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The growing memory demands of embedding tables in Deep Learning Recommendation Models (DLRMs)

pose great challenges for model training and deployment. Existing embedding compression solutions cannot

simultaneously achieve memory efficiency, low latency, and adaptability to dynamic data distribution. This

paper presents CAFE+, a Compact, Adaptive, and Fast Embedding compression framework that meets the

above requirements. The design philosophy of CAFE+ is to dynamically allocate more memory to important

features, and less to unimportant ones. We assign unique embedding to important feature and allow multiple

unimportant features sharing one embedding. We propose a fast and lightweight feature monitor, to real-time

capture feature importance and report important features. We theoretically analyze the accuracy of our feature

monitor, and prove the superiority of CAFE+ from the aspect of model convergence. Extensive experiments

show CAFE+ outperforms existing embedding compression methods, yielding 3.94% and 3.94% superior

testing AUC on Criteo Kaggle dataset and CriteoTB dataset at a compression ratio of 10000×. Building on

our conference version [114], this journal version introduces several novel designs (Implicit Importance

Attenuation, Adaptive Threshold Adjustment, and ColdSifter) that enable CAFE+ to more effectively adapt to

long-term online learning and achieve better model quality. All codes are available at GitHub [112].

CCS Concepts: •Computingmethodologies→Artificial intelligence; • Information systems→Online
advertising; • Theory of computation→ Sketching and sampling.

Additional Key Words and Phrases: Embedding, Deep Learning Recommendation Model, Sketch

1 INTRODUCTION
1.1 Background and Motivation
In recent years, embedding techniques are widely applied in various fields in information retrieval

community, such as question answering [48, 67, 74, 117], semantic understanding [2, 99, 120, 124],
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entity resolution [15, 16, 109], document retrieval [30, 58, 72], graph learning [28, 86, 91, 119], and

recommendation systems [4, 23, 95, 108, 111, 121, 127, 129], to learn the semantic representations

of categorical features. Among these fields, Deep Learning Recommendation Models (DLRMs) are

one of the most important applications of embedding techniques: they account for 35% of Amazon’s

revenue in 2018 [10, 85, 98], and consume more than 50% training and 80% inference cycles at

Meta’s data centers in 2020 [26, 65].

As shown in Figure 1, a typical DLRM vectorizes categorical features into learnable embeddings,

and then feeds these embeddings into downstream neural networks along with other numerical

features [8, 27, 60, 66, 79, 107]. Recently, with the exponential increase of categorical features

in DLRM, the memory requirements of embedding tables have also skyrocketed, which creates

formidable storage challenges in various applications [64, 104]. Therefore, it is highly desired to

devise a framework that can effectively compress the embedding tables into limited storage space

without compromising model accuracy. In this paper, we focus on compressing the embedding

tables of extremely large-scale DLRMs
1
.

Fig. 1. Overview of DLRM.

DLRM has two training paradigms: offline training and online training. (1) In offline training,

the training data is collected in advance, and the model is deployed for use after the entire training

process. (2) In online training, the training data is generated in real time, and the model simul-

taneously updates parameters and serves requests. This paper focuses on the scenario of online

training because it is more difficult. Generally, compression methods for online training can be

directly applied to offline training. Embedding compression for online training has the following

three important design requirements:

• Memory efficiency. For extremely large-scale DLRMs, it is challenging tomaintain model quality

within memory constraints. While distributed instances can help manage large-scale embedding

tables, they come with a significant communication overhead [63, 93]. Furthermore, training

and deployment of embedding tables often occur on edge or end devices with small storage

capacities, making the distributed solutions not always applicable [68]. As the model quality

directly impacts profits, even a small change of 0.001 in DLRM’s AUC (area under the ROC curve)

is considerable [22]. Existing compression methods often lead to severe model degradation when

memory constraints are small [122], emphasizing the need for memory-efficient compression

methods that maintain model quality.

1
Based on previous research works [34, 47, 64, 97, 123], we consider DLRMs with more than 100 million parameters as

large-scale, and DLRMs with more than 10 billion parameters as extremely large-scale.
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• Low latency. Low latency is a vital requirement in practical applications, as latency is a key

metric of service quality [25]. Embedding compression methods must be fast enough to avoid

introducing significant latency during embedding lookup.

• Adaptability to dynamic data distribution. In online training, the data distribution is not

fixed as in offline training because the interest of users may change from time to time. For

example, before and during the FIFA World Cup, users are likely to search extensively for match

schedules, team merchandise, and related news. However, once the tournament ends, the demand

for World Cup related content significantly decreases. To better illustrate this issue, we calculate

the Kullback-Leibler (KL) divergence (an asymmetric measure of how one probability distribution

is different from another probability distribution) between the feature distributions on each

day within three common public datasets, and plot the heatmaps in Figure 2. In each heatmap,

the block in row 𝑖 , column 𝑗 shows the KL divergence between the distributions on day 𝑖 and

day 𝑗 . We can see that there is a significant difference between the feature distribution across

different days, and generally the greater the temporal distance between the days, the greater

the difference. Inspired by the observation that feature popularity distributions are often highly

skewed [104, 116], existing methods compress the embedding table based on pre-captured feature

importance distribution [20, 39, 110, 125]. However, most of them rely on fixed data distributions

and cannot handle dynamic data distributions in online training [37, 104, 110], demanding new

adaptive compression method.

Fig. 2. Kullback-Leibler (KL) divergence between distributions on each day.

1.2 Limitations of Prior Art
Existing embedding compression methods can be categorized into two orthogonal types: row

compression and column compression. Row compression aims to reduce the number of embeddings,

while column compression seeks to decrease the size (length, precision, sparsity) of individual

embeddings. As it is difficult for column compression to precisely control the compression ratio, this

paper primarily focuses on row compression. Actually, as row compression and column compression

are orthogonal, methods of column compression (such as low-precision quantization [44, 100],

dimension reduction [20, 55, 125], and sparsification [13, 39]) can also be incrementally applied to

our framework. Generally, there are two kinds of row compression methods: hash-based methods

and adaptive methods.

Hash-based methods. These methods use hash functions to map a large number of features into a

small number of embeddings with collisions [81, 94, 101]. Despite their simplicity and convenience,

which have resulted in widespread industry use, these methods struggle to simultaneously achieve

small memory overhead and high model quality. This is because hash collisions distort the semantic

information of features. When the embeddings of multiple important features collide, the model is

unable to distinguish between these important features, resulting in deviations from the optimal

convergence direction. Although there are some hash-based solutions integrating offline feature

frequency information to enhance model quality [110], they cannot be applied to online training.

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.
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Adaptive methods. Adaptive methods automatically distinguish and track important features

throughout the online training process. AdaEmbed [42] logs the importance scores of all features,

dynamically allocates embeddings for important features, and discards the embeddings of unim-

portant features. However, AdaEmbed needs to store the importance scores of all features, which

increases linearly with the number of features. On the other hand, AdaEmbed directly discards the

embeddings of unimportant features, which may also be valuable, leaving further room for model

quality improvement. Therefore, AdaEmbed cannot compress embedding tables to an extremely

small memory budget while guaranteeing model quality. Additionally, AdaEmbed also needs to

periodically check the recorded scores to determine important features, which can impact the

overall efficiency of training and serving.

In summary, existing methods fail to meet all three critical requirements for DLRM: memory

efficiency, low latency, and adaptability. In this paper, we aim to propose an embedding compression

method that simultaneously meets the three requirements.

1.3 Our Proposed Method
This paper presents CAFE+, a Compact, Adaptive, and Fast Embedding compression framework.

We observe that in most training data, the feature importance follows a highly skewed distribution,

where only a few features are very important (Figure 3). Inspired by this observation, the key idea

of CAFE+ is to dynamically allocate more memory resources to important features and less memory

to unimportant ones. Specifically, CAFE+ proposes a light-weight feature monitor called HotSketch

to compactly track feature importance and report important features. CAFE+ uses an embedding

manager to independently manage the embeddings of different features. The embedding manager

dynamically allocates unique embeddings to important features and shared embeddings to less

important ones.

CAFE+ simultaneously satisfies the three design requirements. (1) Memory efficiency: By
dynamically allocates memory resources according to feature importance, CAFE+ maintains good

model quality within tight memory constraints. Guided by the idea of dynamically allocating

resources according to feature importance, we further propose the Multi-layer Hash Embedding

technique to optimize the memory allocation for unimportant features. Additionally, the feature

monitor of CAFE+, namely HotSketch, also achieves small memory footprint, enabling high com-

pression ratios. We also propose the ColdSifter technique to further optimize the memory usage

of the feature monitor. (2) Low latency: The feature monitor of CAFE+ is small enough to be

held in high-level CPU cache, and its lookup operation requires only a single hash calculation and

memory access, thereby achieving small latency. On the other hand, the lookup operation to the

embedding table of CAFE+ necessitates just several additional hash calculations and at most one

extra memory access, incurring small latency during training and serving. (3) Adaptability to
dynamic data distribution: CAFE+ makes many efforts to adapt to dynamic data distributions.

CAFE+ introduces an embedding migration mechanism to migrate the embeddings between the

unique embedding table and the shared embedding table according to real-time feature importance.

The feature monitor of CAFE+ incorporates an Adaptive Threshold Adjustment mechanism to

automatically adjust the importance threshold for important features according to current data

distribution. We also devise an Implicit Importance Attenuation mechanism, where we define a

time-aware feature importance score to make CAFE+ focus more on recent features and less on

older ones, thereby incorporating the temporal information into CAFE+.

1.4 Key Contribution
• We propose CAFE+, a compact, adaptive, and fast embedding compression framework for online

training.
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• We introduce a time-aware feature importance score and devise HotSketch, a small and fast

sketch algorithm to discern important features.

• We theoretically analyze the effect of HotSketch on identifying important features, and explain

the reasons why CAFE+ can achieve better model quality through convergence analysis.

• We extensively evaluate CAFE+ across representative DLRM models and datasets. The results

show that CAFE+ achieves 3.94% ∼ 5.39% higher testing AUC and 3.54% ∼ 11.26% lower training

loss at 10000× compression ratio compared to existing methods.

• Building on CAFE in our conference version [114], CAFE+ includes the following novel designs: 1)

The Implicit Importance Attenuation technique that enables CAFE+ to adapt to the continuously

changing data distribution in online training (Section 3.7); 2) The Adaptive Threshold Adjustment

mechanism to automatically tune the thresholds of CAFE+ during training (Section 3.6); 3) The

ColdSifter optimization to improve the accuracy of the feature monitor (Section 3.5). With these

designs, CAFE+ can more effectively adapt to long-term online training and achieve better model

quality (Section 5.2.6).

Table 1. Symbols frequently used in this paper.

Symbol Meaning Symbol Meaning

𝑓𝑖 ID of a categorical feature S Hot feature threshold

𝑠𝑖,𝑡 Increase of 𝑓𝑖 ’s importance score in iteration 𝑡 M Medium feature threshold

𝑆𝑖 Importance score of 𝑓𝑖 (𝑆𝑖 :=
∑

𝑡 𝑠𝑖,𝑡 ) 𝜆 Parameter controlling Threshold Adjustment

U Uncompressed Embedding Table H𝑖 The 𝑖-layer Hash Embedding Table
𝑘 Size of Uncompressed Embedding Table 𝑚𝑖 Size of the 𝑖-layer Hash Embedding Table
H Hash Embedding Table ℎ𝑖 ( ·) Hash function mapping features into H𝑖

𝑚 Size of Hash Embedding Table C Bucket array of ColdSifter

ℎ ( ·) Hash function mapping features into H ℎ𝑐 ( ·) Hash function mapping features into C
B Bucket array of HotSketch P Cold feature threshold of ColdSifter

𝑐 # slots per bucket of HotSketch/ColdSifter 𝛼 Decay factor of feature importance

𝑤 # buckets of HotSketch/ColdSifter A Threshold controlling the range of 𝛼−𝑡

ℎ𝑏 ( ·) Hash function mapping features into B 𝐶𝑅 Compression ratio

𝑝𝑖 Embedding index of hot feature 𝑓𝑖 in U

2 PRELIMINARY
In this section, we discuss the architecture of DLRMs, formulate the problem of embedding compres-

sion, and discuss the research context of online training and streaming recommendation systems.

The symbols frequently used in this paper is listed in Table 1.

DLRM architecture: Figure 1 illustrates the overall architecture of DLRM. A training sample of

DLRM has several categorical feature fields and numerical feature fields. For example, in Figure 1,

gender, user ID and interest are categorical fields, while price and score are numerical fields.

Each field has a certain number or a certain range of possible values, called features. During the

training process, categorical and numerical features are transformed into representations using

embedding vectors and fully-connected layers, respectively. The representations are then fed

into interaction layers and fully-connected layers for final predictions. The prediction may be a

category for classification tasks such as click-through-rate and conversion-rate prediction, or a

score for regression tasks such as score prediction. There are many variants of DLRM (e.g., WDL [8],

DCN [88], DIN [128]) exploring different forms of interaction layers and neural network layers to

enhance model performance, but all of them use the same embedding architecture.

The model parameters of DLRMs can be divided into two parts: the huge embedding table (tens of

GBs) and the small neural network (several to hundreds of MBs). The former contains embeddings

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.
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for all categorical features, i.e., one unique embedding per feature if uncompressed. The latter

is a network that interacts these embeddings and outputs predictions. In DLRMs, the size of the

neural network part (just a few layers of matrix multiplication) is negligible compared to large

embedding tables [42, 57]. It is highly desired to efficiently compress the embedding tables while

simultaneously maintaining model accuracy.

Embedding compression: As storing the unique embedding for each categorical feature can lead

to an unacceptably large model size, in recent years, there have been many research works focusing

on compressing the embedding table [13, 20, 39, 42, 44, 55, 81, 94, 100, 101, 125]. Suppose there are

𝑛 unique categorical features. The most classic hash embedding compress their embeddings into an

arrayH of𝑚 embeddings (𝑚 ≪ 𝑛) [81, 94, 101]. It uses a hash function ℎ(·) to map each feature 𝑓𝑖
into one embeddingH[ℎ(𝑓𝑖 )]. In this way, multiple features can share the same embedding. We

will discuss more works on embedding compression in Section 6.

Given an embedding compression solution, we formally define its compression ratio𝐶𝑅 as the size

of the uncompressed embedding table divided by the size of the compressed embedding table. For

example, the compression ratio of the above hash embedding is 𝐶𝑅 = 𝑛
𝑚
. In practice, a compression

ratio of 10× can reduce the cost of distributed deployment, 100× to 1000× can allow for single-device

deployment, and an extreme compression ratio of 10000× can enable DLRMs on edge devices.

Online training and streaming recommendation systems:Online training refers to the process
of learning a model in real-time using data that is available during the training procedure. Unlike

offline training, where the model is trained on a pre-collected dataset, online training continuously

updates the model with new incoming data, allowing it to dynamically adapt to changing environ-

ments or tasks. There are many online embedding frameworks used in streaming recommendation

systems [24, 42, 73, 77, 87, 90]. We further illustrate the overall online training procedure using

some examples. 1) AdaEmbed [42] is an online framework that automatically identifies important

features and reallocates embeddings for them in real time. During online training, it records the

importance of all features given streaming data, and dynamically maintains a set of the important

features. The embeddings of these important features are recorded, while that of the unimpor-

tant features are discarded. 2) Another state-of-the-art work SCALL [77] uses a reinforcement

learning (RL) model to periodically generate the optimal embedding configuration and uses this

configuration to adjust the embedding allocation. Similar to SCALL, many other online training

frameworks in streaming recommendation also periodically update the embedding configuration

at the end of each session [24, 73, 87]. Like post-training pruning (PTP) schemes [50, 51], these

solutions cannot achieve memory savings during model training. On the contrary, they require

more memory and computation consumption during training, and have longer training time and

more hyperparameters to be manually adjusted. Nonetheless, our results show that CAFE+ still

outperforms SCALL (Figure 21) because it can adapt to the model performance at runtime and

continuously optimize the embedding allocation throughout the entire training process. 3) As

an online training framework, our CAFE+ also dynamically allocates more space to important

features in real time. During online training, CAFE+ receives real-time streaming data and uses a

feature monitor to continuously record feature importance. It reports current important features,

and dynamically maintains the embeddings of important and unimportant features in two separate

tables. In each training iteration, CAFE+ looks up the embeddings of important and unimportant

features in the two tables respectively, and feeds these embeddings into downstream neural network

for model training. The specific online training workflow of CAFE+ is shown in Algorithm 1, which

will be described later in Section 3.1.

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.
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(a) Criteo. (b) CriteoTB.

Fig. 3. Comparing gradient norm and Zipf distributions.

Algorithm 1: Pseudo-code of CAFE+’s online training workflow

1 while not converged do
2 // Step 1: fetch input data (feature IDs)

3 feature_ids,labels← fetch_next_data_batch();

4 // Step 2: identify hot features and reports their indices in Uncompressed Embedding Table
5 (feature_is_hot,hot_feature_indices)← HotSketch.report(feature_ids);

6 // Step 3: lookup embeddings for hot and non-hot features respectively

7 feature_embeddings← Embedding.lookup(feature_ids, feature_is_hot,
hot_feature_indices);

8 // Step 4: feed embeddings into downstream neural network for model training

9 feature_gradients← model.train_step(feature_embeddings,labels);

10 feature_scores← ||feature_gradients| |2;
11 // Step 5 & Step 6: update feature importance and migrate embeddings

12 HotSketch.update(feature_ids,feature_scores);

3 CAFE+ DESIGN
3.1 CAFE+ Overview
We design CAFE+, an efficient embedding framework that is simultaneously compact, adaptive, and

fast. The key idea of CAFE+ is to dynamically distinguish important features (called hot features)

from unimportant ones (called non-hot features), and allocate more resources to hot features. As

in previous works [21, 38, 42], we define the importance score of a feature using the L2-norm of

its gradient, which is proven to have good theoretical properties in Section 3.8.2. We observe that

in most training data, the feature importance follows a highly skewed distribution, where most

features have small importance scores and only a few features are very important. Figure 3 shows

that the feature importance distributions in the Criteo dataset and the CriteoTB dataset are highly

consistent with the Zipf distributions of parameters 1.05 and 1.1, respectively. Intuitively, we should

allocate more memory to the embedding of each hot feature and less memory to that of non-hot

feature. By strategically optimizing memory allocation based on feature importance, it is possible

to significantly improve the model quality under the same memory usage of embedding tables.

As shown in Figure 4, in CAFE+, we propose a feature monitor called HotSketch, to capture

feature importance and report top-𝑘 hot features in real time
2
. We manage feature embeddings with

two tables. For each hot feature, we allocate it a unique embedding in the Uncompressed Embedding
Table. For each non-hot feature, we hash it into an embedding in the Hash Embedding Table, where
multiple features can share one embedding. Algorithm 1 shows the overall online training workflow

of CAFE+. In each training iteration, we first fetch data samples from the input training data

2
We will further optimize the feature monitor with a structure called ColdSifter in Section 3.5.
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CAFE+ Workflow

Feature Monitor
HotSketch

(with ColdSifter)

Embedding
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𝑓!

k

m

Fig. 4. CAFE+ workflow.

(step 1). Then we query each feature from these samples in HotSketch (step 2). For each feature,

HotSketch reports whether it is a hot feature. For each hot feature, HotSketch also reports the

index to its embedding in the Uncompressed Embedding Table. We lookup the embeddings for hot

and non-hot features respectively (step 3). For a hot feature, we retrieve its unique embedding

in the Uncompressed Embedding Table. For a non-hot feature, we retrieve its hashed embedding

in the Hash Embedding Table. Afterwards, we feed the embeddings into the downstream neural

network for prediction and get the gradient norm for each feature (step 4). Finally, we update the

importance scores of these features in HotSketch using their gradient norms (step 5). During the

update procedure, if a non-hot feature becomes a hot feature, we migrate its embedding from the

Hash Embedding Table to the Uncompressed Embedding Table (step 6).

This section is organized as follows. We first describe the feature monitor in Section 3.2, where

we explain how to identify hot features with HotSketch. Then we describe the embedding manager

in Section 3.3, where we discuss how to lookup and migrate embeddings in the two tables. Guided

by our design philosophy of dynamically allocating more memory to more important features, we

further propose the Multi-layer Hash Embedding technique to better embrace the skewed feature

importance distribution in Section 3.4. We further optimize the design of memory manager and

feature monitor in Section 3.5-3.6. We design a novel implicit importance attenuation mechanism

to perfectly adapt CAFE+ to online training in Section 3.7. Finally, we theoretically analyze the

accuracy of HotSketch and explain the convergence advantages of CAFE+ in Section 3.8.

3.2 Feature Monitor: Identify Important Features with HotSketch
Problem statement:Given a feature 𝑓𝑖 , we define its importance score 𝑆𝑖 as the sum of the L2-norm

of its gradient over all iterations, i.e., 𝑆𝑖 :=
∑

𝑡 | |∇𝑔𝑡 (𝑓𝑖 ) | |2 where | |∇𝑔𝑡 (𝑓𝑖 ) | |2 is the L2-norm of 𝑓𝑖 ’s

gradient in iteration 𝑡 . As discussed in Section 3.1, the distribution of feature importance is highly

skewed. Our feature monitor aims at identifying top-𝑘 important features, where 𝑘 is the size of

the Uncompressed Embedding Table. Specifically, given an incoming feature 𝑓𝑖 , we should report

whether 𝑓𝑖 has the top-𝑘 largest importance score.

Design rationale: Towards the above goal, we design a novel sketch algorithm, called HotSketch,

to capture top-𝑘 hot features in real time. This is essentially a problem of finding top-𝑘 items

(features) in streaming data. Currently, Space-Saving [61] is the most recognized algorithm for

solving top-𝑘 problem. It maintains frequent items in sorted doubly linked list and uses a hash table

to index this list. However, this hash table not only doubles the memory usage but also imposes time

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.
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Algorithm 2: Pseudo-code of the feature monitor (HotSketch)

1 Function HotSketch.report(feature_ids):
2 feature_is_hot← [];

3 hot_feature_indices← [];

4 for 𝑓𝑖 in feature_ids do
5 if 𝑓𝑖 is in B[ℎ𝑏 (𝑓𝑖 )] and 𝑆𝑖 > S then
6 feature_is_hot.append(𝑇𝑟𝑢𝑒);

7 hot_feature_indices.append(𝑝𝑖); // 𝑝𝑖 is 𝑓𝑖 ’s embedding index in the Uncompressed
Embedding Table

8 else
9 feature_is_hot.append(𝐹𝑎𝑙𝑠𝑒);

10 hot_feature_indices.append(𝑁𝑢𝑙𝑙);

11 return (feature_is_hot,hot_feature_indices);

12 Function HotSketch.update(feature_ids,feature_scores):
13 for (𝑓𝑖,𝑠𝑖,𝑡) in (feature_ids,feature_scores) do
14 if 𝑓𝑖 is in B[ℎ𝑏 (𝑓𝑖 )] then
15 𝑆𝑖 ← 𝑆𝑖 + 𝑠𝑖,𝑡 ;
16 if 𝑆𝑖 ≥ S and 𝑆𝑖 − 𝑠𝑖,𝑡 < S then
17 allocate a unique embedding in Uncompressed Embedding Table for 𝑓𝑖 , initialize it with

H[ℎ(𝑓𝑖 )], and record its index 𝑝𝑖 in B[ℎ𝑏 (𝑓𝑖 )]; // embedding migration (Section 3.3)

18 else if 𝑓𝑖 is not in B[ℎ𝑏 (𝑓𝑖 )] and B[ℎ𝑏 (𝑓𝑖 )] is not full then
19 insert (𝑓𝑖 , 𝑠𝑖,𝑡 ) into an empty slot in B[ℎ𝑏 (𝑓𝑖 )];
20 else if 𝑓𝑖 is not in B[ℎ𝑏 (𝑓𝑖 )] and B[ℎ𝑏 (𝑓𝑖 )] is full then
21 find the slot with the smallest score (𝑓𝑚𝑖𝑛, 𝑆𝑚𝑖𝑛), and update it to (𝑓𝑖 , 𝑆𝑚𝑖𝑛 + 𝑠𝑖,𝑡 );

inefficiency due to numerous memory accesses caused by pointer operations. Based on the idea of

Space-Saving, we propose HotSketch, which removes the hash table while still maintaining the𝑂 (1)
time complexity. We theoretically prove that our HotSketch well inherits the theoretical results of

Space-Saving (Section 3.8.1), and empirically validate the advantages of HotSketch (Section 5.5).

Data structure:As depicted in Figure 5, HotSketch consists of an array of𝑤 bucketsB[1], · · · ,B[𝑤].
We use a hash function ℎ𝑏 (·) to map each feature into one bucket. Each bucket contains 𝑐 slots.

Each slot stores a feature ID 𝑓𝑖 and its estimated importance score 𝑆𝑖 . In our implementation, each

slot also stores an index 𝑝𝑖 to one embedding in the Uncompressed Embedding Table, by which the

reported top-𝑘 feature can retrieve its unique embedding.

Update (step 5 in Figure 4; Algorithm 2): For each incoming feature 𝑓𝑖 with score 𝑠𝑖,𝑡 = | |∇𝑔𝑡 (𝑓𝑖 ) | |,
we first calculate the hash function to locate the hashed bucketB[ℎ𝑏 (𝑓𝑖 )]. Then, we checkB[ℎ𝑏 (𝑓𝑖 )]
and there are three cases: (1) 𝑓𝑖 is recorded in B[ℎ𝑏 (𝑓𝑖 )]. We add 𝑠𝑖,𝑡 to its importance score. Note

that if 𝑓𝑖 becomes a hot feature after updating the importance score, we migrate its embedding

from the Hash Embedding Table to the Uncompressed Embedding Table, and record its index 𝑝𝑖 in

B[ℎ𝑏 (𝑓𝑖 )] (discussed in Section 3.3). (2) 𝑓𝑖 is not recorded inB[ℎ𝑏 (𝑓𝑖 )] and there exists an empty slot

in B[ℎ𝑏 (𝑓𝑖 )]. We insert 𝑓𝑖 into the empty slot by setting this slot to (𝑓𝑖 , 𝑠𝑖,𝑡 ). (3) 𝑓𝑖 is not recorded in

B[ℎ𝑏 (𝑓𝑖 )] andB[ℎ𝑏 (𝑓𝑖 )] is full. We find the feature with the smallest score (𝑓𝑚𝑖𝑛, 𝑆𝑚𝑖𝑛) inB[ℎ𝑏 (𝑓𝑖 )],
replace 𝑓𝑚𝑖𝑛 with 𝑓𝑖 , and add 𝑠𝑖,𝑡 to 𝑆𝑚𝑖𝑛 . In other words, we set the slot (𝑓𝑚𝑖𝑛, 𝑆𝑚𝑖𝑛) to (𝑓𝑖 , 𝑆𝑚𝑖𝑛 +𝑠𝑖,𝑡 ).
Figure 5 shows the examples of the above three cases.
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Fig. 5. Feature monitor: the HotSketch algorithm (𝑐 = 2).

Report (step 2 in Figure 4; Algorithm 2): For each incoming feature 𝑓𝑖 , we calculate the hash

function to locate its hashed bucket B[ℎ𝑏 (𝑓𝑖 )]. If 𝑓𝑖 is recorded in B[ℎ𝑏 (𝑓𝑖 )] and its importance

score 𝑆𝑖 exceeds a predefined threshold S, we report 𝑓𝑖 as a hot feature and return its embedding

index 𝑝𝑖 in the Uncompressed Embedding Table. Otherwise, if the importance score of 𝑓𝑖 does not

exceeds S or 𝑓𝑖 is not in B[ℎ𝑏 (𝑓𝑖 )], we report 𝑓𝑖 as a non-hot feature. In practice, the threshold S
should closely matches the true importance score of the 𝑘𝑡ℎ hot features in real time. Therefore,

using a fixed threshold S is not a wise choice. We will further design a mechanism to automatically

adjust threshold S in Section 3.6.

Discussion on time- and space- overhead of HotSketch: (1) HotSketch has fast processing

speed. It processes each incoming feature in a one-pass manner with one memory access and 𝑂 (1)
time complexity. The processing procedure can be further accelerated with multi-threading and

SIMD instructions [31]. (2) HotSketch is memory-efficient. Its bucket structure is neat and efficient,

which avoids to store the complex pointers in Space-Saving [61]. In addition, after a brief cold start,

all slots in HotSketch will be occupied, minimizing its memory waste.

Discussion on how to handle new features: In the training procedure of CAFE+, new features

initially undergo a cold start phase. For a new feature 𝑓𝑖 , it is initially reported by HotSketch

as a non-hot feature and thus shares an embedding with other non-hot features in the Hash
Embedding Table. As training progresses, the importance score of this feature 𝑓𝑖 accumulates. If 𝑓𝑖

eventually enters HotSketch and its estimated importance score 𝑆𝑖 surpasses hot feature threshold

S, it is then reported by HotSketch as a hot feature and assigned a unique embedding in the

Uncompressed Embedding Table. Afterwards, if 𝑓𝑖 becomes less important again during subsequent

training iterations
3
, it will return to the Hash Embedding Table and resume sharing embeddings

with other non-hot features. In other words, CAFE+ can always automatically identify current hot

features and allocate them unique embeddings during the online training process (Figure 20(f)).

3.3 Embedding Manager: Manage Feature Embeddings in Two Tables
Data structure: As shown in Figure 4, CAFE+ stores the embeddings of hot features and non-

hot features in two tables: Uncompressed Embedding Table U and Hash Embedding Table H . The

Uncompressed Embedding Table can store 𝑘 unique embeddings for the top-𝑘 hot features. The Hash

3
We will introduce the adaptive threshold adjustment mechanism and the time-decaying feature importance score in

Section 3.6 and Section 3.7, respectively. With these two designs, a hot feature could become non-hot again.
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Algorithm 3: Pseudo-code of the embedding manager

1 Function Embedding.lookup(feature_ids,feature_is_hot,hot_feature_indices):
2 feature_embeddings← [];

3 for (𝑓𝑖,𝑓 𝑙𝑎𝑔𝑖,𝑝𝑖) in (feature_ids,feature_is_hot,hot_feature_indices) do
4 if 𝑓 𝑙𝑎𝑔𝑖 is 𝑇𝑟𝑢𝑒 then
5 feature_embeddings.append(U[𝑝𝑖 ]);
6 else
7 feature_embeddings.append(H[ℎ(𝑓𝑖 )]);

8 return feature_embeddings;

Embedding Table stores𝑚 embeddings shared by the non-hot features, and it is associated with a

hash function ℎ(·) mapping features into embeddings in it.

Embedding lookup (step 3 in Figure 4; Algorithm 3): For each incoming feature 𝑓𝑖 , if 𝑓𝑖 is a

hot feature reported by feature monitor, we retrieve its embedding in the Uncompressed Embedding
Table. We use the index 𝑝𝑖 recorded in HotSketch to directly retrieve this embedding. Otherwise, if

𝑓𝑖 is a non-hot feature, we retrieve its embedding in the Hash Embedding Table. Specifically, we
calculate hash function ℎ(𝑓𝑖 ) and report embeddingH[ℎ(𝑓𝑖 )].
Embedding migration (step 6 in Figure 4): HotSketch uses a predefined threshold S to identify

hot features. 1) After the update procedure (step 5 in Figure 4), if the importance score of a non-

hot feature 𝑓𝑖 surpasses threshold S, it becomes a hot feature. In this case, we allocate a unique

embedding in the Uncompressed Embedding Table for 𝑓𝑖 , and initialize this embedding withH[ℎ(𝑓𝑖 )].
We store the index 𝑝𝑖 to this allocated embedding in the slot of 𝑓𝑖 in B[ℎ𝑏 (𝑓𝑖 )]. This procedure
is shown in the “update” function of Algorithm 2. 2) If after update, a hot feature 𝑓𝑖 is evicted

from HotSketch, or its importance score drops below threshold S4
, we do nothing, meaning that

we directly discard its embedding U[𝑝𝑖 ]. Actually, we can also use the embedding of 𝑓𝑖 in the

Uncompressed Embedding Table U[𝑝𝑖 ] to coverH[ℎ(𝑓𝑖 )]. But since 𝑓𝑖 is no longer important, it is

unnecessary to preserve its embeddingU[𝑝𝑖 ] and use it to cover the embeddings of other non-hot

features, because we want to treat all non-hot features equally. In our experiments, we find that

the simplest solution of directly discarding the embedding of 𝑓𝑖 can already attain good accuracy.

We will further design a mechanism to avoid frequent migration operations in Section 3.6, thereby

ensuring a smooth learning process.

3.4 Embedding Manager Optimization: Multi-layer Hash Embedding
Motivation: In the basic workflow of CAFE+, we categorize features into hot and non-hot ones

with HotSketch. All non-hot features share one hash embedding table, meaning that they are treated

equally. However, it is important to note that the importance of non-hot features also follows a

highly skewed distribution (Section 3.2). As the key idea of CAFE+ is to dynamically allocate more

resources to more important features, it is reasonable to further divide non-hot features based on

their importance and assign them different resources accordingly. Towards this goal, we propose

the multi-layer hash embedding table to further optimize the embedding manager.

Multi-layer Hash Embedding: As shown in Figure 6, we extend the Hash Embedding Table H
for non-hot features (Figure 4) into a Multi-layer Hash Embedding Table consisting of 2 layers

5 H1

4
In the basic version of feature monitor (Section 3.2), threshold S is set to a fixed value, so this case will not happen. We

will introduce a mechanism to automatically tune threshold S (Section 3.6), and introduce the importance attenuation

mechanism (Section 3.7). In such circumstances, the importance score can drop below threshold S after update.

5
In this paper, we only build a 2-layer hash embedding table. It is also feasible to build an embedding table with more layers.
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HotSketch
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Fig. 6. Manager optimization: multi-layer hash embedding.

andH2. We further divide the non-hot features into medium features and cold features based on

their importance scores. We extend the functionality of HotSketch to identify medium features by

introducing another thresholdM6
. Given an incoming feature 𝑓𝑖 . If 𝑓𝑖 is a cold feature, we lookup

its embedding in the first layer and return H1 [ℎ1 (𝑓𝑖 )]. If 𝑓𝑖 is a medium feature, we lookup its

embeddings in both two layers and returns the pooling result 𝑃𝑜𝑜𝑙 (H1 [ℎ1 (𝑓𝑖 )],H2 [ℎ2 (𝑓𝑖 )]). Here,
the pooling operation 𝑃𝑜𝑜𝑙 (·) can take various forms. In practice, we find that simple summation

of embeddings performs well, as the embedding vectors of a feature are consistently updated in the

same direction. Figure 6 illustrates the lookup procedure of multi-layer hash embedding: 1) For the

hot feature 𝑓1, we lookup its embedding in the Uncompressed Embedding Table. 2) For the medium

feature 𝑓2, we lookup its two embeddings in the two Hash Embedding Tables, and return the final

embedding via a pooling operation. 3) For the cold feature 𝑓3, we lookup its embedding in the first

Hash Embedding Table.
Discussion: In this way, we achieve a smooth training process. Initially, a new feature is a cold

feature, and its embedding is stored only in the first layer of the Hash Embedding Table. As the
importance of this feature gradually increases and it becomes a medium feature, its embedding

is then stored across two layers of the Hash Embedding Table. Once the feature becomes a hot

feature, we allocate a unique embedding for it in the Uncompressed Embedding Table and migrate

its embedding from the Hash Embedding Table to this location. Our experimental results show that

with the multi-layer hash embedding optimization, we can reduce 0.25% training loss and increase

0.08% testing AUC.

3.5 Feature Monitor Optimization: Filter Cold Features with ColdSifter
Motivation: CAFE+ uses a feature monitor called HotSketch to distinguish features according to

their importance. It is important for the feature monitor to maintain a small memory footprint.

On the one hand, the small memory footprint facilitates CAFE+ to achieve larger compression

ratios
7
, which aids in its deployment on various edge devices with limited memory resources [68].

On the other hand, when deployed on CPU (Section 4), the small memory footprint of the feature

monitor allows it to fit into higher-level CPU cache, thus enabling faster processing speeds in terms

of higher throughput and lower latency. Therefore, it is desirable to make the feature monitor as

small as possible without compromising its accuracy.

6
We will also introduce a mechanism to automatically tuneM in Section 3.6.

7
Although the feature monitor is implemented on CPU memory, our experimental assessments of the Compression Ratio
(CR) also account for its memory to ensure a fair evaluation (see Section 5.1.4).
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Algorithm 4: Pseudo-code of the ColdSifter (replace line 11 in Algorithm 1)

1 Function ColdSifter.update(feature_ids,feature_scores):
2 feature_ids_after_ColdSifter← [];

3 feature_scores_after_ColdSifter← [];

4 for (𝑓𝑖,𝑠𝑖,𝑡) in (feature_ids,feature_scores) do
5 if 𝑓𝑖 is in C[ℎ𝑐 (𝑓𝑖 )] and 𝑆𝑖 < P then
6 if 𝑆𝑖 + 𝑠𝑖,𝑡 ⩾ P then
7 feature_ids_after_ColdSifter.append(𝑓𝑖);

8 feature_scores_after_ColdSifter.append(𝑆𝑖 + 𝑠𝑖,𝑡);
9 𝑆𝑖 ← P;

10 else
11 𝑆𝑖 ← 𝑆𝑖 + 𝑠𝑖,𝑡 ;
12 move (𝑓𝑖 , 𝑆𝑖 ) to the front of C[ℎ𝑐 (𝑓𝑖 )];
13 else if 𝑓𝑖 is in C[ℎ𝑐 (𝑓𝑖 )] and 𝑆𝑖 == P then
14 feature_ids_after_ColdSifter.append(𝑓𝑖);

15 feature_scores_after_ColdSifter.append(𝑠𝑖,𝑡);

16 move (𝑓𝑖 , 𝑆𝑖 ) to the front of C[ℎ𝑐 (𝑓𝑖 )];
17 else if 𝑓𝑖 is not in C[ℎ𝑐 (𝑓𝑖 )] then
18 if C[ℎ𝑐 (𝑓𝑖 )] is full then
19 evict the tail of C[ℎ𝑐 (𝑓𝑖 )];
20 insert (𝑓𝑖 , 𝑠𝑖,𝑡 ) to the front of C[ℎ𝑐 (𝑓𝑖 )];

21 HotSketch.update(feature_ids_after_ColdSifter,feature_scores_after_ColdSifter);

ColdSifter
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Fig. 7. Monitor optimization: the ColdSifter algorithm (𝑐 = 2, P = 5).

Rationale: In this subsection, we optimize the memory of feature monitor by adding another data

structure called ColdSifter before HotSketch. We use ColdSifter to filter out most cold features

beforehand and only let the non-cold features enter HotSketch. The rationale behind ColdSifter is

to embrace the skewed distribution of feature importance again. We observe that in the basic design

of the feature monitor, a large number of cold features unnecessarily consume a lot of space in

HotSketch. Since CAFE+ only focuses on hot features (and medium features), it is desired to use a
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small structure to efficiently keep most cold features outside, thereby eliminating their interference

to HotSketch. Towards the above goal, the key idea of ColdSifter is to use a set-associative LRU

(Least Recently Used) queue to record the importance scores of recent features [46]. For a feature

𝑓𝑖 , if its cumulative importance score exceeds a predefined threshold P before being evicted from

the LRU queue, we consider 𝑓𝑖 to be a non-cold feature and insert it into the subsequent HotSketch.

Otherwise, we regard 𝑓𝑖 as a cold feature and discard it.

Data structure: As shown in Figure 7, similar to HotSketch, the data structure of ColdSifter is also

an array of𝑤 buckets C[1], · · · , C[𝑤]8. We use a hash function ℎ𝑐 (·) to map each feature into one

bucket. Each bucket contains 𝑐 slots. Each slot stores a feature ID and its recent importance score.

The 𝑐 features in a bucket are sorted according to their last accessed time (the LRU rule), with the

first feature being the most recently accessed one.

Update (step 5 in Figure 4; Algorithm 4): For each incoming feature 𝑓𝑖 with score 𝑠𝑖,𝑡 , we check

its hashed bucket C[ℎ𝑐 (𝑓𝑖 )]. 1) If 𝑓𝑖 is recorded in C[ℎ𝑐 (𝑓𝑖 )] and its recorded score 𝑆𝑖 is less than P,
we regard 𝑓𝑖 as a cold feature. We increment its score by 𝑠𝑖,𝑡 and move it to the front of C[ℎ𝑐 (𝑓𝑖 )]
(case 1 in Figure 7). Note that if the importance score of 𝑓𝑖 reaches P after increment (𝑆𝑖 + 𝑠𝑖,𝑡 ⩾ P),
we set its score to P and insert (𝑓𝑖 , 𝑆𝑖 + 𝑠𝑖,𝑡 ) to the subsequent HotSketch. 2) If 𝑓𝑖 is recorded in

C[ℎ𝑐 (𝑓𝑖 )] and its score is already P, we regard 𝑓𝑖 as a non-cold feature. We move 𝑓𝑖 to the front of

C[ℎ𝑐 (𝑓𝑖 )] and insert (𝑓𝑖 , 𝑠𝑖,𝑡 ) to the subsequent HotSketch (case 2 in Figure 7). 3) If 𝑓𝑖 is not recorded

in C[ℎ𝑐 (𝑓𝑖 )], we insert (𝑓𝑖 , 𝑠𝑖,𝑡 ) to the front of C[ℎ𝑐 (𝑓𝑖 )]. If C[ℎ𝑐 (𝑓𝑖 )] is already full before insertion,
we evict the least recent feature in C[ℎ𝑐 (𝑓𝑖 )] (case 3 in Figure 7).

Discussion: In this way, by efficiently discarding cold features beforehand, our feature monitor

achieves higher accuracy and smaller memory overhead. Experimental results show that with the

same total memory usage, the optimized feature monitor enhances the recall rate on finding hot

features by 4.9% compared to the basic version (Figure 20(c)).

3.6 Optimization: Adaptive Threshold Adjustment
Motivation: In the basic design of CAFE+, we use two fixed thresholds S andM to identify

hot features and medium features respectively. However, in practice, feature importance always

dynamically fluctuates over time. This phenomenon will become more pronounced after we in-

troduce the time-decaying importance score in Section 3.7. Therefore, using fixed thresholds to

distinguish important features is not a wise choice. In this subsection, we design an adaptive

threshold adjustment mechanism, which can automatically corrects the two thresholds S andM
to their optimal values. This approach also helps to avoid frequent embedding migrations, thereby

ensuring a smooth learning process.

Adaptive adjustment for hot feature threshold S: Ideally, hot feature threshold S should be

set to the importance score of the current 𝑘𝑡ℎ hottest feature, which always fluctuates over time.

We design an adaptive adjustment mechanism to automatically correct S to its optimal value.

This mechanism works by maintaining the number of current hot features reported by HotSketch

(denoted as Nℎ𝑜𝑡 ) in real time. In other words, Nℎ𝑜𝑡 is the number of features whose estimated

importance scores exceed current threshold S. Specifically, after initializing S, we set Nℎ𝑜𝑡 to zero.

During the update procedure of HotSketch (Step 5 in Figure 4), if a feature’s importance score

surpasses S for the first time, we incrementNℎ𝑜𝑡 by one. Every timeNℎ𝑜𝑡 exceeds 𝜆 × 𝑘 , we adjust
threshold S and the features in Uncompressed Embedding Table as follows. We traverse all slots in

HotSketch to acquire the current top-𝑘 hot features (the features with the 𝑘 largest importance

8
To avoid introducing more symbols, we use the same symbols to represent the number of buckets 𝑤 and the number of

slots per bucket 𝑐 for both ColdSifter and HotSketch. Actually, the values of 𝑤 and 𝑐 for ColdSifter and HotSketch do not

need to be the same.
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scores), and set S to the recorded importance score of the 𝑘𝑡ℎ hottest feature. Subsequently, we

adjust the features in Uncompressed Embedding Table, placing the current 𝑘𝑡ℎ hottest features into

Uncompressed Embedding Table. After this adjustment, we set Nℎ𝑜𝑡 = 𝑘 .

Adaptive adjustment for medium feature thresholdM: Medium feature thresholdM should

be set to maximize the utilization of the second-layer Hash Embedding Table (H2 in Figure 6). In

other words, we expect the number of features enteringH2 to be neither too many nor too few.

AssumingH2 can hold𝑚2 embeddings (Figure 6), our experimental results with Hash Embedding
(Figure 10) indicate that the accuracy of Hash Embedding significantly declines when compression

ratio exceeds 100. Therefore, we aim to automatically adjust thresholdM to ensure that the number

of features enteringH2 approximately remains at 100𝑚2, so as to fillH2 as much as possible without

reducingmuch accuracy. Towards this goal, each time we adjust thresholdS and traverse HotSketch,

we set thresholdM to the importance score of the (𝑘 + 100𝑚2)𝑡ℎ hottest feature in HotSketch
9
. In

this way, we ensure that precisely 100𝑚2 features enterH2 and maximize its utilization.

Discussion: Our adaptive threshold adjustment mechanism introduces an extra parameter 𝜆,

which controls the frequency of threshold adjustment. A large 𝜆 results in infrequent threshold

adjustments, preventing S andM from being updated to their optimal values in a timely manner.

By contrast, a small 𝜆 leads to frequent changes in the set of hot features and excessive embedding

migrations. We find the optimal value of 𝜆 does not change with compression ratio, which is about

1.2 (Figure 18(g)). Therefore, we recommend setting 𝜆 = 1.2 by default. For parameters 𝑘 (the size

of the Uncompressed Embedding Table for hot features) and𝑚 (the size of the Hash Embedding Table
for non-hot features), their values are determined by the memory ratio allocated to hot features

(i.e., hot percentage). Note that unlike S andM whose optimal values change dynamically over

the online training process, hot percentage (𝑘 and 𝑚) determines the allocation of embedding

space between hot and non-hot features in CAFE+, and cannot be dynamically adjusted during

training. Therefore, we just set it to the empirically optimal value. We find the optimal value

of hot percentage varies with compression ratio. We present the optimal hot percentage across

compression ratios in Figure 18(c), which can guide the configuration of hot percentage in practice.

For example, at a compression ratio of 1000×, we recommend setting hot percentage to 0.7.

3.7 Optimization: Implicit Importance Attenuation
Motivation: In recommendation systems, popularity trends often evolve over time as user pref-

erences and interests shift [35, 82]. These trends reflect the rise or decline in the popularity of

specific features (items, categories, or topics) over time. For example, certain products might gain

popularity due to seasonal factors, events, or viral marketing campaigns. Due to the pervasive

herd mentality among users, their decisions are frequently influenced by the popularity of items

at any given moment [54]. This dynamic nature of user engagement makes it crucial to consider

recency when selecting important features. Features representing older, less relevant trends may no

longer effectively contribute to model performance and could even introduce noise, thus reducing

the overall accuracy of recommendations. This effect is particularly apparent for time-sensitive or

frequently updated items such as fashionable clothing, movies, and news [35]. For example, the

findings from Ji et al. [33] demonstrated that recommending the most popular movies from the

past month significantly outperformed recommending movies with the highest global popularity.

Therefore, it is crucial for DLRMs to take recency information into consideration. By incorporating

a time-aware feature importance score that emphasizes recency, the model can adapt to changing

popularity trends and maintain its effectiveness in reflecting current user behaviors and interests. In

9
We setM = 0 if there are less than 𝑘 + 100𝑚2 features recorded in HotSketch, meaning that we consider all features that

are not filtered out by ColdSifter as medium features.
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other words, this recency bias ensures that the model remains responsive to the temporal dynamics

of the recommendation environment.

Naive solution: To closely identify current important features in real-time, we should focus more

on recent features and less on older ones. A straightforward solution is to periodically decay the

importance score of all recorded features in HotSketch, which is adopted in our conference version

[114]. Ideally, during each training iteration, we should decay the importance score of each recorded

feature in HotSketch by 𝛼 (0 < 𝛼 < 1). However, as the decay operation requires traversing the

entire HotSketch, which is implemented on CPU (Section 4), performing this decay operation

every iteration would significantly degrade training efficiency. Therefore, in our conference version

[114], rather than decaying each importance score by 𝛼 every iteration, we periodically decay each

importance score by 𝛼𝑇𝑑 every 𝑇𝑑 iterations. Here, 𝑇𝑑 is a predefined hyperparameter that balances

between training efficiency and model performance. Using a small 𝑇𝑑 means traversing HotSketch

more frequently, which can decrease training efficiency. By contrast, using a large 𝑇𝑑 will prevent

CAFE+ from catching up with the dynamic variation in feature importance, thereby diminishing

model performance.

Implicit importance attenuation: In this paper, we adopt a new way to consider temporal

information by introducing a time-aware feature importance score. Our method achieves the

same effect as the above ideal solution (decaying each score every iteration) without the need for

explicit traversal of HotSketch. First, consider the ideal solution of decaying the importance score

of each feature by 𝛼 (0 < 𝛼 < 1) every iteration. In this design, suppose the training process has

taken 𝑇 iterations, the importance score of a feature 𝑓𝑖 can be written as 𝑆𝑖 =
∑𝑇

𝑡=1 𝑠𝑖,𝑡 · 𝛼𝑇−𝑡 =

𝛼𝑇 ×∑𝑇
𝑡=1 𝑠𝑖,𝑡 ·𝛼−𝑡 . Here, 𝑠𝑖,𝑡 = | |∇𝑔𝑡 (𝑓𝑖 ) | |2 is the importance increase of 𝑓𝑖 in iteration 𝑡 . Notice that

the goal of our HotSketch is to identify the hot features with top-𝑘 largest importance scores, rather

than to estimate the exact importance scores. We can factor out the common term 𝛼𝑇 from all feature

scores. This leads to a newly defined importance score 𝑆 ′𝑖 =
∑𝑇

𝑡=1 𝑠
′
𝑖,𝑡 =

∑𝑇
𝑡=1 𝑠𝑖,𝑡 · 𝛼−𝑡 . During the

update procedure of feature monitor (step 5 in Figure 4), we insert the modified importance increase

𝑠′𝑖,𝑡 = 𝑠𝑖,𝑡 · 𝛼−𝑡 into HotSketch (or ColdSifter). In this way, we maintain the automatically decaying

importance scores in the feature monitor, thereby achieving implicit importance attenuation.

Counter-normalization technique: After training for a long time, the implicit decay factor 𝛼−𝑡

and the new feature importance score 𝑆 ′𝑖 =
∑𝑇

𝑡=1 𝑠𝑖,𝑡 ·𝛼−𝑡 will grow into very large values, eventually

leading the counters in the feature monitor to overflow. We propose the counter-normalization

technique to address this issue. Specifically, we use a predefined threshold A to limit the value

of the implicit decay factor 𝛼−𝑡 to the interval (1,A]. Every time the decay factor 𝛼−𝑡 exceeds
threshold A, we divide the decay factor and all counters in HotSketch by A. At the same time,

we also divide the hot feature threshold S and the medium feature thresholdM by A to ensure a

smooth training process. To avoid the inefficient explicit traversal to HotSketch, we implement the

counter division operation of HotSketch in a lazy manner. Specifically, we use a global 1-bit flag to

record the parity (odd/even) of the number of times the decay factor has been divided. We append

a local 1-bit flag to each bucket of HotSketch. During the update procedure of feature monitor (step

5 in Figure 4), every time a bucket is accessed, we first compare its local flag with the global flag. If

its local flag differs from the global flag, we update the local flag to the global one and divide the

recorded importance score of each feature in this bucket by A. A small design detail is that when

performing the Adaptive Threshold Adjustment operation (Section 3.6), we must first perform the

division operation on all buckets where the local flag differs from the global flag. This ensures

that all local flags match the global flag before proceeding with the top-𝑘 feature selection and

thresholds setting. In this way, with the counter-normalization technique, we not only avoid the

potential counter overflow error but also reduce the counter size of HotSketch to save memory.
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3.8 Theoretical Analysis
In this section, we first analyze the accuracy of our feature monitor (HotSketch) in identifying

hot features in Section 3.8.1. Then we theoretically explain the advantages of the embedding

management framework of CAFE+ over traditional hash embedding from the aspect of model

convergence in Section 3.8.2. The detailed proofs of the theorems in this section can be found in

our supplementary material [113].

3.8.1 Effect of HotSketch on Identifying Hot Features.
In this subsection, we theoretically analyze the performance of HotSketch in identifying hot features.

Based on the theoretical properties of Space-Saving [61], we first derive a relatively loose lower

bound of the probability that a hot feature is recorded in HotSketch in Theorem 3.1.

Theorem 3.1. Given a data stream with 𝑛 features, and suppose their importance score vector is
𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 . Suppose that our HotSketch has𝑤 buckets, and each
bucket contains 𝑐 cells. Without distribution assumption, for a hot feature with a total score larger
than 𝛾 ∥𝑎∥1, it can be held in HotSketch with probability at least: Pr > 1 − 1−𝛾

(𝑐−1)𝛾𝑤 .

Remark. Theorem 3.1 provides the accuracy lower bound of HotSketch in identifying a certain

hot feature 𝑓𝑖 in a data stream of arbitrary distribution. In this theorem, 𝑐 (number of slots per

bucket) and𝑤 (number of buckets) control the size of HotSketch, and 𝛾 controls the importance

of the hot feature 𝑓𝑖 to be identified. We can see that larger 𝑐 , 𝑤 , and 𝛾 correspond to higher

accuracy. Therefore, this theorem tells us the following implications of HotSketch under arbitrary

data distribution: 1) Larger memory usage of HotSketch goes with higher accuracy in identifying

hot features; 2) It is easier for HotSketch to identify the features with higher importance scores.

These implications are consistent with our intuition and design goal.

We further derive a tighter lower bound of the probability that a hot feature is recorded in

HotSketch in Theorem 3.3, which is based on Lemma 3.2.

Lemma 3.2. Given a data stream with score vector 𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 .
Suppose that vector 𝑎 follows a Zipfian distribution with parameter 𝑧, meaning that 𝑎𝑖 = 𝑎1

𝑖𝑧
. Suppose

our HotSketch has𝑤 buckets, and each bucket contains 𝑐 cells. Suppose we would like to check whether
the 𝑘 ′ hottest features can be hashed into the buckets. Then the mathematical expectation of the score
sum of the non-hot features entering each bucket is: E[ ˆ𝑓 ] ⩽ ∥𝑎∥1 ·𝑘

′1−𝑧

𝑤
with probability at least 3−

𝑘′
𝑤

for 𝑧 > 1 and 𝑛 → +∞.

Remark. Lemma 3.2 provides an upper bound on the expected importance score sum E[ ˆ𝑓 ] for
non-hot features (non-top-𝑘 ′ features) within each bucket of HotSketch. Here, non-hot features

can be considered as interference to HotSketch, because its mission is to record hot features. The

importance score sum
ˆ𝑓 can be viewed as the degree of the interference. Lemma 3.2 tells us that

when the data stream distribution (i.e., feature distribution) is sufficiently skewed (𝑧 > 1) and the

number of features is large enough (𝑛 → +∞), the interference from non-hot features remains

low and has an analytical upper bound. This upper bound forms the basis for the subsequent

Theorem 3.3.

Theorem 3.3. Given a data streamwith score vector𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 .
Suppose that 𝑎 follows a Zipfian distribution with parameter 𝑧. Suppose that our HotSketch has 𝑤
buckets, and each bucket contains 𝑐 cells. Let 𝑘 ′ = 𝜂𝑤 . Then for a hot feature with a score larger than
𝛾 ∥𝑎∥1, it can be held in the sketch with probability at least: Pr > 𝑠𝑢𝑝

𝜂>0

(
3
−𝜂 ·

(
1 − 𝜂

(𝑐−1)𝛾 (𝜂𝑤 )𝑧
))

for

𝑧 > 1 and 𝑛 → +∞.
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Remark. Theorem 3.3 improves the accuracy lower bound in Theorem 3.1 under the data stream

of Zipfian distribution, which also provides the accuracy lower bound of HotSketch in identifying

a certain hot feature 𝑓𝑖 . We can see that larger 𝑐 , 𝑤 , 𝛾 , and 𝑧 correspond to higher identification

accuracy. Here, larger 𝑐 and 𝑤 means more memory usage of HotSketch; larger 𝛾 means higher

importance score of 𝑓𝑖 ; and larger 𝑧 means the data stream distribution is more skewed. This theorem

tells us the following implications of HotSketch under Zipfian data distribution: 1) Larger memory

usage of HotSketch goes with higher accuracy in identifying hot features. 2) It is easier for HotSketch

to identify the features with higher importance scores. 3) HotSketch achieves higher accuracy

under skewed data distributions. The more skewed the distribution, the higher the accuracy. These

implications are consistent with our intuition and design goal. Although we cannot directly obtain

the analytical solution of Pr from Theorem 3.3, we can give the numerical solution of Pr under

different 𝛾 and 𝑧 by numerical simulation. The simulation results are shown in Figure 8, where we

set𝑤 = 10000 and 𝑐 = 4. We can see that larger 𝑧 goes with higher Pr, showing that HotSketch is

more suitable for capturing top-𝑘 features on skewed data distribution. In addition, larger 𝛾 also

goes with higher Pr, showing that hotter features have larger probability of being captured by

HotSketch. The results are consistent with our design goal.
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Fig. 8. Numerical analysis for the probability of HotSketch in identifying hot features, where the x-axis
represents the hotness of the feature and the y-axis represents the skewness of the feature hotness/importance
distribution (Theorem 3.3).
Based on Theorem 3.3, we finally analyze how the data distribution and the parameters of

HotSketch affect its performance in Corollary 3.4, and derive the theoretically optimal parameters

for HotSketch in Corollary 3.5.

Corollary 3.4. The larger the parameter 𝑐 ,𝑤 , 𝑧, and 𝛾 , the larger the probability that the feature
with score larger than 𝛾 ∥𝑎∥1 be held in the sketch. The larger 𝑐 and𝑤 means the larger memory used
by sketch, the larger 𝑧 means the more skew the data stream is, and the larger 𝛾 means the hotter the
feature is.

Remark. This corollary formally summarizes the three implications of Theorem 3.3 discussed

above, which are consistent with our intuition and design goal.

Corollary 3.5. To let the feature with score larger than 𝛾 ∥𝑎∥1 be held with maximum probability
in a fixed memory budget, the more skew the data stream is, the less cells per bucket should be used.
Specifically, we recommend to use 𝑐 = 1 + 1

𝑧−1 .

Remark. Corollary 3.5 gives the optimal setup of parameter 𝑐 (number of slots per bucket) for

HotSketch under Zipfian data distribution. We can see that under fixed memory usage (𝑀 = 𝑐𝑤 ),
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the optimal 𝑐 is affected by data distribution. Under non-skewed data distribution (small 𝑧), we

should use larger 𝑐 and smaller 𝑤 to better approximate the results of basic Space-Saving [61].

Under highly skewed data distribution (large 𝑧), we should use smaller 𝑐 and larger𝑤 to lower the

impact of hash collisions between hot features. This might be because under highly skewed data,

using small 𝑐 can already guarantee us to find hot features with high probability. In this scenario,

the performance of HotSketch is mainly affected by hash collisions between hot features. We

surprisingly find that the optimal parameters in Corollary 3.5 is consistent with our experimental

results in Figure 20(a).

3.8.2 Convergence Analysis against Deviation.
In this subsection, we try to theoretically explain the advantage of CAFE+ over traditional hash

embedding [81, 94, 101] from the aspect of model convergence. As discussed in Section 1.2, in

hash-based methods, hash collisions between different features can lead to embedding deviation

that hinders model convergence. Next, we prove that CAFE+ can reduce the deviation of embedding

gradients, and thus reduce the deviation of embedding parameters. We analyze how embedding de-

viation affects the convergence of SGD algorithm by studying the following (non-convex) empirical

risk minimization problem:

min

𝜽 ∈R𝐷
𝑓 (𝜽 ) = 1

𝑁

𝑁∑︁
𝑖

𝑓𝑖 (𝜽 ), 𝜽𝑡+1 = 𝜽𝑡 − 𝛼𝒈𝒊𝒕

where 𝛼 is learning rate, 𝒈𝒊𝒕 = ∇𝑓𝑖 (𝜽𝑖𝑡 ) is the standard gradient without compression, 𝒈𝒊𝒕 is the
real gradient with compression

10
. Our analysis is based on Assumption 1 [3, 19] and Theorem 3.6.

Assumption 1. For ∀𝑖 ∈ {1, 2, ..., 𝑁 }, 𝜽 , 𝜽 ′ ∈ R𝐷 , we make the following assumptions:
(1. 𝐿-Lipschitz) ∥∇𝑓𝑖 (𝜽 ) − ∇𝑓𝑖 (𝜽 ′)∥ < 𝐿∥𝜽 − 𝜽 ′∥ ;
(2. Bounded moment) E [∥∇𝑓𝑖 (𝜽 )∥] < 𝜎0, E[∥∇𝑓 (𝜽 )∥] < 𝜎0;
(3. Bounded variance) E[∥∇𝑓𝑖 (𝜽 ) − ∇𝑓 (𝜽 )∥] < 𝜎 ;
(4. Existence of global minimum) ∃𝑓 ∗, 𝑠 .𝑡 .𝑓 (𝜽 ) ⩾ 𝑓 ∗ .

Theorem 3.6. Suppose we run SGD optimization with CAFE+ on DLRMs satisfying the assumptions
above, with 𝜖𝑡 = ∥𝒈𝒊𝒕 − 𝒈𝒊𝒕 ∥ as the deviation of embedding gradients. Assume the learning rate 𝛼
satisfies 𝛼 < 1

𝐿
. After 𝑇 steps, for 𝜽𝑇 which is randomly selected from {𝜽0, 𝜽1, · · · , 𝜽𝑇−1}, we have:

E[∥∇𝑓 (𝜽𝑇 )∥2] ⩽
𝑓 (𝜽0) − 𝑓 ∗

𝑇𝛼 (1 − 𝛼𝐿) +
𝛼 (2𝐿𝜎2 + 𝜎2

0
)

2(1 − 𝛼𝐿) +
(1 + 𝛼2𝐿)∑𝑇−1

𝑡=0 E[𝜖2𝑡 ]
2𝑇𝛼 (1 − 𝛼𝐿)

Remark. We use Theorem 3.6 to explain the advantage of CAFE+ over traditional hash embed-

ding. We can see that as 𝑇 increases, with a proper learning rate 𝛼 = 𝑂

(
1√
𝑇

)
, the first two terms at

the right hand side of the inequality in Theorem 3.6 tend to 0, and thus the convergence of SGD

is mainly influenced by the deviation 𝜖𝑡 . Although there is no bound for the deviation 𝜖𝑡 , CAFE+

can still achieve smaller deviation than hash embedding. CAFE+ allocates unique embeddings for

hot features, and thus their deviation can be ignored. For the non-hot features, their deviation is

incurred by hash collisions. Generally, we cannot directly obtain the deviation of gradients, but

according to the 𝐿-Lipschitz assumption, the deviation of gradients is bounded by the deviation of

weights. For basic hash embedding, the weight deviation of a feature comes from the gradients

of any other features. By contrast, as CAFE+ uses gradient norm as the importance scores of

10
To adhere to common symbols in theoretical machine learning, the meanings of some symbols used in this subsection

differ from those in Table 1. Explanations of all symbols in this subsection can be found in our supplementary materials

[113].
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Fig. 9. Experimental comparison of the gradient deviation between CAFE+ and hash embedding.

features, the gradient norms of non-hot features are relatively small, which limits their overall

weight deviation.

Experimental analysis (Figure 9):We further empirically compare the gradient deviation between

CAFE+ and hash embedding. We set the compression ratio of CAFE+ and hash embedding to 10×.
For CAFE+, we allocate 50% memory to its feature monitor and the embeddings of hot features.

Figure 9 shows the gradient deviation over the training process. The results show that the gradient

deviation of CAFE+ is always 5× ∼ 6× smaller than that of hash embedding. These experimental

results complement our theoretical analysis, demonstrating that the embedding architecture of

CAFE+ (i.e., separating hot features from non-hot features) is superior to basic hash embedding.

4 IMPLEMENTATION
We implement CAFE+ as a plug-in embedding layer module based on PyTorch. It can directly

replace the original embedding module in any PyTorch-based recommendation models with minor

changes. Usage examples can be found on our GitHub page [112]. We will also extend CAFE+ to

other frameworks (TensorFlow, Hetu [62], etc.) in the future.

CAFE+ backend: We implement the feature monitor module of CAFE+ (including HotSketch

and ColdSifter) with C++ to reduce the overall latency, and implement the rest modules of CAFE+

(including embedding manager, downstream DNN, etc.) using PyTorch operators. By default, we

set the number of slots per bucket in HotSketch (and ColdSifter) to 𝑐 = 4 and control the total

number of buckets in HotSketch to the pre-determined number of hot features (𝑤 = 𝑘). We use

one feature monitor to handle all categorical feature fields instead of using one monitor per field.

This is because the distribution of hot features across different fields is unclear, and it is reasonable

to directly handle them with importance scores in a unified manner. We also maintain only one

exclusive embedding table for all fields, instead of maintaining one embedding table per field. This

design makes hot features more flexible, distributed among fields only according to importance

scores rather than cardinality.

Fault tolerance:We register the states of CAFE+’s feature monitor as buffers in PyTorch module, so

that these states can be saved and loaded alongside model parameters. This simple design requires

no additional modifications to existing DLRM, and enables CAFE+ to use checkpoints for training

and inference. When training is resumed with checkpoints, model parameters and CAFE+’s states

are reloaded simultaneously.

Memory management: We place the feature monitor module of CAFE+ on CPU. This is because

the feature monitor of CAFE+ is not compute-intensive and can be further accelerated with the

parallel computing techniques of CPU (multi-threading, SIMD [31]). Built upon PyTorch operators,

the embedding manager module of CAFE+ can run on any accelerators (including CPU, GPU)

where PyTorch is supported.
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5 EXPERIMENTAL RESULTS
In this section, we conduct experiments on four widely used recommendation datasets and compare

CAFE+ (and CAFE) with existing embedding compression methods. We experimentally show that

CAFE+ satisfies all three requirements. We also design experiments to validate the effectiveness

of HotSketch. In this section, label “CAFE” and “CAFE+” refer to our proposed embedding frame-

work without and with the three added optimizations in our journal version respectively, namely

the optimizations of feature monitor (Section 3.5), adaptive threshold (Section 3.6), and implicit

importance attenuation (Section 3.7).

5.1 Experimental Settings
5.1.1 Models and Datasets. In Section 5.2-5.5, we conduct experiments on three representative

recommendation models for click-through rate (CTR) prediction task: DLRM [66]
11
, WDL [8],

and DCN [88]. These models are popular in both academia and industry. All models follow the

architecture discussed in Section 2, which consists of a large embedding table for categorical

features and a downstream neural network part. Different models have slight differences in neural

network parts. We plot these model structures in our supplementary materials [113]. In DLRM, a

cross layer performs dot operations between embeddings, producing cross terms for subsequent

fully-connected (FC) layers; In WDL, embeddings are fed into a wide network (1 FC layer) and

a deep network (several FC layers), and finally the results are summed together for predictions;

In DCN, cross layers multiply the embeddings with their projected vectors, producing element-

level cross terms for subsequent FC layers. In Section 5.6-5.7, we conduct experiments on two

graph-based models for top-𝑁 recommendation task: LightGCN [29] and PinSage [106]. Both

models have embedding tables for users and items
12
. LightGCN uses multiple graph convolution

layers to aggregate user and item embeddings from their neighbors in a user-item bipartite graph.

PinSage further combines graph convolutions with a random walk-based sampling technique to

aggregate neighborhood embeddings. The final user and item embeddings after aggregation are

used to compute the recommendation score. We use CAFE+ to optimize the embedding tables in

LightGCN and PinSage. As an embedding layer plugin, our method can be easily generalized to

other recommendation models with little effort. We set the configurations of these models as in

their original papers.

Table 2. Statistics of the CTR datasets.

Dataset #Samples #Features #Fields Dim #Param

Avazu 40,428,967 9,449,445 22 16 150M

Criteo 45,840,617 33,762,577 26 16 540M

KDD12 149,639,105 54,689,798 11 64 3.5B

CriteoTB 4,373,472,329 204,184,588 26 128 26B

In Section 5.2-5.5, we conduct experiments on three large-scale Click-Through Rate (CTR)

datasets Avazu [89], Criteo [41], KDD12 [1], and an extremely large-scale CTR dataset CriteoTB [40].

Criteo Kaggle Display Advertising Challenge Dataset (Criteo) [41] and Criteo Terabytes Click Logs

(CriteoTB) [40] contain 7 and 24 days of ads click-through rate (CTR) prediction data respectively,

which are adopted in the MLPerf benchmark [70]. Each data sample has 13 numerical fields and 26

11
In this section, we use the term "DLRM" to refer to this specific model, rather than the abbreviation of general “Deep

Learning Recommendation Model”.

12
PinSage did not explicitly implement the embedding table of users. For each user, PinSage recommends the top-𝑁

items that are closest in the embedding space to one of the most recently interacted items by the user. We follow this

implementation as described in the original paper of PinSage.
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categorical fields. For CriteoTB, we set the field’s maximum cardinality to 4𝑒7, the same as in the

MLPerf configuration. Avazu Click-Through Rate Prediction Dataset (Avazu) [89] and KDD Cup

2012, Track 2 (KDD12) [1] are another two widely-used CTR datasets. They have no numerical

field. Avazu contains 10 days of CTR data with 22 categorical fields. KDD12 has no temporal

information, and has 11 categorical fields. For each dataset, we use the appropriate embedding

dimension based on the benchmarks [66, 131] or our experiments on the uncompressed models.

The statistics of these datasets are listed in Table 2. Since the numerical field is not our focus, we

omit it from the table. In Section 5.4, we further construct a new dataset with a more significant

shift in data distribution to further validate CAFE+’s ability to adapt to changes in data distribution.

In Section 5.6-5.7, we conduct experiments on two datasets for top-𝑁 recommendation: Yelp2020

and #nowplaying-RS. Yelp2020 dataset is a subset of Yelp’s businesses, reviews, and user data. We

obtain the Yelp2020 dataset from the official code repository of HGCF [83]
13
. #nowplaying-RS [71]

is a large-scale benchmark for music recommendation, containing music listening events of users

and tracks collected from Twitter. We obtain the #nowplaying-RS dataset from its official code

repository
14
. The detailed statistics of the two ranking datasets are summarized in Table 3.

Table 3. Statistics of the datasets for top-𝑁 recommendation.

Dataset #User #Item #Interaction Density

Yelp2020 71,135 45,063 1,782,999 0.056%

#nowplaying-RS 138,721 346,122 11,609,883 0.024%

5.1.2 Baselines. We compare CAFE+ with Hash Embedding [94], Q-R Trick [81], and AdaEm-

bed [42]. Hash embedding is a simple baseline using only one hash function, which serves as

a performance lower bound for all compression methods. Q-R Trick is an improved hash-based

method, using multiple hash functions and complementary embedding tables to reduce the over-

all collisions. AdaEmbed is an adaptive method, recording all features’ importance scores and

dynamically allocates embedding vectors only for important features. We also compare CAFE+

with uncompressed embedding tables (ideal). In Section 5.2.4, we compare CAFE+ with a column

compression method MDE [20]. In Section 5.6, we compare CAFE+ with three recent embedding

compression frameworks in top-𝑁 recommendation tasks: PEP [51], CERP [50], and SCALL [77].

PEP [51] is a post-training pruning scheme that adaptively learns the pruning thresholds and

uses them to prune the embedding table during deployment. CERP [50] is also a post-training

pruning scheme. It represents each entity by combining a pair of embeddings from two independent

meta-embedding tables (like Q-R [81]), which are then jointly pruned via learnable element-wise

thresholds. SCALL [77] is a state-of-the-art AutoML dimension search-based algorithm that uses an

reinforcement learning model to determine the optimal embedding dimension size and periodically

adjust the embedding allocation in a streaming setting (discussed in Section 2). Note that these

three baselines need to retrain the model after pruning/re-allocating the embedding tables. By

default, the hyperparameters of these baselines are the same as in the original paper or code.

5.1.3 Hardware Environment. We conduct all experiments on NVIDIA RTX TITAN 24 GB GPU

cards. Since this paper focuses on embedding compression with large compression ratios, we do

not incur distributed training or inference.

13
https://github.com/layer6ai-labs/HGCF

14
https://github.com/asmitapoddar/nowplaying-RS-Music-Reco-FM
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Fig. 10. Metrics v.s. compression ratios.
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(f) Loss v.s. iterations on CriteoTB (100×).
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Fig. 11. Metrics v.s. iterations.

5.1.4 Metrics. We employ training loss and testing AUC (area under the ROC curve) to measure

model quality. Specifically, we use the data samples except the last day as the training set, and the

data samples of the last day as the testing set. We use the testing AUC on the last day as the metric

for offline training, and the average loss during training as the metric for online training. We train

one epoch on the training set in chronological order, which is common in industry. Since KDD12

has no temporal information, we randomly shuffle the data and select 90% for training and the rest

for testing. For memory usage, besides embedding tables, we also consider the memory of additional

structures (including the feature monitor on CPU memory) to achieve a fair judgment on memory

efficiency. We use latency and throughput to measure the speed of each method. For the top-𝑁

recommendation tasks in Section 5.6-5.7, we use 𝑁𝐷𝐶𝐺@𝑁 [92] and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 as evaluation

metrics with 𝑁 set to {10, 20}. These two metrics are widely used in recent researches on top-𝑁

recommendation [29, 49–51, 77].

5.2 End-to-end Comparison
We compare CAFE+ with baseline methods in an end-to-end manner. For large-scale datasets, we

train with compression ratios ranging from 2× to 10000×, while for the CriteoTB dataset, we train

with compression ratios ranging from 10× to 10000×, ensuring the model fits in the memory.
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(c) Loss v.s. iterations on Avazu (5×).
Fig. 12. Performance on KDD12 and Avazu.

5.2.1 Metrics v.s. Compression Ratios. We conduct the main experiments on DLRM. The testing

AUC and the training loss of Criteo and CriteoTB under different compression ratios are plotted in

Figure 10, representing the performance of offline and online training respectively. For KDD12,

we only plot the testing AUC in Figure 12(a) since it does not contain temporal information for

online training. For Avazu, given the significant changes in distributions between days as shown in

Figure 2, we focus on the online training performance and plot the training loss in Figure 12(b).

Only CAFE+ and Hash can compress the embedding tables to extreme 10000× compression ratio,

while Q-R Trick can only compress to around 500× due to its complementary index design, and

AdaEmbed can only compress to 5× in Avazu and Criteo with dimension 16, 20× in KDD12 with

dimension 64, and 50× in CriteoTB with dimension 128. Compared to Hash and Q-R Trick, CAFE+ is

always closer to ideal result that uses uncompressed embedding tables, showing excellent memory

efficiency. When varying the compression ratio, on Criteo dataset CAFE+ improves the testing

AUC by 1.74% and 0.50% compared to Hash and Q-R Trick respectively on average; on CriteoTB

dataset the improvement is 1.385% and 0.483%; on KDD12 dataset the improvement is 1.94% and

3.84%. CAFE+ also reduces the training loss by 2.36%, 0.74% on Criteo dataset, 1.44%, 0.612% on

CriteoTB dataset, and 3.36%, 0.78% on Avazu dataset compared to Hash and Q-R Trick, exhibiting

better performance for both offline and online training. The training loss of Hash fluctuates with

the increase of CR on KDD12, which may be due to the instability of the Hash method and a certain

degree of randomness in its embedding sharing. The improvement of CAFE+ over Hash is greater

with larger compression ratio. Compared to Hash, at 10000× compression ratio, CAFE+ improves

3.94%, 3.94%, and 5.39% testing AUC on Criteo, CriteoTB, KDD12; CAFE+ reduces 4.65%, 3.54%,

and 11.26% training loss on Criteo, CriteoTB, Avazu. Compared to AdaEmbed, CAFE+ reaches

nearly the same testing AUC and training loss on Criteo dataset, achieves an increase of 0.06%

testing AUC and a decrease of 0.13% training loss on CriteoTB dataset, achieves an increase of 0.84%

testing AUC on KDD12 dataset and a decrease of 0.85% training loss on Avazu dataset. AdaEmbed

can distinguish hot features with no errors, but it uses much memory for storing importance

information of all features, with less memory for embedding vectors compared to CAFE+, leading

to comparable results at small compression ratios.

5.2.2 Metrics v.s. Iterations. We check the convergence process of different methods. Figure 11

shows the metrics on Criteo and CriteoTB throughout iterations during training. Figure 12(c) shows

the training loss on Avazu throughout iterations. We do not plot uncompressed embeddings trained

on CriteoTB because the model cannot be held in our limited memory space. In Figure 11(a)-11(d),

the testing AUC curves tend to increase because the model continues to learn during training and

the data distribution gradually approaches the distribution of the last day testing data. CAFE+ has

consistently better AUC during training compared to Hash and Q-R Trick. However, CAFE+ does

not show better performance at the beginning of training compared to AdaEmbed, mainly because

CAFE+ has a cold-start process to populate HotSketch, where all features are initially non-hot

features. As training progresses, CAFE+ gradually achieves an AUC comparable to or better than

AdaEmbed. In Figure 11(e)-11(h), and 12(c), the training loss curves fluctuate due to changes in
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(d) DCN, loss v.s. CR.

Fig. 13. WDL and DCN performance on CriteoTB.
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Fig. 14. Comparison with MDE.

data distributions. CAFE+ always has a closer training loss to ideal result than Hash and Q-R Trick

on Criteo and Avazu datasets, showing better online training ability. The training curves of CAFE+

and AdaEmbed roughly coincide, since they are both designed for online training. The CriteoTB

dataset is large enough to adequately train various methods, resulting in the loss curves of different

methods being indistinguishable.

5.2.3 Experiments on WDL and DCN. We use another two models, WDL [8] and DCN [88], to

experiment on the extremely large-scale dataset CriteoTB. The results are shown in Figure 13.

Similar to DLRM, CAFE+ consistently outperforms Hash and Q-R Trick at different compression

ratios in both testing AUC and training loss. AdaEmbed is the most advanced compression method

for small compression ratios, and CAFE+ achieves comparable performance to AdaEmbed. The

training loss of Hash is not stable in WDL, possibly due to the instability of the Hash method itself

and a certain degree of randomness in its embedding sharing.

5.2.4 Comparison with Column Compression. We also compare CAFE+ with MDE [20], a method

that compresses columns of embedding tables instead of rows as in CAFE+ and other baselines. It

introduces frequency information to allocate different embedding dimensions for different features,

and then uses a trainable matrix to project the raw embeddings to the same final dimension. Since

MDE does not compress the rows, and each feature needs to be assigned at least one dimension,

the overall compression ratio is limited by the original embedding dimension. We plot the results

in Figure 14. We also include a simple row compression baseline Hash for comparison. MDE’s

performance is comparable to Hash on Criteo, but it drops dramatically on CriteoTB. To reduce

the number of projection matrices, MDE simply uses the feature cardinality of the field to derive

the frequency instead of using the actual frequency, which does not effectively utilize important

features. It also significantly reduces the rank of the embedding matrix at large compression ratios,

causing the embedding to lose semantic information. According to the experimental results, CAFE+

always outperforms MDE.

5.2.5 Comparison with Offline Separation. We also compare CAFE+ with an offline feature separa-

tion version on Criteo dataset. The offline separation version collects all data and makes statistics,

separates hot and non-hot features according to frequency instead of gradient norms, and assigns
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Fig. 15. CAFE+ v.s. offline feature separation on Criteo dataset.
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Fig. 16. CAFE v.s. CAFE+ on CriteoTB dataset.
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Fig. 17. Latency and throughput on CriteoTB (10×).

embedding tables respectively. It uses the same embedding memory as in CAFE+ for hot and non-

hot features. As shown in Figure 15(a), two versions achieve nearly the same testing AUC under

several compression ratios. Compared to CAFE+, the offline version has no errors in distinguishing

hot features, but it can only use frequency, resulting in comparable performance. Figure 15(b)

and Figure 15(c) show the testing AUC and the training loss throughout the training process at

1000× compression ratio. At the beginning of training, the offline version has better testing AUC

and training loss, because CAFE+ has a cold-start process to fill in the slots. When the training

process becomes stable, the two training loss curves almost completely coincide. The offline version,

however, cannot be used in practical applications. First, it cannot adapt to online training, where

the frequency information is unknown without recording. Second, in offline training, memory

storage and additional data traversal process are required for statistics, causing much overhead.

In contrast, CAFE+ naturally supports online and offline training without storing all importance

information, so it can be directly applied in the industry.

5.2.6 Comparison of CAFE and CAFE+. We compare the basic CAFE with the optimized CAFE

(denoted as CAFE+) using the techniques of ColdSifter (Section 3.5), adaptive threshold adjustment

(Section 3.6), and implicit importance attenuation (Section 3.7). To better showcase CAFE+’s

ability to adapt to the dynamic variation in data distribution, we use the largest dataset, CriteoTB,

whose data distribution changes the most drastically. As shown in Figure 16(a), CAFE+ achieves

0.03% ∼ 0.16% improvement on testing AUC compared to the basic CAFE, and the advantage of

CAFE+ becomes more apparent under larger compression ratios. In Figure 16(b)-16(c), we fix the

compression ratio to 1000× and observe the testing AUC throughout the training process. We can

see that CAFE+ finally achieves about 0.15% testing AUC improvement over basic CAFE. These
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results indicate that CAFE+ can effectively enhance the model quality of CAFE. We will further

discuss the effect of the specific optimizations of CAFE+ in Section 5.3.3-5.3.5.

5.2.7 Latency and Throughput. We test the latency and throughput of eachmethod in Figure 17. The

experiments are conducted on CriteoTB dataset with a compression ratio of 10×. We use 2048 batch

size for training and 16384 batch size for inference, which is common in real applications. As the

data loading time and the DNN computing time is the same across different methods, the difference

lies in the operations of the embedding layer. Hash requires only an additional modulo operation

compared to uncompressed embedding operations, and is therefore the fastest method in both

training and inference. Q-R Trick is also fast, because it only additionally introduces hash processes

and the aggregation of embedding vectors. Although MDE introduces matrix multiplication, it

requires fewer memory accesses to obtain the embedding parameters, resulting in low latency and

high throughput. AdaEmbed and CAFE incur reallocation or migration of embeddings, which are

inevitable for dynamic adjustments, leading to higher latency and lower throughput. AdaEmbed

regularly samples thousands of data to determine whether to reallocate, which introduces a large

time overhead. By contrast, CAFE automatically identifies hot features using HotSketch in real

time. Compared to AdaEmbed, CAFE has 33.97% lower training latency and 1.20% lower inference

latency. Through the further experimental results in Section 5.5, we can see that HotSketch’s 𝑂 (1)
operation time only accounts for a small fraction of the overall time. We also evaluate the training

and inference speed of CAFE+. The results show that the training speed of CAFE+ is slightly slower

than CAFE (5.7%) but also significantly faster than AdaEmbed (26.4%), and the inference speed of

CAFE+ is slightly slower than CAFE (1.1%) and similar to AdaEmbed.

5.3 End-to-end Configuration Sensitivity Study
In this section, we study the impact of configurations on CAFE+ (and CAFE). By default, we

conduct the configuration sensitivity studies on Criteo dataset, and we use basic CAFE with a fixed

compression ratio of 1000×.

5.3.1 Memory Allocation for Hot Features. We evaluate the impact of memory allocation on model

quality. We define the term “hot percentage” as the percentage of memory occupied by the feature

monitor (HotSketch) and the embeddings of hot features, while the rest is the embeddings for non-

hot features. Recall that by default, HotSketch stores 4 times the slots of the number of hot features

(Section 4). As each slot stores 3 attributes, the ratio of memory usage between HotSketch and the

𝑑-dimension exclusive embeddings for hot features is 12 : 𝑑 . In Criteo dataset, the dimension is

𝑑 = 16, so HotSketch occupies 3/7 of memory in hot percentage. Figure 18(a) shows the testing AUC

under different hot percentages, where “loo” means “leave-one-out”, leaving only one embedding

for non-hot features. A small hot percentage means small memory usage for hot features (and

HotSketch), and more memory usage for non-hot features, while a large hot percentage means

allocating more memory for hot features. When hot percentage is small, enlarging hot percentage

enables more space resources allocated to hot features, contributing to model quality. When

hot percentage is about 0.7, CAFE reaches the best testing AUC. When hot percentage exceeds

0.7, enlarging hot percentage reduces model quality because the space for non-hot features is

excessively squeezed, and it introduces unnecessarily high overhead for HotSketch. At the extreme

case “leave-one-out”, all the non-hot features share only one embedding, leading to very bad model

performance. We further evaluate the optimal value of hot percentage at different compression

ratios in Figure 18(c). The results show that the optimal value of hot percentage increases as the

compression ratio increases. In practice, we can configure the hot percentage based on the results

shown in Figure 18(c). For example, when the compression ratio is 1000×, we recommend setting

the hot percentage to 0.7.
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(a) Memory for hot features. (b) Threshold of hot features.
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Fig. 18. Experiments of configuration sensitivity on Criteo dataset (default 𝐶𝑅 = 1000×).

5.3.2 Threshold of Hot Features (without Adaptive Threshold Adjustment). We evaluate the impact

of hot feature thresholds on model quality (without using the adaptive threshold adjustment

mechanism in Section 3.6), and the experimental results are shown in Figure 18(b). The testing

AUC is bad when the threshold is set too high or too low. If the threshold is set too high, the

memory space allocated for hot features cannot be saturated, resulting in waste of memory and

more non-hot features sharing hash embeddings. If the threshold is set too low, the entry and exit

of features will be too frequent, leading to unstable training process. When threshold is set to 500,

CAFE reaches the best model AUC.

5.3.3 Filter Cold Features with ColdSifter. We empirically evaluate the effectiveness of optimizing

the feature monitor by filtering cold features with ColdSifter. In Figure 18(d), we compare the testing

AUC of CAFE with and without the ColdSifter optimization, where we fix the total memory of the

feature monitor to be the same. The results show that after using ColdSifter, the testing AUC of

CAFE improves by approximately 0.05%. This is because after using the ColdSifter optimization, the

feature monitor of CAFE can identify hot features with higher accuracy, allowing the uncompressed

embedding table to be utilized more efficiently. We will further study the accuracy of the optimized

feature monitor in identifying hot features in Section 5.5.

5.3.4 Adaptive Threshold Adjustment. We evaluate the effectiveness of the adaptive threshold

adjustment mechanism, and the results are shown in Figure 18(e)-18(f). In Figure 18(e), we fix the

compression ratio to 1000× and vary the hot percentage. The results show that the adaptive threshold

adjustment mechanism improves the testing AUC by 0.04% ∼ 0.09% relatively. In Figure 18(f),

we vary the compression ratio and use larger hot percentage (0.3 ∼ 0.9) for larger compression

ratio. The results show that the adaptive threshold adjustment improves the testing AUC by

0.04% ∼ 0.18% relatively. We can see that our adaptive threshold adjustment mechanism can
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Fig. 19. Experiments on CriteoTB-1/3.

effectively improve model quality. As discussed in Section 3.6, this is because the optimal threshold

changes over time, and the adaptive threshold adjustment can always set the threshold to the

nearly optimal value according to current data distribution. Figure 18(g) further shows the impact

of the threshold adjustment parameter 𝜆 on testing AUC. Parameter 𝜆 controls the frequency of

our adaptive threshold adjustment operation. A large 𝜆 may result in delayed threshold adjustment.

By contrast, a small 𝜆 could cause some features to oscillate between hot features and non-hot

features, leading to frequent embedding migrations. Our results show that the optimal value of 𝜆 is

about 1.2. Therefore, we set 𝜆 = 1.2 in our experiments by default.

5.3.5 Implicit Importance Attenuation. We evaluate the effectiveness of the implicit importance

attenuation mechanism, and the results are shown in Figure 18(h)-18(i). In Figure 18(h), we evaluate

the impact of decay factor 𝛼 . The results show that the decay factor of 𝛼 = 1 − 5𝑒−7 achieves the
best testing AUC, which is 0.072% higher than the basic CAFE without the importance attenuation

mechanism.We can see that the decay factor should neither be too large nor too small. A decay factor

that is too small prevents the importance score of hot features from accumulating in HotSketch,

leading to hot features being misidentified as non-hot features. Conversely, a decay factor that is

too large hinders CAFE from catching up with the changing data distribution over time, causing

features to continuously occupy slots in HotSketch even if they are no longer hot features. In

Figure 18(i), we evaluate the effectiveness of the implicit attenuation mechanism under different

compression ratio. The results show that the implicit attenuation mechanism improves the testing

AUC by about 0.053% relatively, and the optimal decay factor is also 𝛼 = 1 − 5𝑒−7 (𝛼 = 1 − 𝛼).

5.3.6 Design Details of Embedding Tables and Importance Scores. We experiment on the design

details of the embedding tables. As discussed in Section 4, wemaintain only one exclusive embedding

table for all fields, instead of maintaining one embedding table per field. Figure 18(j) shows that

maintaining only one exclusive embedding table leads to a substantial increase in model AUC. We

also check the effect of using frequency information as importance scores, which shows a worse

testing AUC than gradient norms. Therefore, although frequency is also a good indicator of feature

importance, it has been proved theoretically and experimentally that gradient norm is better.

5.3.7 Multi-layer Hash Embedding. We study the effect of multi-layer hash embedding. The exper-

imental results are shown in Figure 18(k)-18(l), where ML-CAFE means CAFE with multi-layer

hash embedding. Under different compression ratios, ML-CAFE always performs better than CAFE,

achieving 0.08% better testing AUC and reducing 0.25% training loss. ML-CAFE performs especially

well with smaller compression ratios, causing nearly no degradation at 100× compression ratio.

This is because ML-CAFE allocates more memory for multi-layer hash embedding tables at small

compression ratios, making the representation of medium features more precise. We also evaluate

the performance of ML-CAFE with the three optimizations in Section 3.5-3.7, which is denoted as

“ML-CAFE+” in Figure 18(k)-18(l). We can see that the three optimizations can further improve the

testing AUC of ML-CAFE by 0.15% and reduce the training loss of ML-CAFE by 0.2%.
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Fig. 20. Experiments on feature monitor (Criteo).

5.4 Performance on Processed Dataset
In this section, we construct a new dataset with a more significant shift in data distribution to

further validate CAFE+’s ability to adapt to changes in data distribution. Keeping the testing data

unchanged, we select the training data of days 1, 4, 7, · · · , 22 from CriteoTB to form CriteoTB-1/3

dataset. As shown in Figure 2, generally the greater the number of days between, the greater the

difference between feature distributions. Therefore, CriteoTB-1/3 has a more significant shift in data

distribution. The results are shown in Figure 19. Although all methods exhibit slight performance

degradation compared to CriteoTB, CAFE+ (CAFE) and AdaEmbed can adapt to changing data

distributions and achieve relatively good results. Figure 19(c) shows that CAFE+ (CAFE) and

AdaEmbed have almost the same training loss throughout the training process. Figure 19(a) and

19(b) indicate that CAFE outperforms AdaEmbed, and CAFE+ further outperforms CAFE because

of stronger adaptability to online training. Under 10× compression ratio, CAFE+ achieves 0.060%

and 0.076% improvement on testing AUC over CAFE and AdaEmbed, respectively.

5.5 Performance of Feature Monitor
In this section, we evaluate the performance of the feature monitor in CAFE+. The experiments

are conducted on the Criteo dataset, whose feature importance distribution is similar to the Zipf

distribution of parameter 1.05 to 1.1. We set the compression ratio to 1000×, hot percentage to 0.7

by default. As discussed in Section 4, we set the number of hot features 𝑘 to the number of buckets

𝑤 in HotSketch. We set the number of hot and medium features to 𝑘 ′ = 3𝑘 .

Impact of the number of slots per bucket (Figure 20(a)-20(b)): We evaluate the recall and the

throughput of HotSketch with different number of slots per bucket. As shown in Figure 20(a), the

recall rate increases as the memory usage of HotSketch becomes larger. According to Corollary 3.5,

the best number of slots per bucket locates at 11 to 21 given a Zipf distribution of parameter

1.05 to 1.1. From Figure 20(a), we can see that 𝑐 = 8 and 𝑐 = 16 indeed exhibit a better recall

than 𝑐 = 4 and 𝑐 = 32. These experimental results are consistent with our theoretical results in

Corollary 3.5. The throughput of serialized Insert (write) and Query (read) of HotSketch is shown in

Figure 20(b). We can see that the throughput of HotSketch is on the order of 1𝑒7, larger than that of

DLRM. Considering that we can parallelize operations in practice, the time used by HotSketch only

accounts for a small fraction in training and inference. In addition, throughput drops as the number

of slots increases, because more time is spent doing comparisons within buckets. In our default
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Fig. 21. Performance comparison on top-𝑁 recommendation (based on LightGCN [29]).

implementation, we adopt 4 slots per bucket to strike a tradeoff between recall and throughput,

and we find this setting is enough for good model quality.

Impact of the ColdSifter optimization (Figure 20(c)-20(e)): We evaluate the performance

gain of ColdSifter by comparing the top-𝑘 features recall rate of HotSketch with and without the

ColdSifter optimization. We ensure that both solutions have the same total memory usage. As

shown in Figure 20(c), after filtering cold features with ColdSifter, the recall rate of HotSketch

improves 1.44% ∼ 4.90%, validating the effectiveness of ColdSifter. From Figure 20(d)-20(e), we

can see that after using the ColdSifter optimization, the insert throughput and query throughput

slightly drops by 7.4% ∼ 12.7% and 0% ∼ 0.7% respectively. This is because ColdSifter introduces

additional memory accesses. Nevertheless, as discussed in Section 5.2.7, the end-to-end training

speed of CAFE+ is still significantly faster than that of AdaEmbed.

Finding real-time top-𝑘 features under implicit importance attenuation (Figure 20(f)): We

evaluate the performance of our feature monitor on finding real-time hot features during online

training, where we enable the implicit importance attenuation mechanism and set 𝛼 = 1 − 5𝑒−7. In
Figure 20(f), we can see that the recall rate is always above 90%, meaning that CAFE+ can well

catch up with the changing data distribution. As the real-time top-𝑘 features can change with

data distribution during the online training process, these results can effectively reflect CAFE+’s

capability to adapt to dynamic workloads. In addition, after using ColdSifter, the recall rate further

improves 4.89% ∼ 9.64%, proving the effectiveness of the ColdSifter optimization.

Impact of adaptive threshold adjustment (Figure 20(g)-20(h)): We evaluate the performance

gain of the adaptive threshold adjustment optimization on finding real-time hot/medium features

during online training. We also enable the implicit importance attenuation mechanism and set

𝛼 = 1− 5𝑒−7. From Figure 20(g) and Figure 20(h), we can see that the adaptive threshold adjustment

optimization improves the recall rate of finding top-𝑘 hot features and top-𝑘 ′ hot and medium

features by 3.06% ∼ 14.91% and 2.22% ∼ 23.10%, respectively. These results show that the adaptive

threshold adjustment mechanism can effectively improve the accuracy of HotSketch by setting its

thresholds to appropriate values.

5.6 End-to-end Comparison with Baselines on Top-𝑁 Recommendation
We compare CAFE+ with three recent embedding compression frameworks for top-𝑁 recommen-

dation: PEP [51], CERP [50], and SCALL [77] (described in Section 5.1.2). Following the papers of

CERP and SCALL, we use LightGCN (described in Section 5.1.1) as base recommender, use Yelp2020

(described in Section 5.1.1) as dataset, and use 𝑁𝐷𝐶𝐺@𝑁 [92] and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 scores as evaluation

metrics (described in Section 5.1.4).

As shown in Figure 21, across all compression ratios (10×, 20×, 100×), CAFE+ consistently

outperforms the three baselines. For example, at the compression ratio of 10×, compared with PEP,

CERP, SCALL, CAFE+ achieves 53.70%, 10.67%, and 69.39% improvement on𝑅𝑒𝑐𝑎𝑙𝑙@10 (Figure 21(a)),

and 65.30%, 3.84%, and 57.28% improvement on 𝑁𝐷𝐶𝐺@10 (Figure 21(b)). We think the reason

why CAFE+ performs better is because it can continuously optimize the embedding allocation
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Fig. 22. Performance in graph-based recommender system (based on PinSage [106]).

throughout the entire training process and dynamically adapts to current embedding allocation at

runtime. In contrast, post-training pruning schemes PEP and CERP prune the embedding table after

training, and SCALL periodically adjusts the embedding allocation. Although the three baselines

retrain the model under the final embedding table, they cannot continuously optimize and adapt

the embedding allocation throughout the training process. This reason is also discussed in the

paper of AdaEmbed [42], which also reports that in-training embedding pruning performs better

than post-training pruning counterparts.

In addition, all the three baselines (PEP, CERP, and SCALL) require retraining on the pruned

or re-configured embedding table, resulting in more computation consumption. As all the three

baselines require maintaining additional structures (pruning masks, RL model) during training for

embedding pruning/reallocation, they cannot achieve memory savings during training, and have

more hyperparameters to be manually adjusted. Finally, the two post-training pruning schemes

(PEP and CERP) cannot adapt to the requirement of online training (defined in Section 2), and thus

are often impractical to be deployed in practice as reported by the paper of AdaEmbed [42].

5.7 Performance on Graph-based Recommendation System
To demonstrate the wide adaptability of CAFE+, we further implement it in a graph-based rec-

ommendation model PinSage [106] (described in Section 5.1.1), which is widely deployed in the

industry for large-scale applications. We conduct experiments on a larger dataset #nowplaying-RS

(described in Section 5.1.1), and use 𝑁𝐷𝐶𝐺@𝑁 [92] and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 scores as evaluation metrics

(described in Section 5.1.4). We compare the performance of CAFE+ with basic hash embedding. As

shown in Figure 22, CAFE+ works well on top of PinSage and consistently outperforms basic hash

embedding across all compression ratios (2×∼256×). For example, at the compression ratio of 16×,
compared with hash embedding, CAFE+ achieves 70.14% improvement on 𝑅𝑒𝑐𝑎𝑙𝑙@10 (Figure 22(a))

and 101.15% improvement on 𝑁𝐷𝐶𝐺@10 (Figure 22(b)). When compression ratio is less than 16×,
the performance of CAFE+ is close to the ideal result that uses uncompressed embedding tables.

6 RELATEDWORK
6.1 Embedding Compression
Recent years have witnessed numerous techniques proposed for compressing embedding tables,

which can be broadly divided into two categories: inter-feature compression and intra-feature

compression [115]. Inter-feature compression methods (including CAFE+) reduce the number of

embeddings and allow embedding sharing among multiple features. Intra-feature compression

methods compress individual embeddings through quantization, pruning, and dimension reduction,

thereby reducing the size of each embedding. Since two categories are primarily orthogonal,

methods of different categories can be further combined in DLRMs. For more related works and

specific experimental comparison results, please refer to an earlier experimental analysis paper on

embedding compression [115].

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.



CAFE+: Towards Compact, Adaptive, and Fast Embedding for Large-scale Online Recommendation Models 33

Inter-feature compression: These methods keep a small number of embeddings for features to

share, and maintain a new mapping from features to embeddings. Based on whether the mapping

relationship is fixed during training, these methods can be further divided into static inter-feature

compression and dynamic inter-feature compression.

1) Static inter-feature compression: Initial attempts to accommodate large numbers of embeddings

within a limited memory space came from hash-based compositional embedding methods [81, 94,

101], which are widely used in real-world applications. They use hash functions to map features into

several compositional embeddings, resulting in different features sharing (or partially sharing) the

same embedding in the event of hash collisions. However, these methods do not provide theoretical

bounds, which can lead to significant degradation in model quality. While early works explored the

form of the mapping functions, recent works further explored the structure of embedding layers.

For example, some excellent works borrow the idea of tensor-train decomposition (abbreviated as

TT) to compress the embedding table [96, 104, 105, 130]. These works factorize the original size of

embedding table𝑚 × 𝑑 into𝑚 =
∏𝑡

𝑖=1𝑚𝑖 and 𝑑 =
∏𝑡

𝑖=1 𝑑𝑖 , and decompose the embedding table to

E = G1G2 · · · G𝑡 , where G𝑖 ∈ R𝑅𝑖−1×𝑚𝑖×𝑑𝑖×𝑅𝑖
. To obtain the embedding, TT-based work looks up

the tensors and conducts matrix multiplication, which requires more computation overhead [115].

2) Dynamic inter-feature compression: These methods allow the mapping functions to be updated

during training, most of which are naturally suitable for online learning [7, 42]. AdaEmbed [42]

is an adaptive method that identifies and records important features. It dynamically reallocates

embeddings for important features during online training, and achieves good model accuracy over

time. However, its compression ratio is constrained by the storage of importance information,

which scales linearly with the number of features. AdaEmbed’s sampling and migration strategy

also incurs much latency in online training. CEL [7] compresses the embeddings through clustering.

During training, CEL dynamically reassigns items to the more proper clusters based on their history

interactions, and split a cluster if it is associated with too many interactions. CEL has limited

compression ratios due to the need of storing the cluster structures, and takes more training time

due to cluster adjustment. LEGCF [49] innovatively introduces a learnable assignment matrix on

top of compositional embeddings. As LEGCF requires alternately updating the assignment matrix

and the embeddings over multiple epochs, it cannot be deployed in online learning scenarios.

Intra-feature compression: Methods of this category aim to compress the representation for

each unique feature, thereby reducing the size (number of bits) of each embedding. They borrow

techniques from traditional deep learning compression such as quantization [44, 100], pruning [13,

39, 51, 75], and dimension reduction [20, 55, 125].

1) Quantization: These methods use low-prevision data types to replace the original float32 in the

embedding table [44, 100]. Although stable and simple to use, these methods do not support large

compression ratios [115]. Even using 4-bit data type, the compression ratio can only reach 8×.
2) Pruning: These methods reduce the amount of embedding parameters by finding a binary

mask [13, 39, 51, 75] during training, and pruning the embedding table with this mask. Afterwards,

they usually need to retrain the model to fit the sparse embeddings. PEP [51] is a post-training

pruning scheme that adaptively learns the pruning thresholds and uses them to prune the embed-

ding table. SSEDS [75] devises a saliency criterion to identify the importance of each embedding

dimension for each field, and prunes the embeddings according to this criterion. As reported by

AdaEmbed [42] and our results in Section 5.6, many post-training methods actually have lower

accuracy than in-training methods (CAFE+, AdaEmbed). In addition, the multi-stage training pro-

cess of post-training pruning methods is usually time-consuming. These methods also suffer large

memory consumption during training, and can hardly adapt to online training scenarios.
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3) Dimension reduction: The key idea of these methods is to assign different dimensions for

different features. Similar to post-training pruningmethods, dimension reductionmethods compress

the embedding tables only at inference time, and thus also require additional memory to store

extra structures during training and multi-stage training. There are a line of excellent research

that find the best parameter allocation through the techniques of Neural Architecture Search

(NAS), including reinforcement learning [36, 76, 77], evolutionary search [6], bi-level optimizations

[126, 127]. Consequently, these NAS-based approaches usually have high computation costs.

However, post-pruning and dimension reduction methods are actually seldom used in industry

[42, 115], as the memory bottleneck during training is more severe due to activations and optimizer

states. In addition, most of these methods can only support offline training because they require

collected data for multi-stage training, including pre-training, finetuning, and re-training.

There are also some hybrid methods that combine various compression techniques to achieve

better performance [50, 56], which is also a promising direction in the future. For example, CERP [50]

innovatively combines static compositional embeddings with regularized pruning to achieve high

model quality. We can also combine CAFE+ with various compression techniques. For example, the

idea of tensor-train decomposition methods [96, 104, 105], clustering methods [7], and quantization

methods [44, 100] can also be used to compress the Hash Embedding Table in CAFE+.

6.2 Sketching Algorithm
Sketch is an excellent probabilistic data structure that can approximately record the statistics of data

streams by maintaining a summary. Thanks to their small memory overhead and fast processing

speed, sketches are widely applied in the realm of streaming data mining [11], database [9, 32, 53, 80],

and network measurement and management [103, 118] to perform various tasks, such as frequency

estimation [11, 12, 17], finding top-𝑘 frequent items [43, 59, 61, 102], and mining special patterns in

streaming data [52]. Existing sketches can be classified into two categories: counter-based sketches

and KV-based sketches.

Counter-based sketches: Typical counter-based sketches include CM [11], CU [17], Count [5],

ASketch [78], and more [12, 18, 45, 69]. The data structures of these sketches usually consist of

multiple arrays, each containingmany counters. Each array is associated with one hash function that

maps items into a specific counter in it. For example, the most popular CM sketch [11] comprises

𝑑 counter arrays 𝐶1, · · · ,𝐶𝑑 . For each incoming item 𝑒 , it is hashed into 𝑑 counters in the CM

sketch 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)] with each of the 𝑑 counters incremented by one. To query item

𝑒 , CM sketch returns the minimum counter among 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)]. However, the CM
sketch has overestimated errors due to hash collisions. Other sketches propose various strategies

to reduce this error. For instance, CU sketch [17] only increments the minimum counter among

𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)], and Count sketch [5] adds 𝑠 (𝑒) ∈ {+1,−1} to each mapped counter to

achieve unbiased estimation. Despite these improvements, existing counter-based sketches are not

memory efficient for finding top-𝑘 items. They do not distinguish between frequent and infrequent

items, where infrequent items are useless for reporting top-𝑘 items, and recording infrequent items

only increases the error of frequent items. Moreover, they need multiple memory accesses per

insertion, resulting in unsatisfactory insertion speed.

KV-based sketches: Common key-value-based sketches include Space-Saving [61], Unbaised

Space-Saving [84], Lossy Counting [14], HeavyGuardian [102], and more [43, 103, 118]. These

sketches maintain the KV pairs of frequent items in their data structures. For instance, Space-

Saving [61] and Unbiased Space-Saving [84] use a data structure called Stream-Summary to record

frequent items, which is essentially a doubly-linked list of fixed size, indexed by a hash table. When

Stream-Summary is full and an unrecorded item arrives, Space-Saving replaces the least frequent

item with the incoming one. Based on Space-Saving, Unbiased Space-Saving [84] replaces the least

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.



CAFE+: Towards Compact, Adaptive, and Fast Embedding for Large-scale Online Recommendation Models 35

frequent item with a certain probability, so as to achieve unbiased estimation. Unfortunately, Space-

Saving and Unbiased Space-Saving are not memory and time efficient because of the extra hash table

and complex pointer operations. Another type of KV-based sketches, such as HeavyGuardian [102]

and WavingSketch [43], uses a bucket array data structure, where each bucket stores multiple KV

pairs. These sketches provide satisfactory accuracy for reporting top-𝑘 items and only require one

memory access per insertion, ensuring fast insertion speed.

7 CONCLUSION
In this paper, we propose CAFE+, a compact, adaptive, and fast embedding compression method

that fulfills three essential design requirements: memory efficiency, low latency, and adaptability to

dynamic data distribution. We introduce a light-weight sketch structure, HotSketch, to identify

and record the importance scores of features. By assigning exclusive embeddings to a small set of

important features and shared embeddings to other less important features, we achieve superior

model quality within a limited memory constraint. We further propose several techniques to further

optimize the memory allocation CAFE+ and adapt it to dynamic data distribution during online

training. Experimental results demonstrate that CAFE+ outperforms existing methods, with 3.94%,

3.94% higher testing AUC and 4.65%, 3.54% lower training loss at 10000× compression ratio on

Criteo Kaggle and CriteoTB datasets, exhibiting superior performance in both offline training and

online training. The source codes of CAFE+ are available at GitHub [112].
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