)
as input, and search similar documents within the embedding table
E = 𝑓𝑑 (𝐷). After obtaining relevant documents 𝑆 (𝑓𝑞 (𝑞𝑖 ), E), both
the query and the documents serve as input to the LLM 𝑓𝑙𝑙𝑚 . The
size of the corpus used in industrial applications is at least one mil-
lion level [73, 110], resulting in a large amount of memory required
for embedding table storage. For simplicity, we currently focus on
the inference performance of retrieval-augmented LLMs.

2.3 Problem Definition
In this section, we discuss the problem of embedding compression
in detail. In DLRMs, we use E∗ to denote the compressed embed-
ding layer with trainable parameters 𝐸∗. The encoding function I∗

for the compressed embedding layer can be one-hot or multi-hot,
depending on actual needs. The problem of learning the parameters
of a DLRM with a compressed embedding layer can be modified to:

min
E∗,I∗,𝐸∗,𝜃

E(𝑋,𝑦)∼DL(𝑦, 𝑓 (E∗ (I∗ (𝑥)), 𝑥𝑛𝑢𝑚 ;𝜃 )),

s.t.M(E∗, 𝑓 ) ≤ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 .
(2)

Besides the model parameters 𝐸∗ and 𝜃 , the embedding layer E∗

and the encoding function I∗ are also variables that determine
the loss. The optimization process can be decomposed into two
parts: the first part determines E∗ and I∗ through the compression
method, and the second part trains the model parameters 𝐸∗ and

Table 1: Commonly used notations.

Notation Explanation

D Set of data samples
𝐸 (∗) Parameters of (compressed) embedding layer
E (∗) (Compressed) embedding layer
𝑘 Number of categorical fields
𝑋 Features of a sample

𝑥, 𝑥𝑛𝑢𝑚 Categorical feature, numerical feature
𝑞 Input query for retrieval-augmented LLM

I (∗) (Compressed) encoding function
𝑉 Set of features
𝑛 Number of features
𝑚 Number of rows in inter-feature compression
𝑑 (′ ) (Reduced) embedding dimension
𝑒 Embedding vector
𝑟 Density in pruning methods

𝑓 , 𝑓𝑞, 𝑓𝑙𝑙𝑚 Neural network of DLRM, query encoder, LLM
𝑆 Embedding search function

𝐷𝑒𝑐 Embedding decompress function
𝜃 Model parameters except embeddings
𝑦, �̂� Ground truth label, prediction

L, L𝑙𝑙𝑚 Loss functions for DLRM and LLM
M, 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 Memory usage function, memory budget

𝐶𝑅 Compression ratio

𝜃 . In this paper, our goal is to provide advice on choosing a proper
compression method in the first part.

In retrieval-augmented LLMs, we use 𝐷𝑒𝑐 to denote the decom-
press function, and abuse some common notations such as E∗ for
compressed embeddings and 𝑦 for labels. Assuming our target is to
minimize the objective functionL𝑙𝑙𝑚 , then the problem of choosing
the most proper compression method can be formed as:

min
E∗
E𝑞∼DL𝑙𝑙𝑚 (𝑦, 𝑓𝑙𝑙𝑚 (𝑞, 𝑆 (𝑓𝑞 (𝑞), 𝐷𝑒𝑐 (E∗)))),

s.t. M(E∗, 𝑓𝑞, 𝑓𝑙𝑙𝑚, 𝑆) ≤ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 .
(3)

Since we are targeting the inference stage, the only variable is the
compression algorithm. In practical applications, search algorithms
are usually performed in batches, so the decompression can also be
a batch operation to avoid storing the complete embedding table.

The compressed embeddings E∗ should meet the memory con-
straint. The memory function M outputs the memory usage of
the whole model during inference. In real scenarios, especially on-
device situations, the memory budget is often smaller than the
memory usage of models with the full embedding table. Since the
memory usage of other parts is fixed, the memory constraint can be
simplified as M(E∗) ≤ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 . In addition to inference memory
constraints, more metric constraints can be applied, such as low
latency requirements in online service scenarios, training time or
training memory constraints in time- or memory-limited scenarios.

Somemethods cannot compress embedding layers within a given
memory budget; they can only compress to a specific target memory.
For instance, quantization methods directly adopt INT8 or INT16
to replace the original FLOAT32 data type, reducing the memory
usage to 25% or 50%. To measure the compression ability, we define
𝐶𝑅 (compression ratio) as the ratio of the original memory to the
compressed memory as 𝐶𝑅 =

M(E)
M(E∗ ) .
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2.4 Scope
In this section, we discuss the scope of this paper. We focus on
embedding compression for DLRMs and retrieval-augmented LLMs,
with practical applications of at least millions of embeddings. We do
not focus on the embeddings in NLP models. Although works have
been done to compress the memory usage of embedding tables
in NLP [6, 9, 10, 85, 87], the number of unique vocabularies in
mainstream LLMs such as Bert [20] and GPT-3 [5] is no more than
0.1 million, which is not as memory-intensive as DLRMs.

There are several research directions that can be easily confused
with our study: feature selection, embedding search. Although
feature selection [59, 63, 92] does reduce memory usage by directly
pruning useless features, it can be seen as the upstream process
of embedding compression. Embedding search [39, 65, 66] is a
subsequent stage of embedding compression in retrieval tasks, and
its related research is orthogonal to memory compression.

3 OVERVIEW OF EMBEDDING COMPRESSION
In this section, we present an overview and a new taxonomy of
embedding compression methods. We first divide all methods into
inter-feature and intra-feature compression based on whether the
features share parameters or have individually compressed embed-
dings. We further divide the methods according to their properties
and techniques. The detailed information of inter-feature and intra-
feature compression methods is listed in Table 2 and 3, respectively.

3.1 Inter-feature Compression
To address the memory bottleneck caused by the explosive growth
of features, a direct approach is to keep only a small number of
embeddings for features to share, as shown in Figure 2(c). Compres-
sion is generally performed within fields to ensure that features
which share embeddings have similar semantics. Inter-feature com-
pression needs to maintain a new mapping from features to em-
beddings, instead of the original one-hot encoding. Early methods
utilize hash functions [87, 95] to map features into multi-hot vec-
tors, then lookup from hash embedding tables for sub-embeddings
to construct final embeddings. Following this idea, the problem
can be simplified as finding an encoding function I∗, and a corre-
sponding row-compressed embedding layer E∗. Based on whether
the encoding function is fixed during training, the methods can be
further divided into static encoding and dynamic encoding.

3.1.1 Static Encoding. Static encoding uses fixed encoding func-
tions during training. Mapping features into a smaller number of
embeddings is essentially a hashing process. Thus, many hash func-
tions have served as encoding functions in industry [114]. While
early works explored the form of encoding functions, recent works
further explored the form of embedding layers. We use𝑚 to denote
the number of embeddings after compression.
DoubleHash [109] uses two hash functions, and sums the two
sub-embeddings together. More hash functions lead to less collision
rate since the bucket size is enlarged from𝑚 to𝑚2.
CompoEmb [84] recursively divides the original feature index by
the row sizes of hash embedding tables and gets the remainders
as the new indices. As long as the product of row sizes is greater
than the number of features, no features will share the exact same

embedding. The sub-embeddings are aggregated by multiplication.
BinaryCode [102] follows the idea, splitting the binary respresenta-
tion of the original index in succession style or skip style, where the
former is essentially the CompoEmb. Some following work [56] also
adopts CompoEmb to implement lightweight embedding layers.
MEmCom [74] stores scale and bias weights for each feature. Given
a feature as input, a embedding is indexed by a hash function, then
multiplied and added with scale and bias to get the final embedding.

Methods above share some sub-embeddings among features,
resulting in degraded model quality. They only form the encoding
function, enabling simple and flexible memory compression. In
contrast, the following methods design new embedding layers.
DHE (Deep Hash Embedding [41]) radically replaces embedding
tables with multi-layer perceptrons (MLPs). It maps features to
integers using many hash functions and then applies transforma-
tions to approximate a uniform or Gaussian distribution as input
to MLPs. Equipped with complex MLPs, DHE achieves good model
quality, but requires much more time to train and infer. In Table 2,
the symbol 𝑑𝑖 means the number of hidden units in each MLP layer.
TT-Rec (Tensor-Train Recommendation [33, 107]) borrows the idea
of tensor-train decomposition (abbreviated as TT). In TT, a tensor
A ∈ R𝐼1×𝐼2×...𝐼𝑡 can be decomposed A ≈ G1G2 ...G𝑡 , with each
TT-core G𝑖 ∈ R𝑅𝑖−1×𝐼𝑖×𝑅𝑖 , 𝑅0 = 𝑅𝑡 = 1. TT-Rec factorizes the row
size |𝑉 | ≤ Π𝑡

𝑖=1𝑚𝑖 and the column size 𝑑 ≤ Π𝑡
𝑖=1𝑑𝑖 into intergers,

and decomposes the embedding table by 𝐸 ≈ G1G2 ...G𝑡 , where
G𝑖 ∈ R𝑅𝑖−1×𝑚𝑖×𝑑𝑖×𝑅𝑖 . To obtain the embedding, TT-Rec looks up
the tensors and conducts matrix multiplication according to the
decomposition. Its row decomposition is the same with CompoEmb,
but the matrix multiplication requires much more time than simple
aggregation. TT-Rec is also adopted by following work [89].
ROBE (Random Offset Block Embedding [19]) stores an 1-D array
instead of 2-D matrix for embedding layer. It uses hash functions to
generate indices, then concatenates the sub-embeddings retrieved
at the indices. ROBE can reduce running time with simple design,
but requires more epochs to converge due to the randomness.

The exploration of embedding layer design is both creative and
effective. They either improve the model quality at the cost of more
computation, or simplify the embedding structure.
Dedup [120] conducts similarity-based deduplication [50, 88] on
embedding models. It adopts L2LSH [36], a local-sensitive hash-
ing algorithm on Euclidean (L2) distance, to efficiently deduplicate
similar parameter blocks. Dedup can only be applied when the
parameters are fixed, so uncompressed embeddings still need to be
trained. We classify Dedup as static encoding, because the encoding
function is determined by an one-pass LSH process. Since it dedu-
plicates embeddings by value, we directly deduplicate the entire
embedding table to speed up compression and serving, regardless
of feature fields. Dedup hashes the embedding content while other
hashing-based methods hash the input indices, so we distinguish
them explicitly in our experimental analysis.

In summary, static encoding methods are simple, effective, and
capable of compression at any memory budget. Their encoding
functions, which remain constant during training, are often simple
hash functions that take up no storage space. The focus of research
work gradually shifts from hash functions to embedding layers.
The former guarantees memory constraints while the latter further
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Table 2: Summary of inter-feature compression. Space Complexity reflects the memory of encoding function and embedding
layer; Time Complexity reflects the time of embedding lookup process; Freq / Impo-aware indicates whether the method is
frequency- or importance-aware; Com Cap shows the compression capability within a certain range of memory budgets.

Subcategory Method Techniques Space Complexity Time Complexity Freq / Impo-aware Com Cap

Static
Encoding

CompoEmb [84] Hash 𝑂 (𝑚𝑑 + 𝑛𝑑/𝑚) 𝑂 (𝑑 ) / Yes
DoubleHash [109] Hash 𝑂 (𝑚𝑑 ) 𝑂 (𝑑 ) Frequency-aware Yes
BinaryCode [102] Hash 𝑂 (

√
𝑛 · 𝑑 ) 𝑂 (𝑑 ) / No

MemCom [74] Hash 𝑂 (𝑚𝑑 + 𝑛) 𝑂 (𝑑 ) / Yes
DHE [41] Hash, MLP 𝑂 (𝑑 · 𝑑𝑖 + 𝑑2

𝑖
) 𝑂 (𝑑 · 𝑑𝑖 + 𝑑2

𝑖
) / Yes

TT-Rec [107] TensorTrain (Hash) 𝑂 (𝑅2 ∑︁(𝑚𝑖 + 𝑑𝑖 ) ) 𝑂 (𝑅2𝑑 ) Frequency-aware Yes
ROBE [19] Hash, 1-D Array 𝑂 (𝑚𝑑 ) 𝑂 (𝑑 ) / Yes
Dedup [120] LSH 𝑂 (𝑛 +𝑚𝑑 ) 𝑂 (𝑑 ) / Yes

Dynamic
Encoding

MGQE [40] VQ (PQ) 𝑂 (𝑛𝑘 ′ +𝑚𝑑 ) 𝑂 (𝑘 ′ + 𝑑 ) Frequency-aware Yes
LightRec [57] VQ (AQ) 𝑂 (𝑛𝑘 ′ +𝑚𝑑 ) 𝑂 (𝑘 ′𝑑 ) / Yes
AdaptEmb [17] Hash, Frequency 𝑂 (𝑚 +𝑚𝑑 ) 𝑂 (𝑑 ) Frequency-aware Yes

CEL [14] Clustering 𝑂 (𝑛 + 2𝐵/𝑏 · 𝑑 ) 𝑂 (𝑑 ) Frequency-aware Yes

guarantees model quality. Another line of research is similarity-
based deduplication, which performs post-training compression.

3.1.2 Dynamic Encoding. Dynamic encoding allows encoding func-
tions to be updated during training, which is naturally suitable for
online learning. They adopt trainable indices or build data struc-
tures to store and adjust the mapping. They tend to incorporate
more information but only achieve mediocre compression ratios.
MGQE (Multi-Granularity Quantized Embedding [40]) extends
DPQ (Differentiable Product Quantization) [9] to fit recommenda-
tion data. DPQ is based on PQ (Product Quantization) [37], a VQ
(Vector Quantization) technique in embedding search. PQ splits
embeddings into several parts, clusters the partial embeddings re-
spectively, then reconstructs embeddings with the nearest centroids.
DPQ introduces supervised learning to train the centroids, mini-
mizing the distances between the original and the reconstructed
embeddings. The uncompressed embeddings are kept during train-
ing to determine and update the nearest sub-embeddings. After
training, the uncompressed embeddings are dropped, and the near-
est sub-embeddings are adopted to reconstruct the final embed-
dings. DPQ and other similar works [10, 85] focus on NLP word
embeddings, and MGQE extends DPQ for highly-skewed recom-
mendation data, providing more centroid embeddings for features
with higher frequency. The memory usage can only be reduced
during inference, and the compression ratio is relatively low due to
the storage of centroids indices. Besides PQ, other VQ techniques
such as AQ (Additive Quantization) are also adopted for embedding
compression [57]. The centroids in AQ are summed to reconstruct
embeddings. In Table 2, 𝑘′ is the number of parts in VQ.
AdaptEmb (DeepRec Adaptive Embedding [17]) allocates unique
embeddings for high-frequency features and shared embeddings
for others. It dynamically converts the feature’s embedding from
shared to exclusive if the frequency becomes high enough. It incurs
extra memory to store high frequency features during inference.
CEL (Clustered Embedding Learning [14]) compresses the embed-
dings of two special fields (users and items) that are clustered with
only one embedding per cluster. During training, items are dynam-
ically reassigned to the more proper clusters based on their history
interactions, and clusters are split if associated with too many in-
teractions. CEL has limited compression ratios with the storage of

the cluster structure, and takes more training time due to cluster
adjustment. In Table 2, the total number of interactions is 𝐵 and
the cluster will split iff it has more than 2𝑏 associated interactions.

Dynamic encoding requires extra data structures to store dy-
namic codes, so sometimes only supports limited compression ra-
tios. They incorporate frequency information, but the dynamic
encoding function brings some overheads during training.

3.2 Intra-feature Compression
Instead of sharing embeddings and modifying the encoding func-
tion, intra-feature compression compresses embeddings individ-
ually to form a new embedding layer E∗. These methods can be
further divided into quantization, dimension reduction, pruning.

3.2.1 Quantization. Quantization is a common compression tech-
nique in deep learning training [35, 70] and inference [2]. It is stable
and simple to use, since it does not affect the original training para-
digm; however, low-precision data types will lead to a slight loss of
model quality and limited compression ratios.
FP16 [112] is only used for storage, while during training the re-
trieved embeddings are converted to FP32. When rounding updated
parameters back into FP16, there are two choices: nearest rounding
and stochastic rounding. The former selects the nearest value in
FP16, appearing to have a systematic bias in model update accu-
mulation since a relatively small update will never take effect if
always discarded. The latter first computes the rounded-up value
and the rounded-down value, then draws a random number from
a Bernoulli distribution with the distances to these values; this
approach is not biased yet brings higher variance in optimizer. In
practice, stochastic rounding is chosen for better model quality.
INT8/16 [101, 104] are integer data types of low-precision, treated
as bins of values, where two manually designed parameters scale
and bias are further required to restore the original FP32 value. FP
data types have unequal intervals between values, while INT data
types have equal intervals. INT data types also adopt stochastic
rounding for better model quality.

Directly using FP16 or INT8/16 is simple and has almost no over-
head. In order to obtain better model quality, the following methods
try to search or learn the proper scale for INT-type compression.
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Table 3: Summary of inter-feature compression. Space Complexity reflects the memory of encoding function and embedding
layer; Time Complexity reflects the time of embedding lookup process; Freq / Impo-aware indicates whether the method is
frequency- or importance-aware; Com Cap shows the compression capability within a certain range of memory budgets.

Subcategory Method Techniques Space Complexity Time Complexity Freq / Impo-aware Com Cap

Quantization

FP16 [112] FP16 𝑂 (𝑛𝑑/2) 𝑂 (𝑑 ) / No
Post4Bits [26] Greedy Search 𝑂 (𝑛𝑑/8) 𝑂 (𝑑 ) / No

MixedPrec [104] FP16, INT8 𝑂 (𝑛𝑑/4) 𝑂 (𝑑 ) / No
Int8/16 [101] INT8, INT16 𝑂 (𝑛𝑑/4) 𝑂 (𝑑 ) / No
ALPT [55] Learnable Scale 𝑂 (𝑛𝑑/4 + 𝑛) 𝑂 (𝑑 ) Importance-aware No

Dimension
Reduction

NIS [38] Policy Gradient 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ′𝑑 ) Importance-aware Yes
ESAPN [60] Policy Gradient 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ′𝑑 ) Both No
MDE [25] Heuristic 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ′𝑑 ) Frequency-aware Yes

AMTL [103] MLP 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ) Both No
AutoEmb [116] DARTS 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ′𝑑 ) Both No
AutoDim [117] DARTS 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ′𝑑 ) Importance-aware No
SSEDS [76] One-shot NAS 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ′𝑑 ) Importance-aware Yes

OptEmbed [64] One-shot NAS 𝑂 (𝑛𝑑 ′ ) 𝑂 (𝑑 ) Importance-aware No

Pruning

DeepLight [18] Structural Prune 𝑂 (𝑟𝑛𝑑 ) 𝑂 (𝑟𝑑 ) Importance-aware Yes
PEP [62] Mask, Threshold 𝑂 (𝑟𝑛𝑑 ) 𝑂 (𝑟𝑑 ) Importance-aware No
HAM [98] STE, Hard Mask 𝑂 (𝑟𝑛𝑑 ) 𝑂 (𝑟𝑑 ) Importance-aware Yes

AutoSrh [46] Mask, DARTS 𝑂 (𝑟𝑛𝑑 ) 𝑂 (𝑟𝑑 ) Both Yes

Post4Bits [26] performs a post-training greedy search on scale and
bias of INT4 data type. The minimum and the maximum values are
searched step by step to minimize the model loss.
ALPT [55] makes the scale alternatively trained with the model
parameters to improve the model quality. The idea of learnable
scale comes from LSQ [22].

In summary, quantization involves little overhead and achieves
certain compression ratios.

3.2.2 Dimension Reduction. Generally, the larger the dimension,
the more information the embedding can represent. As the recom-
mendation data is highly skewed [111], a natural idea is to assign
different dimensions for features with different frequency or im-
portance. To align the dimension of embeddings for subsequent
neural networks, there are two ways: zero-padding and projection.
The second scheme is inspired by SVD [6] and is adopted by most
methods, since the learnable projection matrices can represent all
the linear transformations including zero-padding. The symbol 𝑑′
in Table 3 means the reduced dimension.
MDE (Mixed Dimension Embedding [25]) represents feature fre-
quency with the inverse of feature cardinality within field. The
dimensions are proportional to 𝑝𝛼 , where 𝑝 is the frequency and 𝛼
is a hyper-parameter.

MDE is the only dimension reduction method that compresses
memory during training, with no learnable structures involved. All
of the following methods adopt learnable structures to determine
dimensions, incurring much more training overhead.
NIS (Neural Input Search [38]) uses a policy network to determine
the dimensions. It splits the embeddings into chunks. For each
column chunk, it builds projection matrices and uses a controller to
sample row chunks. In the reward 𝑅 = 𝑅𝑄 −𝜆 ·𝐶𝑀 , 𝑅𝑄 is the model
quality and 𝐶𝑀 is the memory cost at inference. The chunk-based
search is also used in [12].
ESAPN (Embedding Size Adjustment Policy Network [60]) uses
a series of projection matrices to convert dimensions larger and

larger until the final dimension. Each feature field is assigned a
policy network, which inputs the feature frequency and the current
dimension and outputs whether enlarge the dimension. If the di-
mension is enlarged, the transformed vector is used as initialization.
It takes the improvement of the current state as reward.

The above two methods adopt policy network to learn dimen-
sions, incurring much training overhead for the trials of different
settings. The memory budget can be considered in reward function
just as NIS to enforce memory constraint at inference.
AutoEmb [116] formsMLP-based controllers, which take frequency
and other contextual information as input and output probabilities
of dimensions. Controllers and other model parameters are trained
alternatively using DARTS [106] solution for bi-level optimization.
AutoDim [117] defines field-wise architectural weights to com-
pute probabilities of dimensions via gumbel-softmaxing. It also
alternatively trains the architectural weights and the other model
parameters using DARTS. After training, the dimension with the
highest probability is selected for further re-training.

The above two methods both utilize DARTS, incurring lower
training overhead than policy network. However, they cannot
search within a given memory budget.
AMTL (Adaptively-Masked Twins-based Layer [103]) introduces
twoMLPs for features with high- and low-frequency respectively, to
output scores for positions where embeddings should be truncated.
SSEDS (Single-Shot Embedding Dimension Search [76]) multiplies
the pre-trained uncompressed embeddings with field-dimension-
wise masks to conduct single-shot NAS. It uses the masks’ gradients
to represent value importance, which is further used to truncate
the embeddings according to memory budget.
OptEmbed [64] jointly learns masks for both row and column.
Row masks that threshold the embeddings’ 𝐿1 norms are multiplied
onto the original embeddings for supernet training. After determin-
ing the row masks, OptEmbed conducts an evolutionary search to
determine the column masks for embeddings truncation. Then the
compressed embeddings are retrained to fit the masked parameters.
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Figure 3: Overview of the evaluation framework.

SSEDS and OptEmbed utilize one-shot NAS to make the training
process faster. While SSEDS takes the memory budget into consid-
eration, OptEmbed does not support flexible memory budget.

In summary, dimension reduction methods aim to assign a suit-
able dimension for each feature. Except for MDE and AMTL, all
methods require significant time for complex training or retraining.
Except for AMTL and OptEmbed, other methods use projection
matrices, which result in increased inference latency. Only MDE,
NIS and SSEDS can compress to a given memory budget. There are
also other methods that jointly optimize the embedding dimension
and model components using rule [83], DARTS [106] or one-shot
NAS [94], which do not meet our plug-and-play requirement.

3.2.3 Pruning. Pruning is a common technique in the compression
of deep learning models [23, 31, 54]. According to the lottery ticket
hypothesis [23], a dense neural network contains a subnetwork
that can match the test accuracy of the dense network. Similar to
dimension reduction that assigns different dimensions, pruning
assigns different sparsity for different features. The pruned sparse
embeddings are stored in sparse tensor format in practice. The
symbol 𝑟 in Table 3 means the density of embeddings.
DeepLight [18] uses structural pruning, a common pruningmethod
in DL models [1]. It progressively thins out embeddings by filtering
small-magnitude values, until reaching the memory budget.

Except for DeepLight, all the others adopt learning methods,
involving more training overhead for better model quality.
PEP (Plug-in Embedding Pruning [62]) defines a learnable thresh-
old for pruning. After joint training the threshold and the other
parameters, the model is retrained to fit the pruned embeddings.
HAM (Hard Auxiliary Mask [98]) first pre-trains the uncompressed
embeddings with Soft Orthogonal [3] regularizations, then alter-
natively trains learnable masks and other parameters, and finally
re-trains the pruned embeddings.
AutoSrh [16, 46] sorts features by frequency and partitions them
into blocks, with each block assigned with learnable masks for prun-
ing. Masks and other model parameters are alternatively trained
using DARTS. After training, parameters are filtered according to
memory budget, then re-trained to fit the sparse embeddings.

The above methods learn masks or thresholds for pruning. HAM
and AutoSrh update learnable masks alternatively with parameters,
which is similar to SSEDS and OptEmbed in dimension reduction.
Like dimension reduction, pruning attempts to allocate more mem-
ory to more important features. Pruning methods achieve good

model quality with significant training overhead. They are flexibly
adapted to a given memory budget, but require system support for
sparse tensor storage and computation.

4 EVALUATION FRAMEWORK
We design and implement a unified modular evaluation framework
for embedding compression, as shown in Figure 3. Generally, all
existing embedding compression methods can be implemented with
these 4 modules: encoding function, embedding layer, scheduler,
and auxiliary module. The encoding function inputs features and
outputs one-hot or multi-hot vectors. The embedding layer stores
embedding-related parameters, such as one or several embedding
tables, MLPs, 1-D arrays, and sparse matrices, etc. For sparse ma-
trices, we implement CSR and COO formats, and the framework
adaptively chooses the format under a given memory budget. The
embedding layer outputs the corresponding embeddings based on
the encoded vectors, then the embeddings are fed into neural net-
works along with numerical features for predictions. We omit the
neural network part from the figure because it is not our focus.
The optional auxiliary module contains data structures that assist
model training, such as the frequency information in dynamic en-
coding, the learnable masks in pruning, the architecture weights in
dimension reduction. The scheduler manages the entire training
process, switches training stages, and schedules proper data to train
certain parts of the model. For example, DARTS-based methods
use training data and evaluation data to update model parameters
and architecture weights respectively, while NAS-based methods
usually require a re-training stage for further improvement.

The framework integrates 14 representative methods for ex-
perimental comparison, which are listed in Section 5.1.2. Besides
existing methods, our framework supports any new method that
applies this compression pipeline. We expect more compression
methods to be proposed based on our framework.

The framework is implemented on Hetu [67], an efficient deep
learning system. Our framework consists of 10 thousand lines of
code in Python for the modules. We also implement some necessary
C++/CUDA computing kernels. The framework does not explic-
itly consider distributed scenarios: data parallelism can be simply
applied, while model parallelism that partitions embedding layers
are not necessary because embedding layers have already been
compressed. Some other orthogonal system optimizations such as
data prefetch [68], or DL compilation [11] are not applied, as they
do not affect our analysis.
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5 EXPERIMENTS AND ANALYSIS
In this section, we experimentally evaluate the embedding com-
pression methods on DLRM (Section 5.2). We design experiments
to reveal the influence of neural network models (Section 5.3) and
embedding dimensions (Section 5.4). We also apply the embedding
compression methods to retrieval-augmented LLM (Section 5.5).
We later discuss challenges and future directions (Section 5.6).

5.1 Experiment Settings of DLRM
5.1.1 Models and Datasets. We experiment on three popular mod-
els: DLRM1 [72], WDL [15], and DCN [90]. We evaluate three click-
through rate (CTR) datasets: Avazu [91], Criteo [49], and Company,
where the former two are widely used in academia and have been
employed in recommendation benchmarks [75, 121], and the latter
is collected from a recommendation scenario in Tencent containing
ad features. The statistics of the datasets are listed in Table 4.

Table 4: Overview of the datasets.

Datasets # Fields # Features # Samples

Avazu 22 9,449,445 40,428,967
Criteo 26 33,762,577 45,840,617

Company 43 66,102,027 35,682,429

Feature frequency follows a power law [68, 69, 81, 96, 111, 113].
For example, in Avazu and Criteo, the top 10% features with the
highest frequency account for more than 95% of the occurrences in
samples, while for the long-tail part, more than 80% of the features
have less than 5 occurrences. Compression methods are inspired to
allocate different amount of memory to features.

5.1.2 Compared Methods. We choose 14 representative methods
for comparison. For static encoding, CompoEmb uses multiple
hash functions, and DoubleHash, MEmCom can be regarded as its
variants;TT-Rec is a special variant of CompoEmb that borrows the
idea of tensor-train decomposition; DHE and ROBE explore differ-
ent forms of embeddings; Dedup is the state-of-the-art similarity-
based deduplication method. For dynamic encoding, MGQE learns
the codes of sub-embeddings and has a simpler PQ structure than
LightRec; AdaptEmb employs feature frequency and is more gen-
eral than another frequency-based method CEL. For quantization,
we choose INT8/16 for fixed quantization with uniform value dis-
tribution; ALPT is the state-of-the-art method that learns the quan-
tization scale. For dimension reduction, MDE is the only heuristic-
based method; AutoDim and OptEmbed are the state-of-the-art
methods using trainable structural parameters and one-shot NAS
respectively; we do not evaluate policy-gradient-based methods
because they are time consuming and perform poorly. For pruning,
DeepLight is the only structural pruning method; AutoSrh is the
state-of-the-art method that learns the pruning structure.

5.1.3 Environment and Hyperparameters. We use the Adam opti-
mizer [44] with the learning rate grid-searched from [0.001, 0.01,
0.1], and the batch size is 64 (for Company) or 128 (for Avazu and

1In Section 5 we use the term DLRM to refer to this particular model, rather than the
general deep learning recommendation models in the previous sections.

Criteo). We conduct every single experiment on an Nvidia RTX
TITAN 24 GB GPU card. We tested different dimensions on uncom-
pressed embeddings, and selected 16 as the embedding dimension.

For simplicity, we implement all methods onGPU. The location of
the embeddings does not affect model accuracy or memory usage. If
the embedding layer is on CPU, embeddings need to be transferred
to GPU with additional communications, and compute-intensive
methods like TT-Rec and DHE which already have the highest
latency will be slower. These two factors only affect the absolute
value of processing time, not the relative ranking of each method.

5.1.4 Metrics. We employ AUC (area under the ROC curve) to
measure model quality. In recommendation systems, an improve-
ment of 0.001 in AUC is considerable. We measure memory usage
by the actual memory consumption of the embedding layer at infer-
ence. This is more effective than using the number of parameters
or sparsity rate, which do not account for the compression effect of
quantization methods or the additional memory cost of sparse for-
mats. For training memory, we include the memory of the auxiliary
modules. For training time, we measure the total time of training to
convergence, including all stages. Inference latency is the forward
pass time of a batch using well-trained model checkpoints.

5.2 Performance on DLRM
Table 5 shows the results on DLRM under different inference mem-
ory budgets. We use the uncompressed embedding table as the
baseline method, and its memory usage as the baseline memory
usage. By default, the inference memory budgets are 50%, 10%, 1%,
0.1% of the baseline memory. Methods that cannot achieve these
compression ratios are compressed as much as possible, with their
actual memory usage listed in parentheses; these results are not
explicitly compared with those normal ones.

5.2.1 Ability of Compression. Hash-based methods (including
LSH) and pruningmethods are themost capable compression
methods, achieving all compression ratios. Static encoding
methods and AdaptEmb can simply adjust the number of rows,
while pruning methods can flexibly change the sparsity. The stor-
age of auxiliary mapping in LSH-based Dedup can be reduced by
using large-sized tensor blocks. All the other methods have cer-
tain limitations on their compression capabilities. Other dynamic
encoding methods need to store feature-to-embedding mappings
with memory proportional to the number of features, leading to an
upper bound of 16× compression ratio. Quantization methods are
limited to several specific compression ratios: 2× and 4× for simple
INT8/16; 1.8× and 3.2× for ALPT which requires more memory for
feature-wise step sizes. Dimension reduction methods learn optimal
dimensions based on model quality rather than memory budgets:
MDE and AutoDim assign features with at least one dimension,
leading to an upper bound of 16× compression ratio; AutoDim and
OptEmbed achieve specific compression ratios within 2 − 2.7×.

5.2.2 Model AUC. In general, static encoding, quantization,
and pruning methods achieve the best model AUC. For each
memory budget, the methods with top-3 AUC are highlighted in
bold, coupledwith an underlined ranking. There is no singlemethod
that performs best in all situations. Specifically, quantization meth-
ods perform well around 25% or 50% of the baseline memory, since
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Table 5: Overall performance on DLRM.

Avazu Criteo Company
Methods Metrics

50% 10% 1% 0.1% 50% 10% 1% 0.1% 50% 1%
AUC 0.7543 (100.0%) 0.8061 (100.0%) 0.7583 (100.0%)

TrainMem 300.0% 300.0% 300.0%
TrainTime 1m36s 8m39s 9m45s

Ba
se
lin

e

Full

Latency 0.56ms 0.88ms 0.61ms
AUC 0.7491 0.7480 0.7472 / 0.8060 0.80533 0.8016 / 0.7503 0.7228

TrainMem 150.0% 30.0% 3.0% / 150.0% 30.0% 3.0% / 150.0% 3.0%
TrainTime 6m42s3 8m51s2 5m23s1 / 54m20s 51m41s3 50m27s3 / 2h20m 1h58m3

CompoEmb

Latency 3.27ms 3.34ms 2.83ms / 4.47ms 3.55ms 3.92ms / 6.67ms 6.57ms
AUC 0.7497 0.7537 0.7542 0.7517 0.7876 0.7993 0.8025 0.7997 0.7255 0.7329

TrainMem 149.3% 29.8% 2.9% 0.3% 149.4% 30.0% 3.0% 0.3% 149.9% 2.9%
TrainTime 7h29m 1h37m 36m32s 40m48s3 12h8m 12h4m 3h29m 4h30m 127h27m 5h53m

TT-Rec

Latency 84.41ms 21.28ms 5.00ms 4.28ms 246.39ms 82.72ms 11.99ms 6.10ms 505.89ms 24.05ms
AUC 0.75831 0.75811 0.75861 0.75631 0.8056 0.80533 0.8027 0.8004 0.7532 0.74422

TrainMem 149.9% 30.0% 3.0% 0.3% 150.0% 30.0% 3.0% 0.3% 150.0% 3.0%
TrainTime 3h11m 45m15s 1h12m 12h53m 5h44m 2h10m 4h35m 12h14m 7h45m 34h29m

DHE

Latency 5.81ms 3.37ms 3.02ms 5.91ms 12.86ms 6.52ms 6.26ms 8.58ms 17.05ms 20.35ms
AUC 0.6612 0.6522 0.6477 0.6407 0.7510 0.7479 0.7514 0.7490 0.5945 0.5828

TrainMem 150.0% 30.0% 3.0% 0.3% 150.0% 30.0% 3.0% 0.3% 150.0% 3.0%
TrainTime 11m11s 11m51s 1h6m 47m18s 5h13m 5h20m 5h13m 5h21m 8m6s1 8m4s1

ROBE

Latency 0.66ms 0.66ms3 0.67ms3 0.65ms 0.92ms1 0.87ms1 0.95ms2 0.91ms2 0.67ms 0.67ms
AUC 0.75472 0.75552 0.75733 0.75602 0.80761 0.80711 0.80573 0.80351 0.75533 0.74203

TrainMem 300% 300% 300% 300% 300% 300% 300% 300% 300% 300%
TrainTime 2m44s2 5m58s1 9m54s2 11m12s1 10m10s2 10m7s1 18m48s1 29m9s1 10m1s2 10m24s2

St
at
ic
En

co
di
ng

Dedup

Latency 0.71ms 0.82ms 0.68ms 0.64ms2 1.29ms 1.04ms3 0.97ms3 0.86ms1 0.69ms 0.65ms3
AUC 0.7286 (16.0%) 0.7332 (11.1%) 0.7908 (16.1%) 0.7891 (11.2%) 0.6881 (16.0%) 0.6477 (11.1%)

TrainMem 322.3% 317.4% 322.7% 317.8% 322.2% 317.4%
TrainTime 20m0s 34m33s 56m37s 37m45s 3h36m 1h13m

MGQE

Latency 3.40ms 3.24ms 4.33ms 4.37ms 6.72ms 6.74ms
AUC 0.7513 0.7484 0.7407 0.7302 0.8051 0.8026 0.7990 0.7921 0.75662 0.7136

TrainMem 154.4% 35.3% 9.2% 6.5% 154.4% 35.3% 9.2% 6.5% 154.4% 9.2%
TrainTime 13m58s 10m26s3 13m13s3 45m14s 52m3s 49m43s2 48m36s2 1h46m2 2h7m 2h11mD

yn
am

ic
En

co
di
ng

AdaptEmb

Latency 4.63ms 3.59ms 3.40ms 3.13ms 5.79ms 4.40ms 5.01ms 4.55ms 7.32ms 7.30ms
AUC 0.75393 0.7524 (25.0%) 0.80712 0.8045 (25.0%) 0.7493 0.7536 (25.0%)

TrainMem 250.0% 225.0% 250.0% 225.0% 250.0% 225.0%
TrainTime 2m24s1 4m31s 9m44s1 8m8s 10m16s3 9m16s

INT8/16

Latency 0.65ms3 0.65ms 1.01ms3 0.88ms 0.63ms3 0.58ms
AUC 0.7545 (56.3%) 0.7511 (31.3%) 0.8062 (56.3%) 0.8057 (31.3%) 0.7562 (56.3%) 0.7532 (31.3%)

TrainMem 268.8% 243.8% 268.8% 243.8% 268.8% 243.8%
TrainTime 3m5s 2m51s 15m46s 12m45s 16m28s 17m22s

Q
ua
nt
iz
at
io
n

ALPT

Latency 0.63ms 0.64ms 0.92ms 1.01ms 0.59ms 0.61ms
AUC 0.7502 0.7504 (8.1%) 0.8044 0.8033 (9.3%) 0.76321 /

TrainMem 150.0% 24.3% 150.0% 27.9% 150.0% /
TrainTime 7m28s 4m54s 33m48s3 34m58s 1h35m /

MDE

Latency 2.66ms 2.82ms 3.86ms 3.02ms 5.18ms /
AUC 0.7504 (46.4%) 0.8036 (46.0%) 0.7595 (37.3%)

TrainMem 562.5% 562.5% 562.5%
TrainTime 1h6m 5h13m 2h27m

AutoDim

Latency 1.11ms 2.68ms 5.27ms
AUC 0.7484 (50.0%) 0.8019 (46.3%) 0.7610 (47.0%)

TrainMem 300.0% 300.0% 300.0%
TrainTime 16m17s 30m34s 1h57m

D
im

en
si
on

Re
du

ct
io
n

OptEmbed

Latency 0.57ms 0.79ms 0.65ms
AUC 0.7520 0.75543 0.75792 0.75263 0.8030 0.8050 0.80672 0.80193 0.7536 0.75041

TrainMem 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3%
TrainTime 3h32m 3h45m 5h25m 8h10m 3h11m 8h41m 15h38m 15h41m 31h25m 27h50m

DeepLight

Latency 0.59ms2 0.63ms2 0.62ms2 0.64ms2 0.93ms2 0.91ms2 0.91ms1 0.93ms3 0.56ms1 0.58ms1
AUC 0.7518 0.7520 0.7526 0.7507 0.80663 0.80711 0.80681 0.80332 0.7529 0.7215

TrainMem 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3%
TrainTime 22m36s 28m43s 29m55s 32m39s2 2h9m 2h2m 2h6m 2h9m3 4h21m 4h43m

Pr
un

in
g

AutoSrh

Latency 0.56ms1 0.57ms1 0.57ms1 0.62ms1 1.43ms 1.36ms 1.49ms 1.44ms 0.57ms2 0.59ms2
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they do not change the original training paradigm. DHE adopts
novel MLP structures and performs well on Avazu dataset. Pruning
methods usemorememory to emphasize important features, regard-
less of memory budgets, and they perform well on Criteo dataset,
especially when the memory budget is small. Dedup achieves near-
optimal performance on all datasets, demonstrating the strength of
similarity-based deduplication. Dimension reduction methods can
also achieve good model AUC by capturing feature importance, but
the results are mostly not comparable due to different compression
ratios. Which methods are suitable for different datasets remains
an open question, which we leave as future work.

Not all methods achieve better AUC with larger memory bud-
gets. For TT-Rec and DHE, the dimension of matrix multiplication
increases as the memory increases, making the optimization more
difficult. For Dedup, within small memory, pooly-trained embed-
dings may be replaced by well-trained ones, thus improving model
quality. For MGQE, larger memory only means the embeddings
are split into more parts, with the centroids memory unchanged.
For pruning, noisy redundant parameters may be removed as the
memory decreases, leading to an increase in AUC.

5.2.3 Training Memory. Static encoding methods (except for
Dedup) and MDE use the least memory during training, only
three times the inference memory budget considering the
optimizer states. Memory consumption during training is differ-
ent from inference. Many methods require training uncompressed
embeddings or other memory-intensive auxiliary modules. For the
Adam optimizer, we also need to store the first- and the second-
order momentum, making the memory usage at least three times
that of the inference process. Training memory is described as a
ratio of the baseline memory, independent of dataset size.

Static encoding methods (except for Dedup) and MDE have no
extra structures, and the trained parameters are directly used for
inference. They have a linear relationship between trainingmemory
and inference memory, where the exact multiple depends on the
optimizer. AdaptEmb records feature frequency during training.
Quantization only quantizes the embeddings, not the optimizer
states, so its training memory is large. MGQE, Dedup, dimension
reduction methods (except MDE) and pruning methods, require
full-embedding training which is at least three times the baseline
memory. Among them, AutoDim requires themostmemory because
it simultaneously trains all candidate dimensions.

5.2.4 Training Time. Simple hash-based methods (including
Dedup) and INT8/16 are fast to converge. We employ the early
stopping strategy and record the time for each method to converge,
including all stages. Methods with top-3 least training time are
highlighted in bold with an underlined ranking. Generally speaking,
the larger the dataset, the longer it takes for DLRM to converge.

Dedup and INT8/16 are the fastest to converge. They do not
change the training paradigm and involve negligible deduplication
and (de)quantization overhead. CompoEmb and AdaptEmb are also
fast to converge, requiring minor modifications to the training
process. Other inter-feature compression methods either involve
complex computations, or require more epochs to converge due
to relaxed abstraction of embedding tables. These also result in
large variance in their training times. Dimension reduction and
pruning methods have longer training times due to the introduction

of warm-up, search, retraining stages, and the alternative learning
of model parameters and structural parameters.

There is not a clear relationship between the training time and
the memory budget. On the one hand, more memory may lead to
greater training complexity; on the other hand, less memory may
make it harder to achieve convergence.

5.2.5 Inference Latency. Dedup, ROBE, OptEmbed, quantiza-
tion methods, and pruning methods have the lowest infer-
ence latency. After training, the model checkpoints are saved for
inference. The methods with top-3 least inference latency are high-
lighted in bold with an underlined ranking. We use the same batch
size in training and inference. Criteo has greater latency than Avazu
with more embeddings to compute. The batch size of Company is
smaller than other datasets, so the latency is not comparable.

Dedup, ROBE, OptEmbed, quantization, and pruning all lookup
the embeddings from only one table (or array), resulting in low
inference latency. Dedup conducts similarity-based deduplication,
with no need to consider field information; ROBE designs an array
to share all embeddings. Except for Dedup and ROBE, inter-feature
compression methods have to perform compression within fields,
considering that features of the same field have similar seman-
tics. TT-Rec and DHE have the largest inference latency due to
time-consuming matrix multiplications. Quantization only incurs
negligible dequantization process during inference. Sparse tensors
in pruning may have fewer memory accesses with no additional
overheads. MDE and AutoDim introduce additional matrix multipli-
cations to align dimensions, thereby increasing inference latency.

If the time complexity is constant, the inference latency hardly
changes with the memory budget. In contrast, TT-Rec and DHE
performmore complex computations with larger memory, resulting
in greater latency. However, when the memory is too small, more
fields participate in compression, also leading to greater latency.

5.2.6 Commercial Dataset. After analyzing the results on the
commercial dataset Company, we find that the conclusions
are consistent with those of the public datasets, despite some
minor differences. The training time variance is larger on Com-
pany, mainly because the larger Company dataset is more difficult
for compression methods to train. Compression methods perform
similarly on the three datasets, because 1) the public datasets are
also collected from real recommendation scenarios; 2) our conclu-
sions are robust enough to be generalized to larger datasets. Since
we use compression ratios to study the performance, the absolute
size of the embedding table has little impact on the conclusions.

5.2.7 Discussion on Taxonomy. The current taxonomy is based
on the compression paradigm, which determines the imple-
mentation. For example, dynamic encoding records dynamic map-
pings, quantization adopts low-precision data types, and pruning
stores embeddings in sparse formats. In experiments, methods of
the same category have a certain degree of similarity, but there may
be differences in somemetrics due to different techniques used, such
as simple hashing, complex computation, similarity-based dedupli-
cation, and VQ techniques in inter-feature compression, heuristics,
policy gradient, DARTS, and one-shot-NAS techniques in intra-
feature compression. Our analysis considers both paradigms and
techniques, making the conclusions more comprehensive.
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Figure 4: AUC of WDL and DCN.

5.3 Impact of Neural Network Model
For another two recommendation models WDL [15] and DCN [90],
we plot the AUC of each compression method at each inference
memory budget in Figure 4. Despite minor differences compared to
DLRM, the ranking of the methods remains almost the same. The
neural networks’ memory consumption and processing time have
minor differences and do not impact the conclusions.

From the experimental results, we can see that the optimization
of the model and the selection of the compression method are
orthogonal, as the compression methods are decoupled from the
downstream neural network. Therefore, the conclusions we draw
on DLRM can be applied to other models as well.

Figure 5: AUC vs dimension. Figure 6: Allocation.

5.4 Impact of Dimension
In Section 5.2, we align the embedding dimension to the baseline.
However, methods that capture feature frequency or importance
generally prefer larger dimensions to allocate more memory for
more important features [12, 46, 55, 62, 64, 76]. In this section, we
enlarge the dimension to explore the potential of these methods.

Figure 5 shows the AUC for each compression method with di-
mension 16, 32, and 64. The inference memory budget is fixed at
10% of the baseline memory with dimension 16. In general, meth-
ods that adopt feature importance, including dynamic encoding,
dimension reduction, and pruning, have a certain increase in AUC
as the dimension increases. In contrast, static encoding methods
mostly do not benefit from larger dimensions.

In Figure 6, we visualize the actual memory allocated for each
feature in AutoSrh. Each point represents a feature: the x-axis is
its frequency, and the y-axis is the number of assigned parameters.
The allocated memory does not necessarily depend on frequency,
as frequency is only one factor of feature importance. As the dimen-
sion becomes larger, AutoSrh allocates more memory to important
features, explaining the effect of dimension increase.

When the dimension is enlarged, MGQE and pruning methods
increase the training memory linearly despite better AUC. There-
fore, choosing the right dimensions requires a careful trade-off
between model quality and training overhead.

5.5 Performance on Retrieval-augmented LLM
In this section, we apply compression methods to generated em-
beddings in a retrieval-augmented LLM. The entire generated em-
beddings are produced by neural networks and present only at
inference, different from parametric embeddings in DLRM that are
trainable parameters and present throughout training. Therefore,
compression methods that involve the training process, such as
AutoML-based methods, are not suitable for generated embeddings.

We select applicable compression methods or their variants for
evaluation, including TT (tensor-train decomposition),Dedup, PQ,
MagPQ (PQ within embedding groups that are split by magnitude),
INT8/16, SVD (dimension reduction),MagSVD (SVD within em-
bedding groups that are split by magnitude), Pruning (pruning
values of low magnitude). MagPQ and MagSVD are variants of
MGQE and MDE respectively, replacing missing frequency infor-
mation with embeddings’ L2-norms.

We experiment with RAG [52] which uses DPR [42] for retrieval
and BART [51] for generation. We experiment on the open-domain
QA dataset Natural Questions (NQ) [47], with cleaned Wikipedia
articles (21 million) as the search corpus, following previous re-
search [24, 42, 52, 77, 110]. We retrieve top 10 documents for each
query. The embedding dimension is 768, which is much larger than
DLRM. Since the entire embeddings are generated after training,
we apply compression methods at the inference stage. Each exper-
iment is conducted on an Nvidia A100 40GB GPU card. Table 6
presents three metrics: Exact Match (EM) score, compression time,
and batched-decompression latency with a batch size of 1024.

5.5.1 Ability of Compression. TT,Dedup, andPruning can reach
all compression ratios. Similar to the DLRM experiment, we com-
press under four memory budgets. TT essentially performs two
SVDs with moderate dimensions to enable a wide range of compres-
sion ratios. In contrast, (Mag)SVD cannot support small memory
budgets, because their memory scales linearly with the corpus car-
dinality. Pure SVD cannot support large memory budgets, because
it is difficult to decompose with large intermediate dimensions.
Dedup and Pruning have adjustable thresholds, making them ap-
plicable for almost any memory budget. (Mag)PQ cannot support
large compression ratios due to complex computations in clustering.
INT8/16 only support several fixed compression ratios.
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5.5.2 EmbeddingQuality. INT8/16, (Mag)SVD, Pruning achieve
best EM scores under large memory budgets, while (Mag)PQ
achieve best EM scores under small memory budgets. INT8/16
and PQ have been implemented in the well-known embedding
search library Faiss [39] due to their effectiveness. MagPQ and
MagSVD show comparable performance to PQ and SVD with less
memory, thanks to magnitude-aware compression. TT uses two
SVDs, which greatly degrades performance. Dedup’s block-wise
deduplication may not perform well on this retrieval-related task.

5.5.3 Compression Time. INT8/16 has the smallest compres-
sion time, followed by Pruning. INT8/16 requires almost no
computation. Pruning uses an efficient binary search algorithm
to determine the threshold. Dedup uses L2LSH for deduplication
which is only efficient under large memory budgets when the block
size is large. (Mag)SVD is only efficient under small memory bud-
gets when the intermediate dimensions are small. TT and (Mag)PQ
are computationally expensive, resulting in long compression times.

5.5.4 Batched-decompression Latency. INT8/16 has the small-
est latency, followed by Pruning, Dedup, and (Mag)PQ. The
decompression of INT8/16 and CSR-format Pruning is fast with
little overhead. When the memory budget is small, Pruning uses
COO format, which is very slow for high-dimensional embeddings.
Dedup and (Mag)PQ look up embeddings from tensor blocks or
centroids, with no computation overhead. TT and (Mag)SVD adopt
matrix multiplication, leading to large decompression latency.

5.6 Further Discussions and Future Directions
5.6.1 Challenges. Currently, all compression methods have certain
drawbacks, requiring users to carefully trade-off based on practical
needs. For DLRM, there is no single method that performs well in
all metrics. For retrieval-augmented LLM, research on embedding
compression is still in its early stages, with only a few specialized
methods available. Therefore, more comprehensive and advanced
methods are expected in both fields.

On the other hand, the relationship between datasets and com-
pression methods has not been studied. Our experiments show that
different methods perform better on different datasets in DLRM,
but it is unclear why. It is currently difficult to determine a proper
method for a given dataset without actual experiments.

5.6.2 Future Directions. A straightforward idea is to combine the
advantages of different compression methods in DLRM. For dy-
namic encoding, state-of-the-art static encoding and pruning meth-
ods can be integrated to achieve better model quality in online
scenarios. Quantization can be used as a plug-in module, contribut-
ing a fixed compression ratio with very low cost; another possible
improvement is to assign data types with different bits to differ-
ent features, borrowing ideas of capturing feature importance. Di-
mension reduction and pruning require pre-training, where static
encoding can be applied to avoid large training memory.

Currently, embedding compression for retrieval tasks mainly
uses quantization or PQ [39]. To the best of our knowledge, we
are the first to study other embedding compression methods for
retrieval. We anticipate that compression methods specifically de-
signed for retrieval will emerge in the future and can be combined
with embedding search to further improve performance. Inspired

Table 6: Overall performance on RAG.

Methods Metrics 50% 10% 1% 0.1%
Full EM 41.14 (100.00%)

EM 22.02 11.47 6.54 4.38
Time 1h35m 42m46s 18m11s 13m22sTT
Latency 39.54s 9.14s 2.21s 482.77ms
EM 25.93 15.57 5.51 4.68
Time 11m3s 11m29s 33m36s 2h34mDedup
Latency 4.14ms 3.55ms 3.00ms 2.63ms
EM 35.32 (3.14%) 24.57 (1.58%)
Time 43m21s 40m33sPQ
Latency 8.29ms 9.09ms
EM 35.29 (2.99%) 33.99 (1.57%)
Time 1h9m 40m30sMagPQ
Latency 11.52ms 10.71ms
EM 41.02 38.06 (25.00%)
Time 4m60s 5m3sINT8/16
Latency 0.0513ms 0.0472ms
EM / 31.02 3.88 /
Time / 25m48s 10m4s /SVD
Latency / 16.86ms 11.58ms /
EM 41.11 30.89 4.04 /
Time 50m6s 17m16s 13m0s /MagSVD
Latency 65.83ms 35.56ms 25.57ms /
EM 37.29 17.15 4.24 4.04
Time 14m37s 11m2s 12m13s 13m25sPruning
Latency 3.13ms 3.42ms 3.23ms 1.33s

by data skewness in DLRM, we are also curious whether retrieval
datasets also have such properties, which we leave as future work.

Moreover, studying the impact of recommendation data distri-
bution on compression methods is also a promising direction. At
present, for a given dataset we can only determine compression
methods experimentally. A deeper understanding of data will not
only help in the selection of compression methods, but also inspire
the development of more advanced methods.

6 CONCLUSION
In this paper, we surveyed existing embedding compression meth-
ods and proposed a new taxonomy. We modularized the compres-
sion pipeline and implemented a unified evaluation framework. We
conducted a comprehensive experimental evaluation to analyze
the performance of each method under different memory budgets.
The experimental results reveal the pros and cons of each method,
provide suggestions for method selection in different situations,
and shed light on promising research directions.
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