932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

BurstBalancer: Do Less, Better Balance for
Large-Scale Data Center Traffic

Zirui Liu", Yikai Zhao ", Zhuochen Fan”, Tong Yang
Kaicheng Yang ', Zihan Jiang
Gaogang Xie"”, Senior Member, IEEE, and Bin Cui

Abstract—Layer-3load balancing is a key topic in the networking
field. It is well acknowledged that flowlet is the most promising
solution because of its good trade-off between load balance and
packet reordering. However, we find its one significant limitation: it
makes the forwarding paths of flows unpredictable. To address this
limitation, this article presents BurstBalancer, a simple yet efficient
load balancing system with a sketch, named BalanceSketch. Our
design philosophy is doing less changes to keep the forwarding path
of most flows fixed, which guides the design of BalanceSketch and
our balance operations. We have fully implemented BurstBalancer
in a small-scale testbed built with Tofino switches, and conducted
both large-scale event-level (NS-2) and ESL (electronic system
level) simulations. Our results show that BurstBalancer achieves
5% ~35% smaller FCT than LetFlow in symmetric topology and
up to 30 X smaller FCT in asymmetric topology, while 58 X fewer
flows suffer from path changing. All related codes are open-sourced
at GitHub.

Index Terms—Data center networks, L3 load balancing, sketch,
flowlet.

I. INTRODUCTION

A. Background and Motivation

S ENTERPRISES continue to shift services like big-data
A analytics, web services, and cloud storage into cloud en-
vironments, the number of data centers has grown exponen-
tially [2], [3], [4], [5], [6], [7]. Typical data center networks

Manuscript received 6 November 2022; revised 6 June 2023; accepted 5 July
2023. Date of publication 14 July 2023; date of current version 12 April 2024.
This work was supported in part by the National Key R&D Program of China
under Grant 2022YFB2901504, and in part by the National Natural Science
Foundation of China (NSFC) under Grant U20A20179. Recommended for ac-
ceptance by Y. Yang. The preliminary version of this paper titled “BurstBalancer:
Do Less, Better Balance for Large-scale Data Center Traffic” is published in the
30th IEEE International Conference on Network Protocols (IEEE ICNP 2022)
[1], Lexington, Kentucky, USA, October 30-November 2, 2022. (Zirui Liu, Yikai
Zhao, and Zhuochen Fan are the co-primary authors.) (Corresponding author:
Tong Yang.)

Zirui Liu, Yikai Zhao, Zhuochen Fan, Ruwen Zhang, Kaicheng Yang, Zi-
han Jiang, Zheng Zhong, and Bin Cui are with the National Key Laboratory
for Multimedia Information Processing, School of Computer Science, Peking
University, Beijing 100871, China.

Tong Yang and Xiaodong Li are with Peng Cheng Laboratory, Shenzhen
518066, China (e-mail: yangtongemail @ gmail.com).

Yi Huang, Cong Liu, and Jing Hu are with Huawei Technologies Company
Ltd., Shenzhen 518063, China.

Gaogang Xie is with the Computer Network Information Center, Chinese
Academy of Sciences, Beijing 100045, China.

Digital Object Identifier 10.1109/TPDS.2023.3295454

, Zheng Zhong, Yi Huang

, Member, IEEE, Xiaodong Li"Y, Ruwen Zhang ",
, Cong Liu, Jing Hu,
, Senior Member, IEEE

(DCNs) feature symmetric topologies such as Fat-Tree [8] and
VL2 [9], which offer multiple equivalent paths between any
pair of servers. How to evenly allocate the traffic to these
candidate paths is well known as the layer-3 (L3) load balance.
L3 load balance has been acknowledged as one key topic in the
networking field for many years [10], [11], [12], [13].

Existing L3 load balancing schemes can be broadly clas-
sified into three categories. First, packet-level load balancing
schemes [14], [15], [16], [17], [18], [19] select a path for each
packet to achieve optimal traffic split. However, these schemes
are susceptible to packet reordering issues when there is a
significant discrepancy in the delay of candidate paths. Second,
flow-level load balancing schemes [20], [21], [22], [23], [24],
[25], [26] assign a fixed path to all packets within a flow. These
schemes avoid packet reordering, but cannot well balance the
traffic due to the skewed distribution of flow sizes and hash
collisions among large flows [27]. Third, flowlet-level load
balancing schemes [2], [28], [29], [30], [31], [32], [33] attempt a
compromise between minimizing packet reordering and evenly
balancing traffic. In these schemes, the packets of a flow are
divided into many groups, with the time interval between two
consecutive groups being larger than a predefined threshold 4.
Each group of packets is called a flowlet [28]. Flowlet-level
schemes select a path for each flowlet, so as to achieve a good
trade-off between packet reordering and load balance [3], [33],
[34], [35]. However, these schemes cannot precisely detect
flowlets using small memory, and make a lot of unnecessary
manipulation: 1) The forwarding paths of the flows in these
schemes are unfixed and unpredictable, which hampers network
measurement and management. 2) Due to the limited memory on
hardware and the large number of concurrent flows, they cannot
precisely identify all flowlets. 3) They unnecessarily divide small
flows into flowlets and distribute them across multiple paths,
which contributes little to load balance and rather increases the
risk of packet reordering.

While existing load balancing schemes have made excellent
contributions, they overlook the flow-regulation of the network.
“Flow-Regulation” refers to that given any flow, its forwarding
path can be easily calculated, and does not change with time.
In many existing schemes, the forwarding paths of flows are
unfixed and unpredictable. Intuitively, if most members of a
group follow a simple rule, then the management of this group
would be simple. For many network operations, such as network
diagnosis [36], [37], [38], [39], congestion control [40], [41],

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9062-6565
https://orcid.org/0000-0003-2495-7774
https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0002-3534-8045
https://orcid.org/0000-0002-6102-9195
https://orcid.org/0000-0001-6381-4026
https://orcid.org/0000-0003-1160-1058
https://orcid.org/0000-0002-6741-6751
https://orcid.org/0000-0003-4964-1135
https://orcid.org/0000-0003-1681-4677
mailto:yangtongemail@gmail.com

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 933

[42], [43], network measurement and management [44], [45],
[46], [47], [48], [49], [50], [51], it is often assumed or expected
that the forwarding paths of most flows can be obtained easily.
For example, the well known 007 system [37] is designed for
a network where all flows use ECMP. It needs the forwarding
paths of flows to locate the congested link. If the forwarding
path of flow changes rapidly and randomly, 007 cannot pinpoint
the congested link timely and accurately, resulting in unreliable
diagnostic results. For another example, the pioneering work
using INT for congestion control, HPCC [42], uses the link load
information to adjust the sending rate of flows. If the forwarding
paths of flows are fixed, HPCC works excellently; but otherwise,
the link load information cannot match the culprit flow, so the
advantages of HPCC cannot be guaranteed. Hence, our goal is
to develop a solution that not only effectively balances traffic,
but also ensures adherence to the flow regulation principle as
much as possible. The ideal solution should manipulate as few
packets/flows as possible, so as to make network measurement
and management easier.

B. Our Proposed Solution

Towards the above goal, we propose BurstBalancer, an effi-
cient load balancing system, with the aim of manipulating only a
small number of flowlets that are critical to load balance, namely
FlowBursts. In BurstBalancer, most flows follow ECMP [20]
and we can easily get their forwarding paths. BurstBalancer
devises a sketch, namely BalanceSketch, and deploys it on each
switch to detect and make forwarding decisions for FlowBursts.
BurstBalancer only needs small on-chip memory to keep critical
flowlets (FlowBursts), achieving high memory efficiency and
perfectly embracing the skewed flow distribution [52], [53].
Further, BurstBalancer only manipulates the critical flowlets
which are very limited in number, minimizing packet reordering
and keeping the paths of most flows fixed. In addition, BurstBal-
ancer is easy to implement without any changes to end-hosts or
protocol stacks, and can be incrementally deployed in existing
networks.

The design philosophy of our BurstBalancer is doing less
manipulations while better balancing the traffic, which is guided
by the well-known Occam’s Razor principle: entities should
not be added beyond necessity. The philosophy of doing less
includes two dimensions based on our two key observations.
The first dimension of doing less is based on Observation I:
only a minority of flowlets are fast and large enough to cause
load imbalance, and we call these critical flowlets FlowBursts.!
Therefore, we manipulate only critical flowlets (FlowBursts).
For example, in the IMC data center trace [54] used in our ex-
periments, there are about 27,000 concurrent flowlets, of which
only 1.1% are FlowBurst. Therefore, if we identify, maintain,
and manipulate only FlowBursts, it is possible to save on-chip
memory up to 100 times while achieving similar load balance
performance as those schemes identifying all flowlets. In this
way, we classify all flowlets into two categories: FlowBursts

!'A formal definition of FlowBurst is provided in Section II-A.

TABLE I
SYMBOLS FREQUENTLY USED IN THIS PAPER

Notation Meaning
5 Flowlet threshold that spaces two adjacent
flowlets or FlowBursts
v Lower bound of the speed of FlowBurst
x Voting threshold used by our BalanceSketch to
identify flowlets with high speed and large size
A Flow timeout threshold used for identifying
whether a flow ends
l Number of buckets in BalanceSketch
Bli] The i*" bucket of BalanceSketch
h(.) Hash function mapping a flow into a bucket
d Number of cells in each bucket in the multi-cell
version of BalanceSketch

and unnecessary flowlets,”> and we only manipulate FlowBursts.
Identifying unnecessary flowlets causes a huge memory over-
head,? and manipulating them only exacerbates network chaos
and the risk of packet reordering.

The second dimension of doing less is based on Observation
II: Tt is expensive and unnecessary to accurately detect and
manipulate all FlowBursts. Hence, we choose to manipulate
most rather than all FlowBursts for the following reasons. 1)
Identifying all FlowBursts is expensive for hardware resources.
2) By manipulating most FlowBursts while leaving other Flow-
Bursts to follow ECMP, we can still attain effective load balanc-
ing. 3) Detecting all FlowBursts needs complicated design of
data structure. A strawman solution to identify FlowBursts is to
first identify flowlets using existing methods and then check
whether the identified flowlet is a FlowBurst. However, this
solution is memory inefficient because it records the information
of all flowlets, most of which are unnecessary to manipulate.
We propose a simple data structure, namely BalanceSketch, to
track the most relevant, rather than all FlowBursts (See details
in Section III) and evict unnecessary flowlets. To the best of our
knowledge, we are the first work that applies sketches to the field
of L3 load balancing.

We extensively evaluate BurstBalancer on a small-scale
testbed and two large-scale simulation platforms. Our testbed
consists of 4 Tofino switches [55] and 8 end-hosts in a leaf-spine
topology. For simulations, we use both an event-level simulator
(NS-2 [56]) and an ESL (electronic system level) simulator
(HDCN, which is developed and used by Huawei for years). Our
results show that compared to LetFlow [2], BurstBalancer better
balances the traffic using smaller memory, while manipulates
58 times fewer flows at the same time. In symmetric topologies,
BurstBalancer achieves 5%~35% smaller FCT (flow comple-
tion time) than state-of-the-art LetFlow [2] and DRILL [14].
In asymmetric topologies, BurstBalancer achieves up to 30x
smaller FCT than LetFlow and up to 6.4x smaller FCT than
WCMP [21]. We also conduct CPU experiments, and results
show that BurstBalancer achieves > 90% recall rate in finding
FlowBursts with small memory. In addition, we mathematically

2Unnecessary flowlets are defined as: 1) flowlets formed by small flows; 2)
flowlets formed by low-density flows (e.g., some persistent flows that last for
long time but send packets at a very slow speed).

3In our experiments, LetFlow [2], a load balancing scheme identifying and
manipulating all flowlets, consumes about 10 x more on-chip memory to achieve
a similar load balancing performance to our BurstBalancer (see Fig. 15).

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

derive the ability of BalanceSketch to identify FlowBursts (see
Section III-G). All related codes are open-sourced [57].

II. BACKGROUND AND RELATED WORK

In this section, we begin with the problem statement of
FlowBurst in Section II-A. Then we discuss the related work of
load balance solutions for data center networks in Section II-B.
The main symbols used in this paper are shown in Table 1.

A. Problem Statement

Network Stream: A network stream is an unbounded timing
evolving sequence of items S = {p1, pa, ...}, where each item
p; = (fi, t;) indicates a packet of flow f; arriving at time ¢;.

Flow: A flow consists of packets {p),...,p),} sharing the
same flow ID f;, which can be any combination of 5-tuple:
source IP address, source port, destination IP address, desti-
nation port, protocol type.

Flowlet: Given a predefined flowlet threshold §, a flowlet
refers to a group of continuous packets {p}, ..., p),} of a given
flow f;, such that V0 < j < m, t;41 —t; < 0. This flowlet is
active if [ty — tm| < 0, Where t,,0,, is the current time, and is
outdated otherwise. Intuitively, the packets of a flow are divided
into many groups/flowlets, where the interval between adjacent
flowlets is large enough (> 9).

FlowBurst: For a flowlet {p},...,pl,}, we define its size
as m, and define its speed as %, where AT = t,, — t1. This
flowlet is a FlowBurst if 7 >V and m > 7y, where 7y, is
the size of the k" largest flowlet among all active flowlets
whose speed are larger than V. Intuitively, FlowBursts refer to
a particular kind of flowlets that are fast and large enough to
cause load imbalance. For all active flowlets whose speed exceed
a predefined threshold V, we define the flowlets of the largest &
sizes as the FlowBursts.

B. Related Work

Existing load balancing solutions for data centers can be
classified into three categories: packet-level schemes, flow-level
schemes, and flowlet-level schemes. For other hybrid schemes,
kindly refer to references [33], [58], [59], [60].

1) Packet-level schemes [14], [15], [16], [17], [18], [19]
choose a desirable path for each packet. They achieve ideal
splitting ratio at the cost of packet reordering. DRILL [14]
makes per-packet decisions at each switch based on local-queue
occupancies and randomized algorithms. NDP [15] presents a
multipath-aware transport-layer protocol that manipulates each
packet, and introduces a handshake mechanism to alleviate
reordering. MP-RDMA [16] proposes a per-packet multi-path
protocol for RDMA network, where the packets are distributed in
a congestion-aware manner. Other packet-level schemes include
Fastpass [19], DeTail [18], and DRB [17].

2) Flow-level schemes [20], [21], [22], [23], [24], [25], [26],
[61] assign a path to each flow. They avoid packet reordering
but cannot well balance the traffic because of collisions between
large flows. The well-known ECMP [20] uses flow-level hash-
ing to select a path for each flow. ECMP achieves excellent

performance when there are only small flows but no large
flows [25], [26]. WCMP [21] assigns each path a weighted
cost, and distributes the traffic based on the cost. MPTCP [61]
splits each TCP flow into several subflows, and assigns each
subflow to a non-congested path. AuTO [23] forwards small
flows using ECMP, and dynamically changes path, priority,
and sending speed for large flows. Other flow-level schemes
include FlowBender [22], SOFIA [24], VMS [62], Hedera [25],
Mahout [26], MicroTE [63].

3) Flowlet-level schemes [2], [28], [29], [30], [31], [32],
[33], [64] make a trade-off between packet-level schemes and
flow-level schemes in consideration of minimizing reordering
and maximizing performance at the same time. Flowlets widely
exist in data centers where most applications send traffic in
on-off patterns [3], [65], [66]. CONGA [31] designs a distributed
algorithm to obtain global congestion information in leaf-spine
topologies, and assigns each flowlet to the least congested path at
leaf switches. LetFlow [2] randomly picks paths for flowlets, and
lets their elasticity naturally balance the traffic on different paths.
The excellent work Contra [67] builds a system for performance-
aware routing based on flowlet switching, which can operate
seamlessly over any network topology and routing policies.
Other flowlet-level schemes include DASH [64], FLARE [28],
HULA [68], and more [29], [30], [32]. A flowlet scheme needs
to strike a balance between load balance and packet reordering.
A flowlet switching scheme has no danger of packet reordering
only when the timeout threshold § is larger than the maximum
latency of the set of parallel paths. In order to avoid packet
reordering, the timeout threshold must be set to a large value.
However, large timeout threshold will degrade the system to a
flow-level scheme. Therefore, the timeout threshold ¢ should be
carefully chosen to achieve good performance.

Existing flowlet-level schemes use a flowlet table to detect
flowlets. Each table entry consists of a next_hop and a
timestamp. In CONGA [31] and LetFlow [2], the times-
tamp is replaced with two bits, and they use a separate process
to periodically clean the entries. This table must be very large
to keep the collision rate small. Such a huge table incurs heavy
memory burden when deployed on hardware platforms where
on-chip memory is precious. By contrast, sketch is a com-
pact data structure that uses small memory to perform various
measurement tasks [43], [69], [70]. Typical sketches include
CM [71], CU [72], Count [73], and more [74], [75], [76]. We
can use sketches to detect and schedule flowlets in real time,
which is still an open area.

III. THE BALANCESKETCH ALGORITHM

In this section, we first present a strawman solution to detect
FlowBursts in Section III-A, and introduce the rationale of
BalanceSketch in Section III-B. We show the data structure
and workflow of BalanceSketch in Sections III-C and III-D.
We demonstrate how BalanceSketch handles different traffic
patterns in Section III-E. We propose some optimizations of
BalanceSketch in Section III-F. We mathematically analyze the
ability of BalanceSketch to identify FlowBursts in Section III-G.

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 935

Detect Flowlets

Keep FlowBursts

Hash Table
Flow_ID: f3
.............. o Speed: 1.1 Kpps
3o f2

f3 is too slow
Replace

Fig. 1. Strawman solution to detect FlowBursts (§ = 5 ms, 5,0, = 150 ms,
V = 1.5 Kpps).

Finally, we present how to extend BalanceSketch to network
measurement in Section III-H.

A. A Strawman Solution

One strawman solution to find FlowBursts is to firstidentify all
flowlets using existing methods, and then check whether each
identified flowlet is a FlowBurst. 1) In the first step, same as
existing solutions [28], [29], [30], we use a timestamp array
to find flowlets. For each incoming packet of flow f; attime ¢,,4,,
we first compute a hash function k4 (f;) to map the packet to one
timestamp. If the gap between %,,,,, and timestamp is larger
than the predefined flowlet threshold §, we consider the packet as
the start of a flowlet. Otherwise, we consider the packet as part of
an existing flowlet. At the end of this step, we update the mapped
timestamp to %,,0,,. As shown in Fig. 1, the interval between the
current time and the last arrival time of f5 exceeds J, so we report
the packet of f5 as the start of a flowlet. 2) In the second step, we
use a hash table with many buckets to detect FlowBursts, i.e., the
flowlets with high speed. Each bucket maintains a flow ID and
the recent speed of the flow. For a flowlet of flow f; detected in
step one, we map f; into one bucket in the hash table. If another
flowlet is already in this bucket and its speed is slow (< V), we
replace it with f;. Specifically, each bucket in the second step
consists of a Flow_1ID field, a Start_time field recording
the start time of the flowlet, and a Counter field recording
the flowlet size. Given an incoming packet of f; at t,,,, We
first compute hash function hs(f;) to map the packet into one
bucket. Then, we check whether f; is recorded in this bucket. If
so, we increment the Counter by one. Otherwise, if the packet
is the start of a flowlet (detected in the first step), we check
whether its speed Counter / (0, —Start_time) is below
the speed threshold V: If so, we replace the old flowlet with f;:
we set Flow_IDto f;, set Start_time to current time t,,0y,,
and set Counter to one. As shown in Fig. 1, for the detected
flowlet of fs, its mapped bucket is taken by f3 and the speed
of f3is slow (< V), so we replace f3 with f5. This solution is
simple and easy to deploy. However, it is memory inefficient
because it records the information of all flowlets, including the
exact flow IDs and their recent speed, whereas most flowlets are
unnecessary flowlets. The ideal goal is keeping only FlowBursts
while evicting all unnecessary flowlets.

B. Rationale of BalanceSketch

The design of BalanceSketch embraces two dimensions of
doing less: 1) Different from the aforementioned strawman

< Outdated &
[1D [Vote [Time| Next | [1D JVote [Time| Next |
[f [32]157] 2 |E:>|f1 [1 [200] nuil']

Time < tpow — A fa ends, replace it with f;

1 buckets

B PG|

[ID [Vote[Time| Next | [1D JVote [Time| Next |
[£ a8 186 nuil| 5 [£ 49 J200] 5]

Flowlet| Uupdate Vote and Time
[change path_S FiowBurst &L

[ID [Vote[Time[Next | = [_10_Jvote [Time| Next |

B—[Bni [fo [0 [198] wun] fs [1 [200] wur]
° Vote = 0: not fast replace fg with f3

Next_hop = Null: not scheduled f; will not reorder

@* B[h(f2)] /

Fig. 2.
F = 30).

Examples of BalanceSketch (£,,0., = 200 ms, A =30 ms, 6 = 5 ms,

solution, we manage to maintain only FlowBursts and evict
unnecessary flowlets. 2) We identify most rather than all Flow-
Bursts, in exchange for the simplicity of our data structure and
its operations. Beyond the principle of doing less, we have
another design tactic: follower approximation. 1deally, upon
the arrival of the first packet of a FlowBurst, we should im-
mediately recognize and manipulate it. However, it is almost
impracticable to identify a flowlet as a FlowBurst at its onset,
but it is not hard to assert a FlowBurst when it ends. Instead of
manipulating a FlowBurst, we make a follower approximation
by manipulating the BurstFollower: the flowlet that immediately
succeeds a FlowBurst. The rationale is that BurstFollower is
very likely to be a potential FlowBurst, incurring a risk of load
imbalance. Interestingly, we find this approximation achieves
similar performance to the ideal solution. Consider a typical traf-
fic pattern: FlowBurst, FlowBurst, Ideally, we manipulate
each FlowBurst atit commences; Approximately, we manipulate
each BurstFollowers, which essentially includes all FlowBursts
except for the first one. These two methods yield the same load
balance performance. More interesting patterns are elaborated
upon in Section III-E. To the best of our knowledge, we are
the first work that uses sketches instead of flow/flowlet table to
perform L3 load balancing.

C. Data Structure

As shown in Fig. 2, the data structure of BalanceSketch is an
array of [buckets. Let B[i] be the ' bucket. Each packet of flow
fi is mapped into one bucket B[A(f;)] through a hash function
h(.). Each bucket consists of four fields: 1) A £low_1ID field
Bi].ID records the ID of the flow mapped into this bucket, and
we call the flow in the bucket as the residing flow. 2) A vote
field BJi].vote used to identify FlowBursts. 3) A timestamp
field B[i].time records the arrival time of the last packet of the
residing flow. 4) An next_hop field B[i|.nexthop records the
next hop. For the flow resided in BJ[i], if Bli].nexthop is not
Null, we forward the flow through this next hop. Otherwise, we
forward it using ECMP [20]: forwarding it through the next hop
hashed by its 5-tuple. For the flows not resided in BalanceSketch,
we also forward them using ECMP. All fields in the data structure
are initialized to 0 or Null.

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Algorithm 1: Workflow of BalanceSketch.

Input: A packet with timestamp t; of flow f;
Output: The next port to send this packet
// Insert the packet into BalanceSketch
if Blh(f)] is empty or t; — Blh(f;)].time > A then
L Blh(fi)] < (fi, 1, t;, Null);
else if B[h(f;)].ID = f; then
if Blh(f;)].vote > F and t; — B[h(f;)].time > § then
| Blh(f:)].-nexthop < the randomly picked next hop;

Blh(fi)]-vote +=1;
| Blh(fi)]-.time < t;;
Ise if B[h(f;)].ID # f; then
if B[h(f;)].vote > 0 then
| B[r(f;)].vote —=1;
if B[h(f;)].vote = 0 and B[h(f;)].nexthop = Null then
L Blh(f:)] < (fi, 1, ti, Null);
/ 7 Select the next hop to forward the packet

if B[h(f:)].ID = f; and B[h(f;)].nexthop # Null then
| return B[h(f;)].nexthop;

else
| return ECM P_next_port(f;);

]

D. Workflow

The pseudo-code of the workflow is shown in Algorithm 1.
For anincoming packet p. of flow f; attime ¢,,,,,, BalanceSketch
takes two phases to process it: insertion and forwarding. In the
insertion phase, BalanceSketch inserts f; into one bucket. In the
forwarding phase, BalanceSketch selects appropriate next hop
to forward this packet. The insertion workflow of BalanceS-
ketch processes each packet in one pass, and is of O(1) time
complexity. We have fully implemented the insertion workflow
in the pipeline of programmable switch (with Tofino ASICs)
using P4 [77] language, which has 1.2 GHz clock frequency
(see Section IV-B).

Insertion: First, we compute the hash function h(f;) to map
/i into the bucket B[h(f;)], and try to insert it. There are three
cases as follows.

Case 1: If B[h(f;)] is empty or t00 — B[R(f;)].time > A,
where A is the predefined flow timeout threshold to identify
whether a flow ends, we just insert flow f; into B[A(f;)]. Specif-
ically, we set B[h(f;)] to (fi,1,tnow, Null), where “Null”
means forwarding flow f; through ECMP. In this case, t,,0, —
B[h(f;)].time > A means the resided flow ends.

Case 2: If B[h(f;)] is not empty and f; is the residing
flow, we check whether this packet is the start of a FlowBurst.
Specifically, we check whether ¢,,0,, — B[R(f;)].time > § and
B[h(f;)].vote > F are both true, where ¢ is the flowlet thresh-
old and F is a predefined voting threshold for identifying Flow-
Bursts. If so, it means that the previous flowlet of f; is a Flow-
Burst and just ends, and a new flowlet just starts. The new flowlet
is potentially a FlowBurst, and thus we manipulate it by ran-
domly picking a next hop and update B[h(f;)].nexthop. Finally,
we increment B[h(f;)].vote by one and update B[h(f;)].time
to the current time ¢,,,,,. Note that randomly picking a next hop
is one design choice, and we can also choose the least loaded
next hop or use the “power of two choices” techniques [78]. We
will discuss different manipulating choices in Fig. 17.

Case 3: If B[h(f;)] is not empty and f! is the resid-
ing flow where f! # f;, we decrement B[h(f;)].vote by one
if B[h(f:)].vote > 0. Afterwards, if B[h(f;)].vote =0 and
B[h(f;)].-nexthop = Null, we replace f/ with f; by setting
B[h(f;)] to {fi, 1, trnow, Null). Note that if B[h(f;)].vote =0
but Blh(f;)].nexthop # Null, we do not immediately evict

Z—' , and will evict it only when it is outdated (the flow timeout
threshold A) in Case 1. In this way, the FlowBursts in BalanceS-
ketch will not be frequently replaced, and thus the number of
manipulated flow decreases. This is consistent with our design
philosophy of doing less.

Forwarding: After inserting f; into BalanceSketch, we se-
lect the next hop to forward the incoming packet p.. If f; is
the residing flow and B[h(f;)].nexthop # Null, which means
that f; is experiencing a FlowBurst, we forward p. through
B[h(f;)].nexthop. Otherwise, we forward p. using ECMP.

Discussion: BalanceSketch makes two approximations: 1)
BalanceSketch uses the “vote” field to approximately identify
FlowBursts. Recall that in Section II-A, we formally define
FlowBurst using speed and size. Although we can use more
fields to exactly represent the speed, size, and hash collisions,
we find that using just the “vote” field can already achieve high
accuracy. Therefore, to save memory, BalanceSketch only use
one “vote” field to approximately reflect the speed and size
of flowlets. 2) BalanceSketch uses the follower approximation
strategy to make load balance decisions for FlowBurst followers.
BalanceSketch considers subsequent flowlets after crossing the
“F” threshold as FlowBursts and manipulates them. We make
this approximation because we cannot immediately predict a
flowlet as FlowBurst when it just starts. Experimental results
show that under these approximations, BalanceSketch still has
high accuracy (Section V-A).

Example settings (Fig. 2): We use three examples to illustrate
the workflow of BalanceSketch, where the three packets of
flow f1 ~ f3 arrive simultaneously at time ¢ = 200ms, the flow
timeout threshold A is 30 ms, the flowlet threshold § is 5 ms,
and the voting frequency threshold F is 30.

Example 1 (upper of Fig. 2): When a packet of f arrives, it
is mapped into bucket B[h(f1)]. Ast — B[h(f1)].time > A, we
replace the residing flow with f1. As B[h(f1)].nexthop = Null,
we forward the packet using ECMP.

Example 2 (center of Fig. 2): When a packet of f5 arrives,
it is mapped into bucket B[h(f2)]. Since bucket B[h(f2)] is not
empty and f5 is the residing flow, we check whether this packet
is the start of a FlowBurst. Since ¢ — B[h(f2)].time > ¢ and
B[h(f2)].vote > F are both true, we think a previous FlowBurst
of fo just ends, and the new flowlet has high probability to be
a FlowBurst. Thus, we manipulate the new flowlet by changing
B[h(f2)].nexthop to arandomly picked next hop. We increment
B[h(f2)].vote by one and update B[A(f2)].time to Ly, . Finally,
since f; is the residing flow and B[h(f2)].nexthop # Null, we
forward the packet through B[h(f2)].nexthop.

Example 3 (lower of Fig. 2): When a packet of f3 arrives,
it is mapped into bucket B[h(f3)]. Since bucket B[h(f3)] is
not empty and f3 is not the residing flow, we decrement
B[h(fs)].vote by one. Afterwards, since B[h(f3)].vote = 0 and
B[h(fs3)]-nexthop = Null, wereplace the residing flow fs with

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 937

FlowBurst Flowlet (Manipulate

__

Traffic Patterns

Fig. 3. Examples of typical traffic patterns.

f3. Since B[h(f3)].nexthop = Null, we forward the packet
using ECMP.

E. Handling Different Traffic Patterns

We examine four typical traffic patterns to demonstrate how
BalanceSketch manages them, showcasing that our FlowBurst
follower approximation technique attains comparable load bal-
ancing performance to the optimal solution of manipulating
each FlowBurst at start. In our examples, all FlowBursts/flowlets
belong to the same flow. Suppose the default next hop is 0, and
the backup next hop is 1. We assume the traffic of each flow con-
sists of high-density FlowBursts and low-density flowlets. An
ideal load balance solution should distribute these high-density
FlowBursts among all equivalent links as uniformly as possible.
Manipulating other flowlets benefits little for load balance as
low-density flowlets contribute little to link congestion.

Pattern 1 (upper-left of Fig. 3): This pattern consists of con-
tinuous flowlets mixed by a FlowBurst. BalanceSketch manip-
ulates the BurstFollower (the flowlet bounded by black-box in
the figure), achieving the same load balance performance as the
ideal solution. In this case, manipulating other flowlets benefits
little for load balance. BalanceSketch does not manipulate them
and manages to achieve least change of the next hop. Since there
is no frequent manipulation, BalanceSketch minimizes packet
reordering. This idea is consistent with our design philosophy
of doing less.

Pattern 2 (lower-left of Fig. 3): This pattern consists of
FlowBurst1, flowletl, FlowBurst2, flowlet2, BalanceSketch
changes the next hop for each flowlet, and the following Flow-
Burst is forwarded through the same next hop of the previous
flowlet. It achieves similar performance as the ideal solution that
manipulates each FlowBurst.

Pattern 3 (upper-right of Fig. 3): This pattern consists of
FlowBurst1, flowletl, flowlet2, FlowBurst2, flowlet3, flowlet4,

. BalanceSketch manipulates each BurstFollower (e.g.,
flowletl), and forwards following flowlet2 and FlowBurst2
through the same next hop. The next hops of BalanceSketch
are (0,1,1,1,0,0,...), while that of the ideal solution are
(1,1,1,0,0,0, .. .). Both BalanceSketch and the ideal solution
select one next hop for every two flowlets and one FlowBursts,
and thus they have similar performance.

Pattern 4 (lower-right of Fig. 3): This pattern consists of
FlowBurstl, FlowBurst2, flowletl, FlowBurst3, FlowBurst4,
flowlet2, BalanceSketch manipulates each latter FlowBurst
and each flowlet, and its next hops are (0,1,1,1,0,0,...). It
achieves similar performance as the ideal solution with the next
hops of (1,1,0,1,1,0,...).

Compact Timestamp 156
——
fli fL67 flowlet fzi -7 flowlet
@ LlolrllollglalslelzNol 23]
—]
é 1.36 1.25T (56) f, is over

Fig. 4. Compact timestamp (A = 49).

F. BalanceSketch Optimizations

Flow Fingerprint: We use fingerprints (hash values) to re-
place flow IDs (usually 104 bits) in BalanceSketch, to improve
its memory efficiency. In this way, the memory overhead of
BalanceSketch is independent to the size of flow ID. Due to
hash collisions, some flows could share the same fingerprint,
making BalanceSketch regards multiple flows as one flow. Given
a flow, the probability that it suffers from fingerprint collisions
is Prlcollision] = 1 — (1 — 27")T", where n is the fingerprint
size (in bit), M is the number of distinct flows in the network
stream, and [is the number of buckets in BalanceSketch. This
probability is low, and thus has little impact on performance.
For example, when using 16-bit fingerprints and [= 50, 000
buckets, for M = 1,000, 000 concurrent flows in the network,
the probability of fingerprint collision is just 3.05 x 10~%, which
is negligible. Experiments show that the accuracy of BalanceS-
ketch does not decrease when using 16-bit fingerprints.

Field Combination: Once a FlowBurst is detected, we change
the next_hop field to manipulate it. After that, even if
the vote field is decremented to zero, we do not evict this
flow in consideration of manipulating less flows (Case 3 in
Section III-D). In other words, once next_hop is set to a
non-Null value, we do not need vote field any more. Thus, we
can combine vote and next_hop into one field vote_hop.

Compact Timestamp: We propose to compress the full
timestamp into s-bit cell, and use the cell to compactly record
the approximate time. Below we take 3-bit cell as an example.
As shown in Fig. 4, noticing that 3-bit cell can represent eight
states, we cyclically divide the timeline into eight kinds of time
slices (0 ~ 7), and the length of each time slice is . We record
these time slices (0 ~ 7) rather than the full timestamps in
BalanceSketch. If two adjacent packets of a flow are spaced
by at least one time slice, we think the second packet is the start
of a flowlet. Suppose A = k4, then if the last arrival time of a
flow f; and the current time are spaced by at least k time slices,
we think flow f; ends. Fig. 4 shows four consecutive packets
mapped into the same bucket. The two packets of f; are spaced
by one time slice, so we report the second packet as the start of
a flowlet. Suppose A = 44, then since the last packet of f; and
the first packet of f> are spaced by four time slices, when the
first packet of f, arrives, we think f; ends and evict it.

The compact timestamp technique gains memory efficiency
at the cost of perceiving time in a fuzzy way. When the interval
between two adjacent packets is among ¢ ~ 26, BalanceSketch
might not be able to correctly report the second packet as
the start of a flowlet, depending on the relative offset of the
timeline. Specifically, only when the interval span three time

938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

slices can BalanceSketch report the flowlet correctly. This issue
is illustrated in the last two packets in Fig. 4. Although the
interval between the two packets of f5 exceeds ¢, BalanceSketch
cannot correctly divide them into two flowlets because the
interval span just two time slices. Actually, more precision can
be attained by using more bits per timestamp or using multiple
timestamps with different timeline offsets, but we find that one
8-bit timestamp suffice for good performance in our experiments
(see Section V-Al).

Analysis: We derive the error of our Compact Timestamp
technique. For an arbitrary flow f, we assume all of its flowlets
arrives according to a Poisson process of intensity A. Let
flowlet; be the iy, flowlet of f, and let x; be the time interval
between the arrival time of flowlet; 1 and flowlet;. In our
derivation, we ignore the timespan of flowlet because it does
not affect the final conclusion. Thus, we have x; — 6 follows an
exponential distribution Exp(L). For flowlet;, BalanceSketch
cannot correctly report it if the interval between flowlet; 1 and
flowlet; span only two time slices, i.e., z; only spans two slices.
For a certain x;, the probability that it spans two slices is %.
Let A; be the event that BalanceSketch fails to detect flowlet;.
We have Pr[A4;] = 626 he M@im0) L 2L oy, — M*‘f\;é_l.Let
= % be the average interval between adjacent flowlets, which
are usually of RTT scale [2]. In practice, we set J to be of
sub-RTT scale, meaning that ¢’ > §, i.e., A0 < 1. Thus, we
have Pr[4;] < % As stated above, we can also use multiple
timestamps with different timeline offsets to further reduce the
error rate. Actually, using y timestamps can reduce the error
by y times. When A6 = 0.1 and y = 3, we have Pr[4;] ~
1.2 x 10~*, which is negligible.

Multi-cell BalanceSketch: To further improve the accuracy,
we propose the multi-cell version of BalanceSketch by extend-
ing each bucket of BalanceSketch into an array of d (e.g., 4)
cells. Each cell consists of four fields: £f1ow_ID, timestamp,
vote, and next_hop. For each incoming packet of flow
fi at tyow, it is mapped into bucket B[h(f;)]. We first check
whether f; is recorded in a cell in B[h(f;)]. If so, we increment
vote and update timestamp. Otherwise, we second check
whether there is an empty or outdated cell in B[h(f;)]. If so,
we insert f; into this cell. Otherwise, we third find the cell
with the minimum vote, and decrement its vote by one.
If vote is decremented to zero and next_hop is Null, we
replace the residing flow in this cell with f;. Finally, if f; is
recorded in a cell in B[h(f;)] and its next_hop is not Null, we
forward the packet through next_hop. Otherwise, we forward
the packet using ECMP. The insertion workflow of multi-cell
BalanceSketch can be accelerated by SIMD instructions [79]
on CPU platforms. Experimental results show that using 8-cell
buckets can improve the accuracy of BalanceSketch by up to
20%.

Automating Parameter Configuration: As described in Sec-
tions II-A and III-D, we use a speed threshold V to define Flow-
Burst, and use a voting threshold F in BalanceSketch to identify
FlowBursts. However, we should need different thresholds in
different environments. Intuitively, under low network load,
there are less risk of load imbalance, and thus we should manipu-
late less traffic to avoid making the network more chaotic. In such

g 12 Seo

» 10 e

2 £

0 3 o 40

w -

T 6 [T}

2 s /

84 520

3 A 2

g‘ 2 —— Experimental g —— Experimental

g —— Theoretical S 0 —— Theoretical

% 25 50 75 100 0 25 50 75 100
Network Load (%) Network Load (%)
(a) Manipulated flows. (b) Manipulated packets.

Fig.5. Ratio of manipulated flows/packets under automatic parameter config-

uration.

case, we should use large V and F to reduce the number of Flow-
Bursts. Whereas under high network load, we should manipulate
more traffic to better balance the load, and thus we need smaller
V and F to increase the number of FlowBursts. On the other
hand, these thresholds should not be too small to overwhelm
the sketch with excessive FlowBursts. Based on these ideas, we
devise a method to automatically setting V and F according
to current network load (or remaining bandwidth) as follows:
Y+ Vy X exp(WM),and}" +— V x 8,* where V, is the
maximum bandwidth and p 1s the current network load. We con-
duct experiments to evaluate the performance of our automatic
parameter configuration method, where we evaluate the ratio of
the theoretically/experimentally manipulated flows/packets un-
der different network load. As show in Fig. 5, under low network
load, we manipulate a small fraction of traffic. As network load
increases, we gradually manipulate more flows/packets to better
balance the load. When network load exceeds & (£ = 40% in our
experiments), as network load increases, we no longer manip-
ulate more traffic, so as to avoid overwhelming BalanceSketch
with too many FlowBursts. In practice, £ can be dynamically
set according to the scale/skewness of traffic, and the size of
BalanceSketch.

G. Mathematical Analysis

We mathematically analyze the ability of BalanceSketch to
identify FlowBursts, and validate our theoretical results with
experiments. To simplify the derivation, we first make the fol-
lowing assumptions for the traffic model.

Assumption II1.1. Given a bucket in BalanceSketch, we as-
sume that all active flowlets mapped into this bucket have
the same speed, i.e., the interval between any two consecutive
packets of any flowlet is constant. Therefore, we can divide the
timeline into consecutive time slots of equal length ¢ . Each flow
has at most one packet in each time slot. A flowlet is a group of
continuous packets that arrive in several consecutive time slots.

Assumption II1.2. Given a bucket in BalanceSketch, we as-
sume that the flows mapped into this bucket are: 1) A large flow
f, whose flowlet size is always n1 (in packets), and the interval
between its any two consecutive flowlets is always ny (in time
slots). Note that we define the interval between two flowlets as
the time gap between their first packets. 2) Many small flows.

“4These formulas might not be optimal. We can further consider the size of
BalanceSketch and devise smarter formulas. But the results show that these
formulas can already well achieve our design goal.

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 939

We divide the small flows into flowlets, and assume that these
flowlets obey the M /M /oo queuing theory model: the interval
between any two consecutive flowlets obeys the exponential
distribution with parameter X1, and the size of each flowlet obeys
the exponential distribution with parameter As.

We give the well-known conclusion of M /M /oo model in
queuing theory through the following lemma.

LemmalIl. 1. Ineach time slot, the number of packets of small
flows satisfies Poisson distribution with parameter A = i—f Let
Y; be the number of packets of small flows arriving in the i*"
time slot, then Pr[Y; = k] = e™* - %’?

To simplify the derivation, we assume Y; is independent
and identically distributed for different ¢, and that the packet
belonging to the large flow f is always the last to arrive in each
time slot.

Assumption III.3. Given a bucket in BalanceSketch, let X;
be the value of its vote field after the i time slot (X, = 0).
For the large flow f, we assume that it starts at the first time
slot. For the other small flows, to simplify the derivation, we
assume that the number of packets of small flows in each time
slot is independent and identically distributed, and according
to Lemma 3.1, all obey Poisson distribution with parameter .
We also assume that the packet belonging to the large flow
f is always the last to arrive in each time slot, therefore the
flow_1ID is always f during the first n; time slots according
to our algorithm.

We can derive the following conclusions about the Markov
process of random variable X; (Lemma 3.2), and the ability of
BalanceSketch to detect FlowBurst (Theorem 1).

Lemma II1.2. The random variable X, i.e., the value of the
vote filed satisfies the following Markov process when ¢ < n1,

XZ' = max(Xi,l +1-— E, 1) (1)
Further, we can obtain that 1 < X; < 4, and for Vi > 2,
S PrX =k — 1] e 37'
Pr[X; = k] = 2 < k<i
1-— 22:2 Pr[X; = k] k=1

2

Theorem 1. Given the flowlet threshold § < ns - dg, and the
voting threshold F < ny, where J; is the length of the time slot,
the probability Py that the largest flow f is successfully reported
as FlowBurst after the (n + n2)'™" time slot satisfies

ny + no

no
Pr>Pr|Xp, >F+Y Yol >21-2 ma—
T

i=1
Proof. Based on Lemma 3.2, we have X; > 1+ X, 1 — Y,
therefore X,,, satisfies

3)

ni ni
Xn, = Xo + Z(Xz —Xi1)=2n — ZYz
i=1

i=1

Then according to the Markov inequality, we have

n2
Py >Pr|X,, — ZYHIH >F

i=1

1.0
1.0

0.9
0.8

0.9
.08

o

0.7 0.7

0.6
0.5

0.6

0.5

5 10 15 20
F

(a) Py vs. voting threshold F.

&$ o'vi <
. %
(b) Py vs. nyand A

Fig. 6. Numerical verification of probability Py with default setting of 71 =
70,n2 = 30,1 = 0.5, F = 10.

ni+ne ni+ng
> Pr [nl— Y Yi>F|=1-Pr| > E}nl—]-"]
=1 =1
E 7_L1+"2in
o BlEEN] g
ny — F ny — F

Experimental analysis (Fig. 6): We conduct experiments to
validate our mathematical analyses. Although we cannot directly
obtain the analytical solution of Py from Lemma 3.2, we can give
the numerical solution of P; under a specific setting by numer-
ical simulation. By setting n; = 70,no = 30,A = 0.5, F = 10
as default, we show how P changes with F in Fig. 6(a), and how
Py changes with nq and X in Fig. 6(b). The numerical results
show that when the flow f is large (i.e., n; is large), the number
of concurrent small flows is small (i.e., A is small), and the voting
threshold is small (i.e., F is small), the largest flow f will be
correctly reported as FlowBurst with a high probability.

H. Extension to Network Measurement

Besides L3 load balancing, our FlowBursts and BalanceS-
ketch can do more to improve the network. In this subsection,
we show how to utilize FlowBursts to perform robust per-flow
per-hop measurement. We focus on four important tasks: tracing
forwarding path, finding the flows consuming huge bandwidth
(heavy hitters), finding the flows experiencing packet drops,
and finding the flows experiencing inflated queuing delays. The
information of these abnormal flows can guide the network
operator to quickly locate culprit devices and further debug the
network.

In BurstBalancer, we deploy one BalanceSketch on each
switch. We configure all BalanceSketches to report the detected
FlowBursts along with their attributes (including the timespan,
packet count, efc.) to control planes. A central analyzer period-
ically collects the information of FlowBursts from all switches,
and further analyze these information to identify abnormal flows.
In practice, the clocks of different network devices are hard to be
perfectly synchronized [80], [81], which brings errors to exiting
measurement systems [48], [82]. Fortunately, we find that by
performing network measurement with FlowBursts, BurstBal-
ancer is robust to imperfect clock synchronization. Below we
describe how to configure BurstBalancer to perform the four
tasks.

Tracing forwarding path: We add two fields to each bucket
of BalanceSketch (or each cell in multi-cell BalanceSketch. We

940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

will no longer emphasize this point.), which record the start/end
Sequence Number of the FlowBurst. We configure each switch
to report the Sequence Number range, and the next-hop for each
detected FlowBurst. For any FlowBurst, the central analyzer
can use its Sequence Number range and per-switch next-hop to
track its forwarding path, so as to find the culprit devices where
network anomalies happen.

Finding per-hop heavy hitters: We add a packet count field to
each bucket, and let each switch report the packet count for each
FlowBurst. For each active flow® f, the analyzer acquires its per-
hop size by summing up the packet counts of all FlowBursts in f.
In this way, the analyzer can find those flows that are consuming
a large amount of bandwidth on each switch, so as to decide
whether to impose some restrictions on them (e.g., reducing
their priorities).

Locating packet drops: We add three fields to each bucket: a
packet count field, two fields recording the start/end Sequence
Number of the FlowBurst. We configure each switch to report
the packet count, the Sequence Number range, and the next-hop
for each FlowBurst. As stated above, the central analyzer uses
the Sequence Number range and per-switch next-hop to track
each FlowBurst along its forwarding path. For each FlowBurst,
the analyzer can locate those culprit switches where its packet
count decreases, so as to further troubleshoot the network.

Locating inflated queuing delays: We add four fields to each
bucket: two timestamp field recording the start/end time of
the FlowBurst, and two fields recording the Sequence Number
range of the FlowBurst. We configure each switch to report the
timespan, the Sequence Number range, and the next-hop for each
FlowBurst. The central analyzer uses Sequence Number range
and next-hop to trace each FlowBurst, and finds those culprit
switches where the FlowBurst timespan suddenly increases.

Discussion: As a network measurement system, BurstBal-
ancer has three advantages. 1) Fine-grained: BurstBalancer can
acquire per-flow per-hop information, and thus can perform
network-wide measurement tasks; 2) Lightweight: Unlike many
systems that collect packet-level information for all flows [43],
[82], [83], BurstBalancer only records a small fraction of critical
flows, and these flows are important to network performance.
Thus, BurstBalancer significantly reduces the memory and
bandwidth overhead; 3) Robust: BurstBalancer uses FlowBurst
to perform network measurement, which is robust to imperfect
clock synchronization. In conclusion, besides L3 load balancing,
another promising direction is to use FlowBursts to perform
accurate and lightweight network measurement.

IV. THE BURSTBALANCER SYSTEM
A. Overview of BurstBalancer

BurstBalancer deploys BalanceSketch on switches to detect
and make forwarding decisions for each FlowBurst. As shown
in Fig. 7, we deploy one BalanceSketch on each edge switch
and let it process all packets arriving from the line side. Given

SWe define a flow as an active flow if the time interval between the arrival
time of its last packet ¢;,5; and the current time £,,,,, is smaller than the flow
timeout threshold A, namely |tyow — tigst| < A.

—> Large&dense flow (divided into FlowBursts, multi-path)
—> Mice flow / Low-density flow (ECMP, single-path)

ECMP Next_hop

Core

FlowBurst2

insert into sketch 7,
A

Network packets

Fig. 7. BurstBalancer overview.

an incoming packet, we first insert its flow ID into one bucket
in our BalanceSketch. We check whether the packet is the
start of a FlowBurst. If so, we change the next hop of this
flow by randomly picking a next hop. Afterwards, we forward
the packet through the recorded next_hop if its flow ID is
recorded, otherwise, we forward it using ECMP. In this way,
BurstBalancer divides large and dense flows into FlowBursts,
and distributes them to different paths. And for small flows
and low-density flows, BurstBalancer just neglects them and
forwards them using ECMP. BurstBalancer achieves good load
balancing performance while manipulates less flows at the same
time.

B. Testbed Implementation

We fully implement BurstBalancer on a testbed with 4
Edgecore Wedge 100BF-32X switches (with Tofino ASIC) [55]
and 16 end-hosts in a Leaf-Spine topology. On each switch, we
develop BalanceSketch using P4 language [77].

1) Challenges on Programmable Switches: To process pack-
ets at line rate, Tofino switch requires the algorithms running on
it to comply with many constraints. Although BalanceSketch
is easy to implement on software platforms (e.g., middleboxes,
etc.), when deploying it on hardware, we face the following key
challenges.

Resource limitation: We implement BalanceSketch in regis-
ters and use the Logical Units in each stage to lookup and update
the elements of registers in real time. Recall that each bucket of
BalanceSketch consists of four fields (flow_ID, timestamp,
vote, and next_hop). However, each Stateful ALU can only
access one pair of 32-bit elements in each register. Thus, we
must divide one bucket into multiple parts and store them in
different registers.

Pipeline limitation (I): Tofino switches process packets in
a pipelined manner, where each register can only be read or
modified once in one pipeline stage. Therefore, each incoming
packet can only access each register exactly once, which brings
difficulty in clearing the outdated buckets. Due to the first
challenge, we have to store the £ 1ow_IDand timestamp of a
bucket in two different registers. For each incoming packet, we
first check the £1ow_1ID register and then update the times-
tamp register if ID matches. However, when ID mismatches
and the timestamp is outdated (smaller than ¢,,,, — A),

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 941

BalanceSketch needs to clear the bucket by setting £1ow_ID
to Null (Case 1 in Section III-D). This backward operation is
impossible on Tofino architectures. In our implementation, we
consider to use the mirror and recirculate mechanism: once a
bucket is identified as outdated, we create a mirror packet and
resend it to the ingress port. We use this mirror packet to clear the
flow_1ID register. Here, the mirror and recirculate mechanism
would not cause performance issue. First, only a few packets
(<0.5%) need this mechanism. Second, this mechanism is only
used to clear the outdated bucket, which would not affect the
scheduling and forwarding of packets.

Pipeline limitation (II): In the software version of BalanceS-
ketch, if £low_ID mismatches and vote is decremented to
zero, we check whether next_hop is Null, and evict the
residing flow fyq if so (Case 3 in Section III-D). This check
operation ensures that the FlowBursts in BalanceSketch are
not frequently replaced, and also prevents f,;q from packet
reordering incurred by immediately evicting. However, as ex-
plained above, this backward operation cannot be implemented
in pipeline. Therefore, in our implementation, when vote is
decremented to zero, we must decide whether to evict the
residing flow before checking next_hop. To address this issue,
we consider dividing BalanceSketch into two parts: a selector
and a scheduler. The selector detects FlowBursts and informs
the scheduler to schedule them. And the scheduler maintains
the next hop information for all scheduled flows. Once a flow
is selected to schedule and enters the scheduler, it will be kept
until ends. In this way, we approximately implement the software
operation of BalanceSketch in a pipelined manner.

Hardware constraints: In Section III-F, we propose a field
combination technique to combine vote and next_hop fields
into one vote_hop field. However, if we combine these two
fields in our hardware implementation, there will be three fields
that have pairwise dependencies on each other: flow_1ID,
timestamp, and vote_hop. For example, for each incoming
packet, we first check £1ow_ID field, and then update t imes -
tamp and vote_hop field. After checking timestamp and
vote_hop, we decide whether to evict the residing flow by
changing £1ow_1ID field. Unfortunately, P4 [77] only supports
simultaneously accessing at most two variables. Thus, we need
a kind of redundant design to resolve the mutual dependencies
of the three fields, which is done by creating a duplicate for each
field in our implementation.

2) Workflow: As shown in Fig. 8, the workload of BalanceS-
ketch has two parts: a selector and a scheduler. The selector
detects FlowBursts and selects the flows to be scheduled. The
scheduler keeps the next hop information of the scheduled flows.
Both the two parts are implemented in ingress pipeline.

Selector: Each bucket in selector consists of three fields:
flow_ID, vote, and timestamp. The selector uses two
registers, where £low_IDs and votes are implemented in
one register, and timestamps in another. For each incoming
packet of f;, we first check and update the hashed £1ow_ID and
vote in the first register, i.e. increment vote if ID matches
and decrement it otherwise. If vote is decremented to zero,
we replace flow_ID with f;. Then we access the hashed
timestamp in the second register: 1) We check whether the

A Ingress Pipeline
777: 7777777777777777777 ! 777777777777777777777777777 1
| | chedule if flow ID matches | |
| Register4 [_Next hop | [@ Schedule if flow ID match
H A i
A
. @ Update ID, timestamp, and
Register3 Tir P next_hop if the flag is set
@ Clear outdated bucket | Rant2iSchedulon :
Register2 | ﬁmeftamp | [@ Detect FlowBurst and set flag |
A
[@ Check ID and inc./dec. vote
egister Vote replace f,,4 if vote is zero
A
A | Part 1: Selector

Mirror Pkts Network Pkts

Fig. 8. BalanceSketch on programmable switch.

TABLE II
H/W RESOURCES USED BY BALANCESKETCH

Resource Usage Percentage
Hash Bits 390 7.81%
SRAM 92 9.59%
Map RAM 26 4.51%
TCAM 0 0%
Stateful ALU 13 27.08%
VLIW instr 16 4.17%
Match Xbar 109 7.10%

bucket is outdated, i.e., check whether the time gap exceeds A. If
s0, we create a mirror packet and use it to clear the bucket. 2) We
check whether the packet is the start of a FlowBurst, i.e., check
whether ID matches, vote exceeds F, and time gap exceeds
0. If so, we inform the scheduler to manipulate this flow by
setting a temporary variable sch_flag. 3) We finally update
the t imestamp to the current time ¢,,,,, if ID matches.

Scheduler: Each bucket in scheduler consists of three fields:
flow_ID, timestamp, and next_hop. The scheduler also
uses two registers, where f1low_ID and timestamp are im-
plemented in one register, and next_hop in another. For each
incoming packet of f;, if it is the start of a FlowBurst, i.e.,
sch_flag is set, we try to update the scheduler: we check
the hashed flow_ID and timestamp. If ID matches or the
timestamp is outdated (smaller than ¢,,,,, — A), we update
flow_ID to f;, timestamp to t,.w, and next_hop to a
randomly chosen next hop. Finally, if the flow_ID is f;, we
forward the packet through next_hop. Otherwise, we forward
the packet using ECMP.

3) Hardware Resources Utilization: We show the utilization
of different types of hardware resources in Table II. We can
see that the average resources usage is less than 10% across all
resources, except for Stateful ALUs, which is used for accessing
registers and performing transactional read-test-write operations
on BalanceSketch. We implement BalanceSketch in 9 stages
on Tofino switch: 4 stages for the selector and 2 stages for
the scheduler. In addition, we use 3 stages to implement the
basic functions of the switch, such as route matching and packet
forwarding.

C. Discussion

BurstBalancer differentiates itself by manipulating only a
small fraction of flows. This aspect enables it to seamlessly
integrate with numerous network measurement and management

942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

systems, including but not limited to 007 [37] and HPCC [42].
To illustrate, let’s consider the 007 system, which assumes all
flows follow ECMP. After detecting TCP retransmission on
end-hosts, 007 triggers a path discovery mechanism to acquire
the routing links of the victim flow. Subsequently, it employs a
voting scheme based on the paths of flows that had retransmis-
sions, and the top-voted links are reported in each measurement
epoch. In LetFlow, all flows have unfixed forwarding path, which
changes rapidly and randomly, making the path tracing scheme
impossible to implement. By contrast, in BurstBalancer, most
flows follow ECMP and thus have fixed forwarding paths. In
BurstBalancer, if a TCP retransmission is detected for a ECMP
flow, 007 can still trace its forwarding path and update the votes
for each link along the path. The voting outcomes can then
accurately reflect the real-time congestion level of each link.

Thus, BurstBalancer maintains its compatibility with systems
like 007.

V. EXPERIMENTAL RESULTS

We extensively evaluate BurstBalancer (BB) with CPU ex-
periments (Section V-A), large-scale simulations (Section V-B),
and testbed experiments (Section V-C). Our experiments aim to
answer the following questions.

® Can BalanceSketch accurately detect FlowBursts? We im-
plement BalanceSketch using C++ and evaluate its accu-
racy. The results show that BalanceSketch achieves > 90%
Recall Rate in finding FlowBursts. (Section V-A1l)

e Can BurstBalancer manipulate less flows to balance the
traffic ? We evaluate the load balance performance of Burst-
Balancer on a single switch, confirming that compared
to LetFlow [2], BurstBalancer manipulates 58 times less
flows while better balances the traffic. (Section V-A2)

e [n symmetric topologies, can BurstBalancer better bal-
ance the traffic? We extensively evaluate BurstBalancer
using simulations. As a whole, BurstBalancer achieves
5%~35% better FCT than state-of-the-art LetFlow [2] and
DRILL [14] in symmetric topologies. (Section V-B)

® [n asymmetric topologies, can BurstBalancer better bal-
ance the traffic? We evaluate BurstBalancer on a small-
scale testbed with asymmetry. The results show that Burst-
Balancer achieves up to 30x better FCT than LetFlow and
up to 6.4 better FCT than WCMP [21]. (Section V-C)

® Can BurstBalancer be well deployed into commercial
switches? We evaluate BurstBalancer on an electronic
system level (ESL) simulation platform. The cycle-level
results show that BalanceSketch can be well deployed
into commercial chips and BurstBalancer achieves good
load balancing performance in RDMA networks. (Sec-
tion V-B2)

Metrics: We use flow completion time (FCT) as the primary
metric. We also consider the statistics of the queue lengths across
ports and the packet reordering ratio. We use the Recall Rate
(RR) and Average Relative Error (ARE) to evaluate the accuracy
of BalanceSketch, which are defined as follows.

1) Recall Rate (RR): Ratio of the number of correctly reported
instances to the number of ground-truth instances.

2) Average Relative Error (ARE): ﬁ > few ni — il /ni,
where n; is the real size/timespan of FlowBurst f;, n; is its
estimated size/timespan, and W is the set of all FlowBursts.

Workloads: We use three realistic workloads and one synthetic
workload: 1) Web search workload [84] from a production
cluster running web search services, where the average flow size
is ~ 2.5 x 109 bytes; 2) RPC workload [85] that contains many
small flows, where the average flow size is ~ 2 X 102 bytes; 3)
Enterprise workload that is derived from our Huawei data center
running Hadoop applications, where the average flow size is
~ 5.7 x 10* bytes. 4) Synthetic workload that is of heavy-tailed
distribution, where the average flow size is ~ 30 packets. The
traffic distribution is shown in Fig. 9. All the four workloads are
heavy-tailed: a small fraction of large flows contribute to most
traffic.

Parameter selection: We set the parameters of BurstBalancer
intuitively: 1) We set the flowlet timeout threshold ¢ to a sub-RTT
timescale. As suggested in LetFlow [2], § controls the trade-off
between load balance and packet reordering. Larger § goes with
fewer reordering packets and greater risk of load imbalance. A
sub-RTT timescale § can well divide TCP bursts into flowlets and
achieve good performance. 2) We set the flow timeout threshold
A to aRTT timescale. BalanceSketch uses A to identify whether
aresiding flow ends, so we set A to 3~5 times of RTT. 3) We set
the voting threshold F to a small value, because we find that the
BalanceSketch using small F can accurately detect FlowBursts.

A. CPU Experiments

1) Performance of BalanceSketch: We evaluate the perfor-
mance of BalanceSketch under small memory usage. As we are
the first to propose the concept of FlowBurst, and considering
that there are no existing works that can be directly used to find
FlowBursts, we implement the strawman solution described in
Section III-A as the baseline approach. We implement basic
BalanceSketch, and the optimized BalanceSketch using 16-bit
flow ID fingerprints and 8-bit compact timestamps.

Dataset: We use the IMC packet traces [54] collected in a data
center network, which contains about 19.9 M packets belonging
to 7.6 M different flows. We set the flowlet threshold § = 50us,
set V to the 70th percentile of the speed of all active flowlets, and
set 1y, to the size of the 200th largest flowlets with >)V speed.
In other words, we define the top-200 largest flowlets with > V
speed as FlowBursts.

Accuracy of basic BalanceSketch (Fig. 10(a)): We find that
the RR of BalanceSketch greatly outperforms the strawman
solution, and the RR of the optimized BalanceSketch is higher
than basic BalanceSketch. Compared to the strawman solution,
RR of BalanceSketch is about 20% higher on average. The
optimized BalanceSketch improves RR by about 10% ~ 33%
compared to the basic version.

Accuracy of multi-cell BalanceSketch (Fig. 10(b)): We find
that for multi-cell BalanceSketch, larger d goes with higher RR.
Compared to the basic BalanceSketch, the multi-cell BalanceS-
ketch with d = 8 improves RR by about 20% on average. The
results show that when using 50 KB of memory, the multi-cell
BalanceSketch with d = 8 achieves RR of 90%.

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 943

101 — Flows 1:01— Flows
Bytes Bytes

00 0.0
100 10t 10" 100 10 10 100 100 10f 10
Flow Size (Bytes) Flow Size (Bytes)

(a) Web search. (b) RPC.

5

Fig. 9.

1.0 Flows 1.0
Bytes

w 0.6
[=]

— Flows
00 Pkts
10° 10° 10" 10”100 10" 10 10
Flow Size (Bytes)

(c) Enterprise.

0

Flow Size (pkts)

(d) Synthetic.

Traffic distributions. The Bytes (Pkts) CDF shows the distribution of traffic bytes (packets) across flow sizes.

o
2] o—06%— Strawman
é. 02 ~&- BalanceSketch

00 - Optimized BSketch 00

—o-d=8

-4 Strawman
~&+- BalanceSketch 0
10 —7 Optimized BSketch

40{-©— Strawman
~&+- BalanceSketch

Throughput (Mops)

—s7 Optimized BSketch

2
10 20 30 40 50 10 20 30 40 50 10 20

Memory Usage (KB)

(a) BalanceSketch.

Memory Usage (KB)

(b) Multi-cell BSketch.

Fig. 10.

Accuracy of FlowBurst size estimation (Fig. 10(c)—(d)): We
find that the ARE of BalanceSketch is one order of magnitude
lower than the strawman solution, and the ARE of the opti-
mized BalanceSketch is lower than basic BalanceSketch. When
using 40 KB of memory, ARE of the strawman solution, the
basic BalanceSketch, and the optimized BalanceSketch are 1.51,
0.20, and 0.13, respectively. We also find that for multi-cell
BalanceSketch, larger d goes with lower ARE. Compared to the
basic BalanceSketch, the multi-cell BalanceSketch with d = &
improves ARE by 1 ~ 2 orders of magnitudes on average. When
using 50 KB of memory, the multi-cell BalanceSketch with
d = 8 achieves ARE of 7.6 x 1074,

Speed of BalanceSketch (Fig. 10(e)): We find that on CPU
platform, our BalanceSketch achieves >60 Million operations
per seconds processing speed, which is faster than most sketch
algorithms [75]. In our hardware implementation (Section V-C),
we deploy BalanceSketch into the pipeline of the switch ASICs,
whose speed is only affected by the clock frequency. For exam-
ple, the Tofino switches used in our testbed have 1.2 GHz clock
frequency.

Analysis: We find that BalanceSketch greatly outperforms the
strawman solution. The results are consistent with our analysis
in Section III-A. The main reason is that the strawman solution
records information of all flowlets, most of which are unnec-
essary flowlets, incurring enormous redundancy. In contrast,
BalanceSketch only keeps FlowBursts and discards unnecessary
flowlets, gaining high memory efficiency. We also find that
optimized/multi-cell BalanceSketch is more efficient. The results
show that 16-bit flow fingerprint and 8-bit compact timestamp
are sufficient for good performance. In summary, BalanceSketch
well achieves our design goal of accurately identifying Flow-
Bursts using small memory.

2) Load Balance Performance on a Single Switch: We eval-
uate the load balance performance of BurstBalancer on single
switch and compare it against ECMP [20] and LetFlow [2]. We
use C++ to simulate the load balancing module of a 128-port
switch, on which we deploy the Flowlet Tables (LetFlow) and the

Memory Usage (KB)
(c) BalanceSketch.

"o 20 30 40 50 10 20 30 40 50
Memory Usage (KB) Memory Usage (KB)

(d) Multi-cell BSketch. (e) Speed of BalanceSketch.

40 50

Performance of BalanceSketch (BSketch) and optimized BalanceSketch.

BalanceSketchs with different sizes (2 K/4 K # entries/buckets).
In our setting, there are two switches connected by 128 links.
We generate the traffic according to the synthetic workload
(Fig. 9(d)) at switch 1. We measure the traffic distribution across
the 128 links, and count the reordering packets at switch 2.

Load distribution across all ports (Fig. 11(a)): We find that
compared to LetFlow, BurstBalancer better balances the traf-
fic using smaller memory. The results show that the standard
deviation of BurstBalancer using 2 K buckets is smaller than
LetFlow using 4 K entries. This is because due to the limited
memory and the large number of concurrent flows, LetFlow
inevitably regards multiple flows as one, leading the number
of detected flowlets decreases a lot. In other words, the large
volume of concurrent flows makes LetFlow harder to divide
flows into flowlets, resulting in unbalanced load.

Ratio of manipulated flows (Fig. 11(b)): We find that com-
pared to LetFlow, BurstBalancer manipulates 58 fewer flows
while better balance the load. The results show that the manip-
ulated flows of BurstBalancer is 1.0 %~1.65%, while that of
LetFlow is > 95%. Note the the load balance performance of
BurstBalancer_2 K is better than LetFlow_4 K.

Ratio of reordering packets (Fig. 11(c)): We find that com-
pared to LetFlow using 4 K entries, BurstBalancer using 2 K
buckets has less reordering packets while achieves better load
balance performance. We simulated a scenario where two
switches S7 and So are connected by 128 links. We generate
traffic at S, and measure the packet reordering rate at So by
counting the mismatches between actual and expected sequence
number.

Load distribution for high-density traffic (Fig. 11(d)): To
better demonstrate the advantages of our BurstBalancer over
LetFlow, we accelerate the synthetic workload by 5 times to
create a high-density traffic model. We repeat the experiments
using LetFlow_4 K and BurstBalancer_2 K. The results show
that the performance of LetFlow and ECMP is almost the same,
because the high-density traffic makes it difficult for LetFlow
to detect flowlets, and thus LetFlow degenerates into ECMP.

944

mm ECMP

E LetFlow_2K
B LetFlow_4K
mm BB_2K (ours)
== BB_4K (ours)

I LetFlow_2K

B LetFlow_4K
95 = BB_2K (ours)
mm BB_4K (ours)

24

Standard Deviation
(Normalized by Mean)

1

Manipulated Flows (%)

0.00

(a) # pkts at all ports. (bo) Manipulated flows.
p p p

Fig. 11. Performance of BalanceSketch on single switch.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

o
2

= ECMP
==« LetFlow

! — BurstBalancer (ours)

0 32 64 96 128
Port (sorted by load)

(d) Load distribution.

B LetFlow_2K
B LetFlow_4K
= BB_2K (ours)
== BB_4K (ours)

<

>
)
2
B

Normalized Load (pkts.)
S I
&

Reordering Pkts (%)
o

N
o
=)
3

(c) Reordering pkts.

o
®
3

e

@
=
3

1.0 —
3

gos

Los

©

Recall Rate (RR)
Flow Ratio (%)
&

8

0.4 «
T 06 80 y
o 20 o =1Y
~&- Strawman = T=1%
202 = BalanceSketch " & 02 eT=3%
0.0 —7- Optimized BSketch 04 0 0.0 -o-T=5%

—— BalanceSketch
—— Optimized BSketch

—— BalanceSketch

-~ Optimized BSketch

©
3

Packet Ratio (%)

10 70 100 10

40 100 10 20
Memory Usage (KB)

40 70
Memory Usage (KB)

Time (s)

30 40 50 60 10 20 30 40 50 60 10

Time (s)

100 190 280
Memory Usage (KB)

(a) Heavy hitter detection. (b) Heavy hitter detection. (c) Ratio of recorded flows. (d) Ratio of recorded pkts. (e) Packet drops detection.

Fig. 12.

BurstBalancer can still well balance the traffic since it only
manipulates critical flowlets and ignores abundant unnecessary
flowlets.

3) Performance on Network Measurement: We evaluate the
performance of BurstBalancer on performing the measure-
ment tasks in Section V-A3. We conduct experiments using
CAIDA [86] dataset. For the experiments of locating packet
drops and inflated queuing delay, we randomly choose 7 packets
and let the switch proactively drops these packets or increases
their queuing delays.

Accuracy on finding per-hop heavy hitters (Fig. 12(a)—(d)): We
find that BalanceSketch can accurately finding heavy hitters
with small memory usage. As shown in Fig. 12(a), when using
50 KB memory, BalanceSketch achieves >95% Recall Rate
in finding top-200 heavy hitters, which is significantly higher
than that of the strawman solution. Fig. 12(b) shows the per-
formance of multi-cell BalanceSketch. We can see that larger
d goes with higher accuracy for heavy hitter detection. We
fix the memory usage to 300 KB, and illustrate the ratio of
flows/packets recorded in BalanceSketch (i.e., the packets/flows
that are manipulated by BurstBalancer) in Fig. 12(c)—(d). We can
see that BalanceSketch only records a small fraction of flows (<
20%), and these flows contribute to a large amount of traffic (>
80%), meaning that BalanceSketch can effectively finding those
high-bandwidth-consuming flows.

Accuracy on detecting packet drops (Fig. 12(e)): We find that
BurstBalancer achieves up to 97% Recall Rate in detecting
packet drops. We can see that larger packet drop rate goes with
higher accuracy, and even under 7 = 0.5% packet drop rate,
BurstBalancer can still achieve up to 73% Recall Rate to detect
packet drops.

Accuracy on detecting inflated queuing delays (Fig. 13): We
find that BurstBalancer achieves up to 94% Recall Rate in
detecting inflated queuing delays. From Fig. 13(a), we can see

Performance on finding high-bandwidth-consuming flows (a-d) and detecting packet drops (e).

ARE R
tatd

- T=1%
4 - T1=3% .
0.0 - T1=5% 10

10 280 10 100 180
Memory Usage (KB)

(b) FlowBurst timespan est.

100 150 280
Memory Usage (KB)

(a) Inflated delay detection.

Fig. 13. Performance on detecting inflated delays.

that as the inflated delay rate decreases, the accuracy of Burst-
Balancer only slightly decreases. Under 7 = 0.5% delay rate,
BurstBalancer can still achieve up to 90% Recall Rate to detect
inflated delays. We also evaluate the accuracy of BurstBalancer
on estimating the timespans of FlowBursts in Fig. 13(b). We
can see that BalanceSketch achieves up to 1073 ARE, and the
basic BalanceSketch can still achieves nearly 102 ARE, which
is very accurate.

B. Simulations

1) Event-Level Simulations (NS-2): We evaluate BurstBal-
ancer using an event-level network simulator, Network Simula-
tor 2 (NS-2) [56], in large-scale symmetric topologies, where we
compare BurstBalancer against ECMP [20], DRILL [14], and
LetFlow [2] under different network loads. We also evaluate the
performance of BurstBalancer and LetFlow using tables of dif-
ferent sizes, validating the memory efficiency of BurstBalancer.

Topology and traffic: We conduct experiments in a two-tier
Leaf-Spine topology with 8 spine and 8 leaf switches. Each leaf
switch is connected to 16 servers. All links run at 10 Gbps.
Here, we have a convergence rate of 2 at the leaf level, which is
common in modern data centers [2], [3]. We configure 90% of
the bandwidth to deliver the web search workload (Fig. 9(a)), and

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC

945

@
a
=}
S

& ECMP - ECmP 0 & ECMP ~o- ECMP
4601 -=- DRILL % . |-= DRILL % 40| = DRILL % |=-DRILL
£ |- LetFlow £ 041 7 LetFlow £ |- LetFlow £ 400{ —7— LetFlow
=501 _o- BB (ours) = —-o- BB (ours) ~ .| —e—- BB (ours) ~ —o- BB (ours)
- - = 30 '5
240 Qo3 (4 Q 300
<3 = ¥} < 20 £
t) @ 0.2 R @ D 200
= H] =10 =
2 : - -
9 d 100
50 60 70 80 9 100 7% 6 70 8 s 160 % 6 70 8 s 100 50 60 70 80 90 100
Network Load (%) Network Load (%) Network Load (%) Network Load (%)
(a) All flows. (b) Small flows (<0.1MB). (c) Medium flows. (d) Large flows (>10MB).
Fig. 14. NS-2 simulation results: FCT statistics under different network loads.
100 0.50 60 700
—&— LetFlow —&— LetFlow —6— LetFlow —— LetFlow
I ~i- BurstBalancer (ours) > —&- BurstBalancer (ours) @ 50 ~&- BurstBalancer (ours) m ~i- BurstBalancer (ours)
£ 80 £ 0.45 £ £
5 5 :
e 60 b 0.40 8 8
c c c 30 c
g 40 g 0.35 g g
= s s2 =
20 30 120 210 300 0. 30 120 210 300 10 30 120 210 300 30 120 210 300
Buckets # Buckets # Buckets # Buckets
(a) All flows. (b) Small flows (<0.1MB). (c) Medium flows. (d) Large flows (>10MB).
Fig. 15. NS-2 simulation results: FCT statistics of LetFlow and BurstBalancer using tables of different sizes.
12 40 =
—_ -~ Random -#- PS -~ LetFlow —_ -~ Random -#- PS - LetFlow 9 125
& 10| -5 ECMP - DRILL & BB (ours)) = ECMP - DRILL -o- BB (ours) < V—v 9y g g g g
'E_ :nc_ 30 3‘@ 10.0
8 —s—%—g ¢ = = [o Random —w DRILL
‘g‘7 6 20 2 -5 ECMP o LetFlow
c —
s 4 ?\6‘97 o g g 4@ 3 H/e\e\e‘e\e g 5.0 - PS -&- BB (ours)
o g 10 o— 5251 0—o—o— 5o
Dotk & e
< & | F ¥ ¥ » * * ol & 00
°% 75 10 135 10 175 200 % 75 10 135 150 175 200 50 75 100 125 150 175 200
Buckets # Buckets # Buckets
(a) Average queue length. (b) SD of queue length. (c) Ratio of reordering pkts.
Fig. 16. HDCN simulation results: queue length statistics and ratio of reordering packets.

the rest to deliver the RPC workload (Fig. 9(b)) as background
traffic.

Setting: For BurstBalancer and LetFlow, we configure the
BalanceSketch/Flowlet Table to have 250 buckets/entries by
default. In practice, such a small table can fit into one single
1R1W on-chip memory bank, and consumes negligible die area.
We set the flowlet threshold 6 = 200us, set the flow timeout
threshold A = 50 ms, and set F = 0.

FCT versus. network load (Fig. 14): We find that the overall
average FCT of BurstBalancer is always lower than ECMP,
DRILL, and LetFlow under different network loads. As shown
in Fig. 14(a), as network loads vary, the overall average FCT
of BurstBalancer changes from 13.6ms to 54.9ms, while that
of ECMP, DRILL, and LetFlow changes from 14.7ms, 15.4ms,
and 15.3ms to 58.6ms, 60.6ms, and 57.7ms, respectively. In
summary, BurstBalancer achieves up to ~25.2%, ~20.1%, and
~25.8% lower overall average FCT than ECMP, DRILL, and
LetFlow, respectively. We further study the average FCT of small
flows (< 100KB), medium flows (0.1~10 MB), and large flows
(> 10MB) in Fig. 14(b)-(d). The results show that for small
flows, DRILL has the lowest average FCT because it balances
the traffic at the finest granularity. But for medium flows and
large flows, the average FCT of DRILL is high because it suffers
significant packet reordering. BurstBalancer always achieves the

lowest average FCT for medium flows and large flows among
all schemes.

FCT versus. number of buckets/entries (Fig. 15): We find
that the overall average FCT of BalanceSketch always outper-
forms LetFlow under different table sizes. The experiments are
conducted under 90% network loads. As shown in Fig. 15(a),
as the number of buckets varies, the overall average FCT of
BurstBalancer changes from 44.2ms to 40.1ms, while that of
LetFlow changes from 77.7ms to 42.2 ms. The results show that
the gap between BurstBalancer and LetFlow becomes larger
as the number of buckets decreases. This is because LetFlow
cannot accurately divide flows into flowlets under small memory
usage. In summary, BurstBalancer achieves up to ~43.1% lower
average FCT than LetFlow. We further study the average FCT
of flows of different sizes in Fig. 15(b)—(d), and the results are
similar to Fig. 15(a).

Analysis: BurstBalancer has lower FCT than LetFlow when
using the flowlet tables of the same sizes. When the amount
of storage is sufficient, BurstBalancer has similar performance
as LetFlow. When the amount of storage is small, LetFlow
has poor load balance performance but BursstBalaner can still
well balance the traffic. This is because when the number of
concurrent flows exceeds the size of the flowlet table, LetFlow
inevitably regards multiple flows as one, making it difficult to

946 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

w
o

m LetFlow_100
= LetFlow_200
== BB_100 (ours)
= BB_200 (ours)

mm LetFlow_100
= LetFlow_200
== BB_100 (ours)
= BB_200 (ours)

! [N
o o

Avg. Length (pkts)
o

g
E]
x
o
=)
<
S
o
B
°
@
4

o - 2N
o

S

=4
)

Random Least Loaded

(a) Average queue length.

Random Least Loaded

(b) Ratio of reordering pkts.

Fig. 17. Performance under different manipulating choices.

detect flowlets. And thus, LetFlow cannot well balance the traffic
when using small flowlet tables. By contrast, BurstBalancer only
manipulates a small amount of critical flowlets, which is memory
efficient.

2) ESL Simulations (HDCN): We evaluate BurstBalancer on
an electronic system level (ESL) network simulator named Hy-
per Data Center Network (HDCN), where we build a large-scale
RDMA network to observe how well can BurstBalancer balance
the load, and to what extent is the reordering ratio. We compare
BurstBalancer against ECMP [20], per-packet random routing
(Random), per-packet round-robin routing (Packet-Spray, PS),
LetFlow [2], and DRILL [14].

Platform and implementation: HDCN is an electronic system
level (ESL) simulation platform used by Huawei for years.
Developed based on SystemC kernel, HDCN offers cycle-level
simulation capability, which cannot be achieved by event-level
simulators [56], [87], [88]. HDCN integrates general switch
models and general NIC models, supports various network
topologies (FatTree, VL2, efc.), and allows users to customize
network configurations. It also offers multiple congestion con-
trol algorithms (DCQCN/ECN/PFC). In addition, HDCN uti-
lizes MPI to support distributed/multi-threaded parallel accel-
eration, achieving simulation speeds significantly higher than
current open-sourced simulators like NS2 [56], NS3 [87] and
NSPY [88]. Currently, HDCN is extensively used within Huawei
for the research and development of novel network-wide algo-
rithms and chip architectures [89]. We implement BalanceS-
ketch by extending a generalized chip model with small modi-
fications of its pipeline processing logic. We set the number of
buckets of BalanceSketch to 50 ~ 200, which can fitinto a single
IR1W on-chip memory bank. Thanks to the chip-level visibility
of HDCN to any network device, we can directly observe the
queue lengths across all fabric ports in our experiments, and use
their average or standard deviation to reflect the load balancing
performance.

Topology, traffic, and setting: We conduct experiments in a
VL2 topology with 4 core, 8 aggregation, and 8 edge switches
in 4 pods. The bandwidth of all fabric links are 100 Gbps. Each
edge switch is connected to 16 servers through 50 Gbps links.
Each server runs Remote Direct Memory Access (RDMA) [90]
transport logic in network interface card (NIC). To better observe
the distribution of traffic on multi-paths, we disable the go-
back-N mechanism of RDMA. We use the enterprise workload
(Fig. 9(c)) and configure each client in a pod to send ON-OFF
traffic to servers in the other pod, so that all traffic traverses
the fabric. The ratio of the ON/OFF duration is 1:5. The

experiments are conducted under ~75% network loads. We set
6 to about 1.5x RTT, set A = 106, and set F = 15.

Statistics of the queue lengths (Fig. 16(a)—(b)): We find that
BurstBalancer better balances the traffic than ECMP and Let-
Flow, and achieves similar load balance performance as DRILL
and per-packet random routing. As shown in Fig. 16(a), the
average queue lengths of BurstBalancer are smaller than ECMP
and LetFlow, and similar to DRILL and per-packet random
routing. Per-packet round-robin has the smallest average queue
length. Fig. 16(b) shows the standard deviation of the average
queue length across all fabric ports. The results are similar to
that of the average queue lengths.

Ratio of reordering packets (Fig. 16(c)): We find that
BurstBalancer achieves the lowest packet reordering ratio (<
1%) among candidate schemes (except ECMP). We can see
that packet-level schemes (DRILL, per-packet random, and
per-packet round-robin) have the highest reordering rate. Let-
Flow has higher reordering rate than BurstBalancer due to the
large difference in path latency caused by unbalanced load. Note
that the results in our experiments are worse than that in real
scenes because of the high-density workload.

Performance under different manipulating choices (Fig. 17):
We find that in symmetric topologies, for BurstBalancer, ran-
domly picking a port for each FlowBurst and picking the least
loaded port have similar performance. This is because Burst-
Balancer balances the traffic so well that there is little room
for improvement. For LetFlow, the difference between the two
manipulating choices is pronounced.

Analysis: Through the cycle-level results in our ESL simula-
tions, we can see that BurstBalancer well balances the traffic with
small reordering ratio in RDMA networks. Our ESL experiment
also validates that BurstBalancer can be well deployed into
commercial chips. The results have been acknowledged by the
committee of Huawei, and we have deployed BurstBalancer into
our commercial chips as a load balancing function.

C. Testbed Experiments

As described in Section IV-B, we build a small-scale testbed
in an asymmetric topology, on which we compare BurstBalancer
against WCMP [21], and LetFlow [2].

Topology and traffic: As shown in Fig. 19, we use a two-tier
Leaf-Spine topology consisting of 2 spine switches and 2 leaf
switches, each of which is connected to 8 servers.

All links run at 40 Gbps. We fail one of the two links between
a leaf and a spine to create asymmetry. We use a client-server
program to generate dynamic traffic [91], where the client ap-
plication generates requests through persistent TCP connections
based on a Poisson process, and the server application responds
with the requested data. On each leaf, we configure 6 servers
to generate requests to 6 servers under another leaf according
to the web search workload (Fig. 9(a)). We configure the other
2 servers to generate single-packet requests to 2 servers under
another leaf. The single-packet requests are used as background
traffic to improve the number of concurrent flows. We configure
the bandwidth usage of the single-packet traffic as ~ 5Gbps.

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC 947

—&- WCMP

~i- LetFlow_128
4 | 7 LetFlow_256
10" _o- BB_128 (ours)
-&—- BB_256 (ours)

—&- WCMP

~i- LetFlow_128
4 |~ LetFlow_256
10'1 _o- BB_128 (ours)
-o- BB_256 (ours)

Mean FCT (ms)
Mean FCT (ms)

am

10 40 70 100
Network Load (%)

(a) All flows.

10 40 70 100
Network Load (%)

(b) Small flows (<0.1MB).

Fig. 18.

Fig. 19. Testbed topology.

Setting: For BurstBalancer and LetFlow, we configure Bal-
anceSketch/Flowlet Table to have 128 or 256 buckets/entries.
For WCMP, we configure the weighted cost only according to the
localized link status of the switch. We set the flowlet threshold
0 = 500us, set the flow timeout threshold A = 50 ms, and set
the voting threshold F = 0.

FCT versus. network load (Fig. 18): We find that in asym-
metric typologies, the overall average FCT of BurstBalancer is
always better than WCMP and LetFlow under different network
loads. As shown in Fig. 18(a), as network loads vary, the overall
average FCT of WCMP changes from 1.62ms to 64.4ms. The
overall average FCT of BurstBalancer using BalanceSketch of
128 buckets and 256 buckets change from 1.63ms and 1.65ms
to 13.8ms and 10.2ms, respectively. And the overall average
FCT of LetFlow using Flowlet Table of 128 entries and 256
entries change from 1.64ms and 1.61ms to 232ms and 32.8ms,
respectively. Due to asymmetry, the average FCT has a sud-
den increase between 50%~60% network loads. As a whole,
the average FCT of BurstBalancer is significantly lower than
WCMP and LetFlow, and the BurstBalancer using 128 buckets
and 256 buckets have similar performance. LetFlow has higher
FCT than BurstBalancer because when using Flowlet Table of
128/256 entries. Note that when using 128 table entries, the
average FCT of LetFlow is significantly higher than the others.
This is because such small memory makes it difficult for LetFlow
to detect flowlets, and thus the next_hops in the Flowlet Table
almost remains unchanged. In LetFlow, each flow is forwarded
through the next_hop recorded in one of the 128 entries.
Since the distribution of the 128 next_hops is uneven, the
load balance performance is bad. We further study the average
FCT of flows of different sizes in Fig. 18(b)—(d). The results are
similar to that in Fig. 18(a).

Forwarding statistics of the four ports in a leaf switch
(Fig. 20):We find that in asymmetric topologies, BurstBalancer
achieves the traffic distribution closer to the optimal ratio. We
measure the number of forwarded packets of the four fabric ports
in a leaf switch (shown in Fig. 19) under 90% network loads. In
this asymmetric topology, the optimal traffic distribution ratio
among Port#l~Port#4 is 1:1:2:2. As shown in Fig. 20(a),

-o- WCMP

~i- LetFlow_128
5 | -7 LetFlow_256
101 o BB_128 (ours) e
-&- BB_256 (ours) g Y
& o

10 40 70 100
Network Load (%)

(c) Medium flows.

- WCMP

~i- LetFlow_128
—7— LetFlow_256
—o- BB_128 (ours)
- BB_256 (ours)

o,

Mean FCT (ms)
Mean FCT (ms)

1 40 70 100
Network Load (%)

(d) Large flows (>10MB).

S,

Testbed results: FCT statistics under different network loads in asymmetric topology.

o = =
® o v

Number of pkts (x108)
2

Number of pkts (x108)
o
>

S o o ¢
N

o

0 10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)

(a) # pkts (ECMP). (b) # pkts (BurstBalancer).

Fig. 20. Testbed results: Number of forwarded pkts.

for ECMP, the traffic distribution ratio is 1:0.96:1.12:1.14. This
ratio is not 1:1:1:1 thanks to the implicit feedback mechanism
of persistent connections: the probability of reusing congested
connections is small. As shown in Fig. 20(b), for BurstBalancer,
the traffic distribution ratio is 1:1.03:1.45:1.47. As explained
in LetFlow [2], flowlet switching schemes have the implicit
feedback mechanism: once a flow is routed through a congested
link, this flow is more likely to experience a flowlet timeout,
and thus it is more likely to be rerouted through other links. The
results show that BurstBalancer also keeps this implicit feedback
mechanism, and achieves the traffic distribution closer to the
optimal ratio.

D. Discussion

In our experiments, we juxtaposed the load balance perfor-
mance of BurstBalancer with LetFlow under the same flowlet
table sizes. With sufficient memory allocated for the flowlet ta-
ble, the load balance performance of BurstBalancer and LetFlow
appear to be similar. However, it is worth noticing that BurstBal-
ancer only manipulates a small fraction of flows (<2%), whereas
LetFlow manipulates almost all flows (>98%) (Fig. 11(b)). The
forwarding paths of most flows in BurstBalancer are fixed and
predictable. As a result, BurstBalancer experiences less packet
reordering, thereby simplifying network measurement and man-
agement. On the other hand, under conditions of limited avail-
able memory for the flowlet table, BurstBalancer outperforms
LetFlow in load balance performance. Considering the current
trend of switch bandwidth growing much faster than the on-chip
SRAM, we project that BurstBalancer’s efficient memory usage
will become increasingly valuable for future networks.

VI. CONCLUSION

This paper presents BurstBalancer, an efficient load balancing
system for data center networks. The design philosophy of
BurstBalancer is to only manipulate a small amount of critical

948

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

flowlets, which are formally defined as FlowBursts. BurstBal-
ancer proposes a compact sketch algorithm, namely BalanceS-
ketch, to accurately identify and manipulate most FlowBursts
under small memory usage. Experiments on a testbed and sim-
ulations show that BurstBalancer outperforms state-of-the-art
LetFlow in both symmetric and asymmetric topologies, while
manipulates less flows at the same time. Our ESL platform
(HDCN) has verified the effectiveness and efficiency of Burst-
Balancer on commercial chips. The results have been acknowl-
edged by the committee of Huawei, and we have deployed
BurstBalancer into our commercial chips as a load balancing
function.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their valuable suggestions.

(1]

(2]

(3]

[4]

[3]

(6]

(71

(8]

[l
[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Z. Liu et al., “BurstBalancer: Do less, better balance for large-scale
data center traffic,” in Proc. IEEE 30th Int. Conf. Netw. Protoc., 2022,
pp. 1-13.

E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switching,” in
Proc. 14th USENIX Symp. Netw. Syst. Des. Implementation, 2017,
pp- 407-420.

J.Zhang, F.R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, “Load balancing
in data center networks: A survey,” IEEE Commun. Surveys Tuts., vol. 20,
no. 3, pp. 23242352, Third Quarter, 2018.

X. Gao, L. Kong, W. Li, W. Liang, Y. Chen, and G. Chen, “Traffic load
balancing schemes for devolved controllers in mega data centers,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 572-585, Feb. 2017.

N. Liu, A. Haider, D. Jin, and X.-H. Sun, “Modeling and simulation of
extreme-scale fat-tree networks for HPC systems and data centers,” ACM
Trans. Model. Comput. Simul., vol. 27, no. 2, pp. 1-23, 2017.

N. Liu, A. Haider, X.-H. Sun, and D. Jin, “FatTreeSim: Modeling large-
scale fat-tree networks for HPC systems and data centers using parallel
and discrete event simulation,” in Proc. 3rd ACM SIGSIM Conf. Princ.
Adv. Discrete Simul., 2015, pp. 199-210.

D. Wang, X.-H. Sun, N. Hu, and N. Sun, “EthSpeeder: A high-performance
scalable fault-tolerant ethernet network architecture for data center,” in
Proc. IEEE 6th Int. Conf. Netw. Architecture Storage, 2011, pp. 355-363.
M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63-74, 2008.

A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM Conf. Data Commun., 2009, pp. 51-62.

P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness for
load balance in networks-on-chip,” in Proc. IEEE 14th Int. Symp. High
Perform. Comput. Architecture, 2008, pp. 203-214.

O. Lysne, T. Skeie, S.-A. Reinemo, and I. Theiss, “Layered routing in
irregular networks,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 1,
pp. 51-65, Jan. 2006.

J. Alvarez-Horcajo, D. Lopez-Pajares, J. M. Arco, J. A. Carral, and I.
Martinez- Yelmo, “TCP-path: Improving load balance by network explo-
ration,” in Proc. IEEE 6th Int. Conf. Cloud Netw., 2017, pp. 1-6.

A. K. Y. Cheung and H.-A. Jacobsen, “Dynamic load balancing in dis-
tributed content-based publish/subscribe,” in Proc. ACM/IFIP/USENIX
Int. Conf. Distrib. Syst. Platforms Open Distrib. Process., 2006,
pp. 141-161.

S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,” in
Proc. Conf. ACM Special Int. Group Data Commun., 2017, pp. 225-238.
M. Handley et al., “Re-architecting datacenter networks and stacks for low
latency and high performance,” in Proc. Conf. ACM Special Int. Group
Data Commun., 2017, pp. 29-42.

Y. Lu et al., “Multi-path transport for RDMA in datacenters,” in Proc. 15th
USENIX Conf. Netw. Syst. Des. Implementation, 2018, pp. 357-371.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Caoetal., “Per-packet load-balanced, low-latency routing for clos-based
data center networks,” in Proc. 9th ACM Conf. Emerg. Netw. Exp. Technol.,
2013, pp. 49-60.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” in Proc. ACM
SIGCOMM Conf. Appl. Technol. Architectures Protoc. Comput. Commun.,
2012, pp. 139-150.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass:
A centralized “zero-queue” datacenter network,” in Proc. Conf. ACM
Special Int. Group Data Commun., 2014, pp. 307-318.

C. Hopps et al., “Analysis of an equal-cost multi-path algorithm,” Tech.
Rep. RFC 2992, Nov. 2000.

J. Zhou et al., “WCMP: Weighted cost multipathing for improved fairness
in data centers,” in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 1-14.
A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “FlowBender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” in Proc. 10th ACM Int. Conf. Emerg. Netw. Exp. Technol., 2014,
pp. 149-160.

L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep reinforce-
ment learning for datacenter-scale automatic traffic optimization,” in Proc.
Conf. ACM Special Int. Group Data Commun., 2018, pp. 191-205.

F. De Pellegrini, L. Maggi, A. Massaro, D. Saucez, J. Leguay, and E.
Altman, “Blind, adaptive and robust flow segmentation in datacenters,” in
Proc. IEEE Conf. Comput. Commun., 2018, pp. 10-18.

M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation,
San Jose, USA, 2010, pp. 89-92.

A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead dat-
acenter traffic management using end-host-based elephant detection,” in
Proc. IEEE Conf. Comput. Commun., 2011, pp. 1629-1637.

C. Guo et al., “RDMA over commodity ethernet at scale,” in Proc. ACM
SIGCOMM Conf., 2016, pp. 202-215.

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing
without packet reordering,” SIGCOMM Comput. Commun. Rev., vol. 37,
no. 2, pp. 51-62, 2007.

F. Fan, B. Hu, and K. L. Yeung, “Routing in black box: Modularized
load balancing for multipath data center networks,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1639-1647.

Y. Li et al., “DumbNet: A smart data center network fabric with dumb
switches,” in Proc. 13th EuroSys Conf., 2018, Art. no. 9.

M. Alizadehetal., “CONGA: Distributed congestion-aware load balancing
for datacenters,” in Proc. Conf. ACM Special Int. Group Data Commun.,
2014, pp. 503-514.

N. Katta, M. Hira, A. Ghag, C. Kim, L. Keslassy, and J. Rexford, “CLOVE:
How i learned to stop worrying about the core and love the edge,” in Proc.
15th ACM Workshop Hot Topics Netw., 2016, pp. 155-161.

K. He et al., “Presto: Edge-based load balancing for fast datacenter
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 465478, 2015.

S. Sinha, S. Kandula, and D. Katabi, “Harnessing tcp’s burstiness with
flowlet switching,” in Proc. 3rd ACM Workshop Hot Topics Netw., 2004.
S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “Effective delay-
controlled load distribution over multipath networks,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 22, no. 10, pp. 1730-1741, Oct. 2011.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely and
precise triggers in data centers,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 129-143.

B. Arzanietal., “007: Democratically finding the cause of packet drops,” in
Proc. 15th USENIX Symp. Netw. Syst. Des. Implementation,2018, pp.419—
435.

Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “Correlation-

based traffic analysis attacks on anonymity networks,” [EEE
Trans. Parallel Distrib. Syst., vol. 21, no. 7, pp. 954-967,
Jul. 2010.

H. Huang, S. Guo, P. Li, W. Liang, and A. Y. Zomaya, “Cost minimization
for rule caching in software defined networking,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 4, pp. 1007-1016, Apr. 2016.

Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. Internet Meas. Conf.,
2017, pp. 78-85.

B. Schlinker et al., “Engineering egress with edge fabric: Steering oceans
of content to the world,” in Proc. Conf. ACM Special Int. Group Data
Commun., 2017, pp. 418-431.

Y. Li et al., “HPCC: High precision congestion control,” in Proc. Conf.
ACM Special Int. Group Data Commun., 2019, pp. 44-58.

LIU et al.: BURSTBALANCER: DO LESS, BETTER BALANCE FOR LARGE-SCALE DATA CENTER TRAFFIC

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]
[54]

[55

[56]
(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “PINT: Probabilistic in-band network telemetry,” in Proc. Annu.
Conf. ACM Special Int. Group Data Commun. Appl. Technol. Architectures
Protoc. Comput. Commun., 2020, pp. 662—680.

R. Govindan, 1. Minei, M. Kallahalla, B. Koley, and A. Vah-
dat, “Evolve or die: High-availability design principles drawn from
Googles network infrastructure,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 58-72.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao, “Efficient querying
and maintenance of network provenance at internet-scale,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2010, pp. 615-626.

P. Tammana, R. Agarwal, and M. Lee, “CherryPick: Tracing
packet trajectory in software-defined datacenter networks,” in Proc.
Ist ACM SIGCOMM Symp. Softw. Defined Netw. Res., 2015,
pp- 1-7.

B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred, “Taking the
blame game out of data centers operations with NetPoirot,” in Proc. Conf.
ACM Special Int. Group Data Commun., 2016, pp. 440-453.

W. Wang, X. C. Wu, P. Tammana, A. Chen, and T. E. Ng, “Closed-loop
network performance monitoring and diagnosis with SpiderMon,” in Proc.
USENIX Conf. Netw. Syst. Des. Implementation, 2022, pp. 267-285.

P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with PathDump,” in Proc. 12th USENIX Conf. Operating Syst.
Des. Implementation, 2016, pp. 233-248.

P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with SwitchPointer,” in Proc. 15th USENIX Conf. Netw.
Syst. Des. Implementation, 2018, pp. 453-456.

A. Eswaradass, X.-H. Sun, and M. Wu, “Network bandwidth pre-
dictor (NBP): A system for online network performance forecast-
ing,” in Proc. 6th IEEE Int. Symp. Cluster Comput. Grid, 2006,
pp. 4 pp-—268.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. 9th ACM
SIGCOMM Conf. Internet Meas., 2009, pp. 202-208.

M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. Conf. ACM Special Int. Group Data Commun., 2013, pp. 435-446.
Data Set for IMC 2010 Data Center Measurement. [Online]. Available:
https://pages.cs.wisc.edu/tbenson/IMC10_Data.html

Barefoot tofino: World’s fastest p4-programmable ethernet switch asics.
[Online]. Available: https://barefootnetworks.com/products/brief-tofino/
Network Simulator (ns-2). [Online]. Available: https://www.isi.edu/
nsnam/ns/

The source codes related to burstbalancer. [Online]. Available: https:/
github.com/BurstBalancer/Burst-Balancer

A. Kabbani and M. Sharif, “Flier: Flow-level congestion-aware routing
for direct-connect data centers,” in Proc. IEEE Conf. Comput. Commun.,
2017, pp. 1-9.

P. Wang, G. Trimponias, H. Xu, and Y. Geng, “Luopan: Sampling-based
load balancing in data center networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 1, pp. 133-145, Jan. 2019.

H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. Conf. ACM Special Int.
Group Data Commun., 2017, pp. 253-266.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M.
Handley, “Improving datacenter performance and robustness with mul-
tipath TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 266277, 2011.

Z.Li,J. Bi, Y. Zhang, A. B. Dogar, and C. Qin, “VMS: Traffic balancing
based on virtual switches in datacenter networks,” in Proc. IEEE 25th Int.
Conf. Netw. Protoc., 2017, pp. 1-10.

T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw. Exp.
Technol., 2011, pp. 1-12.

K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and D. Walker,
“Adaptive weighted traffic splitting in programmable data planes,” in Proc.
Symp. SDN Res., 2020, pp. 103—109.

L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics of
a congestion control algorithm: The effects of two-way traffic,” in Proc.
Conf. Commun. Archit. Protoc., 1991, pp. 133-147.

Z.-L. Zhang, V. J. Ribeiro, S. Moon, and C. Diot, “Small-time scaling
behaviors of internet backbone traffic: An empirical study,” in Proc. [EEE
Conf. Comput. Commun., 2003, pp. 1826-1836.

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]
(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]
[86]
[87]
[88]
[89]

[90]

[91]

949

K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D.
Walker, “Contra: A programmable system for performance-aware rout-
ing,” in Proc. 17th USENIX Conf. Netw. Syst. Des. Implementation, 2020,
pp- 701-721.

N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA: Scalable
load balancing using programmable data planes,” in Proc. Symp. SDN Res.,
2016, pp. 1-12.

X. Li et al., “Detection and identification of network anomalies using
sketch subspaces,” in Proc. 6th ACM SIGCOMM Conf. Internet Meas.,
2006, pp. 147-152.

A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. Int. Conf. Database
Theory, Springer, 2005, pp. 398-412.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp- 58-75, 2005.

C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
pp. 323-336, 2002.

M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” in Proc. Int. Collog. Automata Lang. Program., Springer,
2002, pp. 693-703.

M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation for high
similarities using odd sketches,” in Proc. 23rd Int. Conf. World Wide Web,
2014, pp. 109-118.

T. Yang et al., “Elastic sketch: Adaptive and fast network-wide measure-
ments,” in Proc. Conf. ACM Special Int. Group Data Commun., 2018,
pp. 561-575.

L. Liuetal., “SF-sketch: A two-stage sketch for data streams,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 10, pp. 2263-2276, Oct. 2020.
P4-16language specification. [Online]. Available: https://p4.org/p4-spec/
docs/P4--16-v1.2.1.html#sec-checksums

M. Mitzenmacher, “The power of two choices in randomized load balanc-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp. 1094-1104,
Oct. 2001.

M. Flynn, “Some computer organizations and their effectiveness,” IEEE
Trans. Comput., vol. C-21, no. 9, pp. 948-960, Sep. 1972.

Y. Geng et al., “Exploiting a natural network effect for scalable, fine-
grained clock synchronization,” in Proc. 15th USENIX Conf. Netw. Syst.
Des. Implementation, 2018, pp. 81-94.

P. G. Kannan, R. Joshi, and M. C. Chan, “Precise time-synchronization
in the data-plane using programmable switching ASICs,” in Proc. ACM
Symp. SDN Res., 2019, pp. 8-20.

Y. Zhao et al., “LightGuardian: A full-visibility, lightweight, in-band
telemetry system using sketchlets,” in Proc. 18th USENIX Symp. Netw.
Syst. Des. Implementation, 2021, pp. 991-1010.

Y. Zhou et al., “Flow event telemetry on programmable data plane,” in
Proc. Annu. Conf. ACM Special Int. Group Data Commun. Appl. Technol.
Architectures Protoc. Comput. Commun., 2020, pp. 76-89.

M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM SIGCOMM
Conf,, 2010, pp. 63-74.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in Proc.
Conf. ACM Special Int. Group Data Commun., 2018, pp. 221-235.

The caida anonymized 2016 internet traces. [Online]. Available: http://
www.caida.org/data/overview/

Network Simulator (ns-3). [Online]. Available: https://www.nsnam.org/
The NS.PY Discrete-Event Network Simulator. [Online]. Available: https:
/Igithub.com/TL-System/ns.py

Q. Yang et al., “DeepQueueNet: Towards scalable and generalized net-
work performance estimation with packet-level visibility,” in Proc. ACM
SIGCOMM Conf., 2022, pp. 441-457.

A.Romanow, J. Mogul, T. Talpey, and S. Bailey, “Remote direct memory
access (RDMA) over ip problem statement,” Request Comments (RFC),
vol. 4297, 2005.

W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in Proc. 13th USENIX Symp. Netw. Syst. Des.
Implementation, 2016, pp. 537-549.

https://pages.cs.wisc.edu/tbenson/IMC10_Data.html
https://barefootnetworks.com/products/brief-tofino/
https://www.isi.edu/nsnam/ns/
https://www.isi.edu/nsnam/ns/
https://github.com/BurstBalancer/Burst-Balancer
https://github.com/BurstBalancer/Burst-Balancer
https://p4.org/p4-spec/docs/P4--16-v1.2.1.html#sec-checksums
https://p4.org/p4-spec/docs/P4--16-v1.2.1.html#sec-checksums
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
https://www.nsnam.org/
https://github.com/TL-System/ns.py
https://github.com/TL-System/ns.py

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

