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Abstract—Layer-3 load balancing is a key topic in the networking field. It is well acknowledged that flowlet is the most promising
solution because of its good trade-off between load balance and packet reordering. However, we find its one significant limitation: it
makes the forwarding paths of flows unpredictable. To address this limitation, this paper presents BurstBalancer, a simple yet efficient
load balancing system with a sketch, named BalanceSketch. Our design philosophy is doing less changes to keep the forwarding path
of most flows fixed, which guides the design of BalanceSketch and our balance operations. We have fully implemented BurstBalancer
in a small-scale testbed built with Tofino switches, and conducted both large-scale event-level (NS-2) and ESL (electronic system level)
simulations. Our results show that BurstBalancer achieves 5%∼35% smaller FCT than LetFlow in symmetric topology and up to 30×
smaller FCT in asymmetric topology, while 58× fewer flows suffer from path changing. All related codes are open-sourced at GitHub.
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1 INTRODUCTION

1.1 Background and Motivation
As enterprises continue to shift services like big-data

analytics, web services, and cloud storage into cloud envi-
ronments, the number of data centers has grown exponen-
tially [2]–[7]. Typical data center networks (DCNs) feature
symmetric topologies such as Fat-Tree [8] and VL2 [9],
which offer multiple equivalent paths between any pair of
servers. How to evenly allocate the traffic to these candidate
paths is well known as the layer-3 (L3) load balance. L3
load balance has been acknowledged as one key topic in the
networking field for many years [10]–[13].

Existing L3 load balancing schemes can be broadly clas-
sified into three categories. First, packet-level load balancing
schemes [14]–[19] select a path for each packet to achieve
optimal traffic split. However, these schemes are susceptible
to packet reordering issues when there is a significant dis-
crepancy in the delay of candidate paths. Second, flow-level
load balancing schemes [20]–[26] assign a fixed path to all
packets within a flow. These schemes avoid packet reorder-
ing, but cannot well balance the traffic due to the skewed
distribution of flow sizes and hash collisions among large
flows [27]. Third, flowlet-level load balancing schemes [2],
[28]–[33] attempt a compromise between minimizing packet
reordering and evenly balancing traffic. In these schemes,
the packets of a flow are divided into many groups, with
the time interval between two consecutive groups being
larger than a predefined threshold δ. Each group of packets
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is called a flowlet [28]. Flowlet-level schemes select a path
for each flowlet, so as to achieve a good trade-off between
packet reordering and load balance [3], [33]–[35]. However,
these schemes cannot precisely detect flowlets using small
memory, and make a lot of unnecessary manipulation: 1)
The forwarding paths of the flows in these schemes are
unfixed and unpredictable, which hampers network mea-
surement and management. 2) Due to the limited memory
on hardware and the large number of concurrent flows, they
cannot precisely identify all flowlets. 3) They unnecessarily
divide small flows into flowlets and distribute them across
multiple paths, which contributes little to load balance and
rather increases the risk of packet reordering.

While existing load balancing schemes have made excel-
lent contributions, they overlook the flow-regulation of the
network. “Flow-Regulation” refers to that given any flow,
its forwarding path can be easily calculated, and does not
change with time. In many existing schemes, the forwarding
paths of flows are unfixed and unpredictable. Intuitively, if
most members of a group follow a simple rule, then the
management of this group would be simple. For many net-
work operations, such as network diagnosis [36]–[39], con-
gestion control [40]–[43], network measurement and man-
agement [44]–[51], it is often assumed or expected that the
forwarding paths of most flows can be obtained easily. For
example, the well known 007 system [37] is designed for a
network where all flows use ECMP. It needs the forwarding
paths of flows to locate the congested link. If the forwarding
path of flow changes rapidly and randomly, 007 cannot
pinpoint the congested link timely and accurately, resulting
in unreliable diagnostic results. For another example, the
pioneering work using INT for congestion control, HPCC
[42], uses the link load information to adjust the sending rate
of flows. If the forwarding paths of flows are fixed, HPCC
works excellently; but otherwise, the link load information
cannot match the culprit flow, so the advantages of HPCC
cannot be guaranteed. Hence, our goal is to develop a



solution that not only effectively balances traffic, but also
ensures adherence to the flow regulation principle as much
as possible. The ideal solution should manipulate as few
packets/flows as possible, so as to make network measurement
and management easier.

1.2 Our Proposed Solution
Towards the above goal, we propose BurstBalancer, an

efficient load balancing system, with the aim of manipulat-
ing only a small number of flowlets that are critical to load
balance, namely FlowBursts. In BurstBalancer, most flows
follow ECMP [20] and we can easily get their forwarding
paths. BurstBalancer devises a sketch, namely BalanceS-
ketch, and deploys it on each switch to detect and make
forwarding decisions for FlowBursts. BurstBalancer only
needs small on-chip memory to keep critical flowlets (Flow-
Bursts), achieving high memory efficiency and perfectly
embracing the skewed flow distribution [52], [53]. Further,
BurstBalancer only manipulates the critical flowlets which
are very limited in number, minimizing packet reordering
and keeping the paths of most flows fixed. In addition,
BurstBalancer is easy to implement without any changes
to end-hosts or protocol stacks, and can be incrementally
deployed in existing networks.

The design philosophy of our BurstBalancer is doing
less manipulations while better balancing the traffic, which is
guided by the well-known Occam’s Razor principle: entities
should not be added beyond necessity. The philosophy of
doing less includes two dimensions based on our two key
observations. The first dimension of doing less is based on
Observation I: only a minority of flowlets are fast and large
enough to cause load imbalance, and we call these critical
flowlets FlowBursts1. Therefore, we manipulate only critical
flowlets (FlowBursts). For example, in the IMC data center
trace [54] used in our experiments, there are about 27,000
concurrent flowlets, of which only 1.1% are FlowBurst.
Therefore, if we identify, maintain, and manipulate only
FlowBursts, it is possible to save on-chip memory up to
100 times while achieving similar load balance performance
as those schemes identifying all flowlets. In this way, we
classify all flowlets into two categories: FlowBursts and
unnecessary flowlets2, and we only manipulate FlowBursts.
Identifying unnecessary flowlets causes a huge memory
overhead3, and manipulating them only exacerbates net-
work chaos and the risk of packet reordering.

The second dimension of doing less is based on Ob-
servation II: It is expensive and unnecessary to accurately
detect and manipulate all FlowBursts. Hence, we choose to
manipulate most rather than all FlowBursts for the following
reasons. 1) Identifying all FlowBursts is expensive for hard-
ware resources. 2) By manipulating most FlowBursts while
leaving other FlowBursts to follow ECMP, we can still attain
effective load balancing. 3) Detecting all FlowBursts needs
complicated design of data structure. A strawman solution

1. A formal definition of FlowBurst is provided in § 2.1.
2. Unnecessary flowlets are defined as: 1) flowlets formed by small

flows; 2) flowlets formed by low-density flows (e.g., some persistent
flows that last for long time but send packets at a very slow speed).

3. In our experiments, LetFlow [2], a load balancing scheme identi-
fying and manipulating all flowlets, consumes about 10 × more on-
chip memory to achieve a similar load balancing performance to our
BurstBalancer (see Figure 15).

to identify FlowBursts is to first identify flowlets using
existing methods and then check whether the identified
flowlet is a FlowBurst. However, this solution is memory
inefficient because it records the information of all flowlets,
most of which are unnecessary to manipulate. We propose
a simple data structure, namely BalanceSketch, to track
the most relevant, rather than all FlowBursts (See details
in § 3) and evict unnecessary flowlets. To the best of our
knowledge, we are the first work that applies sketches to
the field of L3 load balancing.

We extensively evaluate BurstBalancer on a small-scale
testbed and two large-scale simulation platforms. Our
testbed consists of 4 Tofino switches [55] and 8 end-hosts in a
leaf-spine topology. For simulations, we use both an event-
level simulator (NS-2 [56]) and an ESL (electronic system
level) simulator (HDCN, which is developed and used by
Huawei for years). Our results show that compared to
LetFlow [2], BurstBalancer better balances the traffic using
smaller memory, while manipulates 58 times fewer flows
at the same time. In symmetric topologies, BurstBalancer
achieves 5%∼35% smaller FCT (flow completion time) than
state-of-the-art LetFlow [2] and DRILL [14]. In asymmetric
topologies, BurstBalancer achieves up to 30× smaller FCT
than LetFlow and up to 6.4× smaller FCT than WCMP [21].
We also conduct CPU experiments, and results show that
BurstBalancer achieves > 90% recall rate in finding Flow-
Bursts with small memory. In addition, we mathematically
derive the ability of BalanceSketch to identify FlowBursts
(see § 3.7). All related codes are open-sourced [57].

2 BACKGROUND AND RELATED WORK
In this section, we begin with the problem statement of

FlowBurst in § 2.1. Then we discuss the related work of load
balance solutions for data center networks in § 2.2. The main
symbols used in this paper are shown in Table 1.

TABLE 1: Symbols frequently used in this paper.
Notation Meaning

δ
Flowlet threshold that spaces two adjacent
flowlets or FlowBursts

V Lower bound of the speed of FlowBurst

F Voting threshold used by our BalanceSketch to
identify flowlets with high speed and large size

∆
Flow timeout threshold used for identifying
whether a flow ends

l Number of buckets in BalanceSketch
B[i] The ith bucket of BalanceSketch
h(.) Hash function mapping a flow into a bucket

d
Number of cells in each bucket in the multi-cell
version of BalanceSketch

2.1 Problem Statement
Network Stream: A network stream is an unbounded
timing evolving sequence of items S = {p1, p2, · · · }, where
each item pi = (fi, ti) indicates a packet of flow fi arriving
at time ti.
Flow: A flow consists of packets {p′1, · · · , p′n} sharing
the same flow ID fi, which can be any combination of 5-
tuple: source IP address, source port, destination IP address,
destination port, protocol type.
Flowlet: Given a predefined flowlet threshold δ, a flowlet
refers to a group of continuous packets {p′1, · · · , p′m} of a
given flow fi, such that ∀0 < j < m, tj+1 − tj ≤ δ. This
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flowlet is active if |tnow − tm| < δ, where tnow is the current
time, and is outdated otherwise. Intuitively, the packets of a
flow are divided into many groups/flowlets, where the interval
between adjacent flowlets is large enough (> δ).
FlowBurst: For a flowlet {p′1, · · · , p′m}, we define its size as
m, and define its speed as m

∆T , where ∆T = tm − t1. This
flowlet is a FlowBurst if m

∆T > V and m > ηk, where ηk is
the size of the kth largest flowlet among all active flowlets
whose speed are larger than V . Intuitively, FlowBursts refer to
a particular kind of flowlets that are fast and large enough to cause
load imbalance. For all active flowlets whose speed exceed a
predefined threshold V , we define the flowlets of the largest
k sizes as the FlowBursts.

2.2 Related Work
Existing load balancing solutions for data centers can be

classified into three categories: packet-level schemes, flow-
level schemes, and flowlet-level schemes. For other hybrid
schemes, kindly refer to references [33], [58]–[60].
1) Packet-level schemes [14]–[19] choose a desirable path
for each packet. They achieve ideal splitting ratio at the cost
of packet reordering. DRILL [14] makes per-packet decisions
at each switch based on local-queue occupancies and ran-
domized algorithms. NDP [15] presents a multipath-aware
transport-layer protocol that manipulates each packet, and
introduces a handshake mechanism to alleviate reordering.
MP-RDMA [16] proposes a per-packet multi-path protocol
for RDMA network, where the packets are distributed in
a congestion-aware manner. Other packet-level schemes
include Fastpass [19], DeTail [18], and DRB [17].
2) Flow-level schemes [20]–[26], [61] assign a path to each
flow. They avoid packet reordering but cannot well balance
the traffic because of collisions between large flows. The
well-known ECMP [20] uses flow-level hashing to select a
path for each flow. ECMP achieves excellent performance
when there are only small flows but no large flows [25],
[26]. WCMP [21] assigns each path a weighted cost, and
distributes the traffic based on the cost. MPTCP [61] splits
each TCP flow into several subflows, and assigns each
subflow to a non-congested path. AuTO [23] forwards small
flows using ECMP, and dynamically changes path, priority,
and sending speed for large flows. Other flow-level schemes
include FlowBender [22], SOFIA [24], VMS [62], Hedera [25],
Mahout [26], MicroTE [63].
3) Flowlet-level schemes [2], [28]–[33], [64] make a trade-
off between packet-level schemes and flow-level schemes
in consideration of minimizing reordering and maximizing
performance at the same time. Flowlets widely exist in
data centers where most applications send traffic in on-off
patterns [3], [65], [66]. CONGA [31] designs a distributed
algorithm to obtain global congestion information in leaf-
spine topologies, and assigns each flowlet to the least con-
gested path at leaf switches. LetFlow [2] randomly picks
paths for flowlets, and lets their elasticity naturally balance
the traffic on different paths. The excellent work Contra
[67] builds a system for performance-aware routing based
on flowlet switching, which can operate seamlessly over
any network topology and routing policies. Other flowlet-
level schemes include DASH [64], FLARE [28], HULA [68],
and more [29], [30], [32]. A flowlet scheme needs to strike
a balance between load balance and packet reordering. A

flowlet switching scheme has no danger of packet reorder-
ing only when the timeout threshold δ is larger than the
maximum latency of the set of parallel paths. In order to
avoid packet reordering, the timeout threshold must be set
to a large value. However, large timeout threshold will
degrade the system to a flow-level scheme. Therefore, the
timeout threshold δ should be carefully chosen to achieve
good performance.

Existing flowlet-level schemes use a flowlet table to
detect flowlets. Each table entry consists of a next_hop
and a timestamp. In CONGA [31] and LetFlow [2], the
timestamp is replaced with two bits, and they use a
separate process to periodically clean the entries. This table
must be very large to keep the collision rate small. Such
a huge table incurs heavy memory burden when deployed
on hardware platforms where on-chip memory is precious.
By contrast, sketch is a compact data structure that uses
small memory to perform various measurement tasks [43],
[69], [70]. Typical sketches include CM [71], CU [72], Count
[73], and more [74]–[76]. We can use sketches to detect and
schedule flowlets in real time, which is still an open area.

3 THE BALANCESKETCH ALGORITHM

In this section, we first present a strawman solution to
detect FlowBursts in § 3.1, and introduce the rationale of
BalanceSketch in § 3.2. We show the data structure and
workflow of BalanceSketch in § 3.3 and § 3.4. We demon-
strate how BalanceSketch handles different traffic patterns
in § 3.5. We propose some optimizations of BalanceSketch
in § 3.6. We mathematically analyze the ability of BalanceS-
ketch to identify FlowBursts in § 3.7. Finally, we present how
to extend BalanceSketch to network measurement in § 3.8.

Timestamp

𝑓! 147

143
···

𝑓"

Hash Table
Flow_ID: 𝒇𝟑

Speed: 1.1 Kpps
𝑓$ is too slow

2

1

flowlet

Detect Flowlets Keep FlowBursts

Large

𝑓$ → 𝑓"

Replace
···

Fig. 1: A strawman solution to detect FlowBursts (δ=5ms,
tnow=150ms, V=1.5Kpps).

3.1 A Strawman Solution
One strawman solution to find FlowBursts is to first

identify all flowlets using existing methods, and then check
whether each identified flowlet is a FlowBurst. 1) In the
first step, same as existing solutions [28]–[30], we use a
timestamp array to find flowlets. For each incoming packet
of flow fi at time tnow, we first compute a hash function
h1(fi) to map the packet to one timestamp. If the gap
between tnow and timestamp is larger than the predefined
flowlet threshold δ, we consider the packet as the start
of a flowlet. Otherwise, we consider the packet as part
of an existing flowlet. At the end of this step, we update
the mapped timestamp to tnow. As shown in Figure 1, the
interval between the current time and the last arrival time
of f2 exceeds δ, so we report the packet of f2 as the start of a
flowlet. 2) In the second step, we use a hash table with many
buckets to detect FlowBursts, i.e., the flowlets with high
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speed. Each bucket maintains a flow ID and the recent speed
of the flow. For a flowlet of flow fi detected in step one, we
map fi into one bucket in the hash table. If another flowlet
is already in this bucket and its speed is slow (< V), we
replace it with fi. Specifically, each bucket in the second step
consists of a Flow_ID field, a Start_time field recording
the start time of the flowlet, and a Counter field recording
the flowlet size. Given an incoming packet of fi at tnow,
we first compute hash function h2(fi) to map the packet
into one bucket. Then, we check whether fi is recorded
in this bucket. If so, we increment the Counter by one.
Otherwise, if the packet is the start of a flowlet (detected
in the first step), we check whether its speed Counter /
(tnow−Start_time) is below the speed threshold V : If so,
we replace the old flowlet with fi: we set Flow_ID to fi,
set Start_time to current time tnow, and set Counter
to one. As shown in Figure 1, for the detected flowlet of
f2, its mapped bucket is taken by f3 and the speed of f3
is slow (< V), so we replace f3 with f2. This solution is
simple and easy to deploy. However, it is memory inefficient
because it records the information of all flowlets, including
the exact flow IDs and their recent speed, whereas most
flowlets are unnecessary flowlets. The ideal goal is keeping
only FlowBursts while evicting all unnecessary flowlets.

3.2 Rationale of BalanceSketch
The design of BalanceSketch embraces two dimensions

of doing less: 1) Different from the aforementioned strawman
solution, we manage to maintain only FlowBursts and evict
unnecessary flowlets. 2) We identify most rather than all
FlowBursts, in exchange for the simplicity of our data struc-
ture and its operations. Beyond the principle of doing less,
we have another design tactic: follower approximation. Ideally,
upon the arrival of the first packet of a FlowBurst, we should
immediately recognize and manipulate it. However, it is
almost impracticable to identify a flowlet as a FlowBurst
at its onset, but it is not hard to assert a FlowBurst when
it ends. Instead of manipulating a FlowBurst, we make a
follower approximation by manipulating the BurstFollower:
the flowlet that immediately succeeds a FlowBurst. The
rationale is that BurstFollower is very likely to be a potential
FlowBurst, incurring a risk of load imbalance. Interestingly,
we find this approximation achieves similar performance to
the ideal solution. Consider a typical traffic pattern: Flow-
Burst, FlowBurst, · · · . Ideally, we manipulate each Flow-
Burst at it commences; Approximately, we manipulate each
BurstFollowers, which essentially includes all FlowBursts
except for the first one. These two methods yield the same
load balance performance. More interesting patterns are
elaborated upon in § 3.5. To the best of our knowledge, we
are the first work that uses sketches instead of flow/flowlet
table to perform L3 load balancing.

3.3 Data Structure
As shown in Figure 2, the data structure of BalanceS-

ketch is an array of l buckets. Let B[i] be the ith bucket.
Each packet of flow fi is mapped into one bucket B[h(fi)]
through a hash function h(.). Each bucket consists of four
fields: 1) A flow_ID field B[i].ID records the ID of the
flow mapped into this bucket, and we call the flow in the
bucket as the residing flow. 2) A vote field B[i].vote used

Algorithm 1: Workflow of BalanceSketch
Input: A packet with timestamp ti of flow fi
Output: The next port to send this packet
// Insert the packet into BalanceSketch
if B[h(fi)] is empty or ti − B[h(fi)].time > ∆ then
B[h(fi)]← ⟨fi, 1, ti, Null⟩;

else if B[h(fi)].ID = fi then
if B[h(fi)].vote > F and ti − B[h(fi)].time > δ then
B[h(fi)].nexthop← the randomly picked next hop;

B[h(fi)].vote += 1;
B[h(fi)].time← ti;

else if B[h(fi)].ID ̸= fi then
if B[h(fi)].vote > 0 then
B[h(fi)].vote −= 1;

if B[h(fi)].vote = 0 and B[h(fi)].nexthop = Null then
B[h(fi)]← ⟨fi, 1, ti, Null⟩;

// Select the next hop to forward the packet
if B[h(fi)].ID = fi and B[h(fi)].nexthop ̸= Null then

return B[h(fi)].nexthop;
else

return ECMP next port(fi);

to identify FlowBursts. 3) A timestamp field B[i].time
records the arrival time of the last packet of the residing
flow. 4) An next_hop field B[i].nexthop records the next
hop. For the flow resided in B[i], if B[i].nexthop is not Null,
we forward the flow through this next hop. Otherwise, we
forward it using ECMP [20]: forwarding it through the next
hop hashed by its 5-tuple. For the flows not resided in
BalanceSketch, we also forward them using ECMP. All fields
in the data structure are initialized to 0 or Null.

ID Vote Time Next
𝑓! 0 198 Null

ID Vote Time Next
𝒇𝟑 1 200 Null

ID Vote Time Next
𝑓# 32 157 2

ID Vote Time Next
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𝑓# ends, replace it with 𝑓%Time < 𝑡&'( −∆

𝑙 buckets Outdated
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Next_hop = Null: not scheduled

replace 𝑓! with 𝑓)
𝑓! will not reorder

ID Vote Time Next
𝑓* 48 186 Null

ID Vote Time Next
𝑓* 49 200 5

update Vote and Time
FlowBurstchange pathFlowletFast

𝑓!

𝑓"

𝑓#

ℬ[ℎ 𝑓% ]

ℬ[ℎ 𝑓* ]

ℬ[ℎ 𝑓) ]

Fig. 2: Examples of BalanceSketch (tnow=200ms, ∆=30ms,
δ=5ms, F=30).

3.4 Workflow

The pseudo-code of the workflow is shown in Algo-
rithm 1. For an incoming packet pc of flow fi at time
tnow, BalanceSketch takes two phases to process it: insertion
and forwarding. In the insertion phase, BalanceSketch inserts
fi into one bucket. In the forwarding phase, BalanceSketch
selects appropriate next hop to forward this packet. The
insertion workflow of BalanceSketch processes each packet
in one pass, and is of O(1) time complexity. We have
fully implemented the insertion workflow in the pipeline
of programmable switch (with Tofino ASICs) using P4 [77]
language, which has 1.2GHz clock frequency (see § 4.2).
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Insertion: First, we compute the hash function h(fi) to map
fi into the bucket B[h(fi)], and try to insert it. There are
three cases as follows.
Case 1: If B[h(fi)] is empty or tnow − B[h(fi)].time > ∆,
where ∆ is the predefined flow timeout threshold to identify
whether a flow ends, we just insert flow fi into B[h(fi)].
Specifically, we set B[h(fi)] to ⟨fi, 1, tnow, Null⟩, where
“Null” means forwarding flow fi through ECMP. In this
case, tnow−B[h(fi)].time > ∆ means the resided flow ends.
Case 2: If B[h(fi)] is not empty and fi is the residing flow,
we check whether this packet is the start of a FlowBurst.
Specifically, we check whether tnow − B[h(fi)].time > δ
and B[h(fi)].vote > F are both true, where δ is the flowlet
threshold and F is a predefined voting threshold for iden-
tifying FlowBursts. If so, it means that the previous flowlet
of fi is a FlowBurst and just ends, and a new flowlet just
starts. The new flowlet is potentially a FlowBurst, and thus
we manipulate it by randomly picking a next hop and update
B[h(fi)].nexthop. Finally, we increment B[h(fi)].vote by
one and update B[h(fi)].time to the current time tnow. Note
that randomly picking a next hop is one design choice, and we
can also choose the least loaded next hop or use the “power
of two choices” techniques [78]. We will discuss different
manipulating choices in Figure 17.
Case 3: If B[h(fi)] is not empty and f ′

i is the residing
flow where f ′

i ̸= fi, we decrement B[h(fi)].vote by one
if B[h(fi)].vote > 0. Afterwards, if B[h(fi)].vote = 0 and
B[h(fi)].nexthop = Null, we replace f ′

i with fi by setting
B[h(fi)] to ⟨fi, 1, tnow, Null⟩. Note that if B[h(fi)].vote = 0
but B[h(fi)].nexthop ̸= Null, we do not immediately evict
f ′
i , and will evict it only when it is outdated (the flow time-

out threshold ∆) in Case 1. In this way, the FlowBursts in
BalanceSketch will not be frequently replaced, and thus the
number of manipulated flow decreases. This is consistent
with our design philosophy of doing less.
Forwarding: After inserting fi into BalanceSketch, we select
the next hop to forward the incoming packet pc. If fi is the
residing flow and B[h(fi)].nexthop ̸= Null, which means
that fi is experiencing a FlowBurst, we forward pc through
B[h(fi)].nexthop. Otherwise, we forward pc using ECMP.
Discussion: BalanceSketch makes two approximations: 1)
BalanceSketch uses the “vote” field to approximately iden-
tify FlowBursts. Recall that in § 2.1, we formally define
FlowBurst using speed and size. Although we can use
more fields to exactly represent the speed, size, and hash
collisions, we find that using just the “vote” field can already
achieve high accuracy. Therefore, to save memory, BalanceS-
ketch only use one “vote” field to approximately reflect the
speed and size of flowlets. 2) BalanceSketch uses the follower
approximation strategy to make load balance decisions for
FlowBurst followers. BalanceSketch considers subsequent
flowlets after crossing the “F” threshold as FlowBursts and
manipulates them. We make this approximation because we
cannot immediately predict a flowlet as FlowBurst when it
just starts. Experimental results show that under these ap-
proximations, BalanceSketch still has high accuracy (§ 5.1).
Example settings (Figure 2): We use three examples to
illustrate the workflow of BalanceSketch, where the three
packets of flow f1 ∼ f3 arrive simultaneously at time
t = 200ms, the flow timeout threshold ∆ is 30ms, the flowlet
threshold δ is 5ms, and the voting frequency threshold F is 30.

Example 1 (upper of Figure 2): When a packet of f1 arrives,
it is mapped into bucket B[h(f1)]. As t−B[h(f1)].time > ∆,
we replace the residing flow with f1. As B[h(f1)].nexthop
= Null, we forward the packet using ECMP.
Example 2 (center of Figure 2): When a packet of f2 arrives,
it is mapped into bucket B[h(f2)]. Since bucket B[h(f2)] is
not empty and f2 is the residing flow, we check whether this
packet is the start of a FlowBurst. Since t−B[h(f2)].time > δ
and B[h(f2)].vote > F are both true, we think a previous
FlowBurst of f2 just ends, and the new flowlet has high
probability to be a FlowBurst. Thus, we manipulate the
new flowlet by changing B[h(f2)].nexthop to a randomly
picked next hop. We increment B[h(f2)].vote by one and
update B[h(f2)].time to tnow. Finally, since f2 is the residing
flow and B[h(f2)].nexthop ̸= Null, we forward the packet
through B[h(f2)].nexthop.
Example 3 (lower of Figure 2): When a packet of f3 arrives,
it is mapped into bucket B[h(f3)]. Since bucket B[h(f3)] is
not empty and f3 is not the residing flow, we decrement
B[h(f3)].vote by one. Afterwards, since B[h(f3)].vote = 0
and B[h(f3)].nexthop = Null, we replace the residing flow
f6 with f3. Since B[h(f3)].nexthop = Null, we forward the
packet using ECMP.
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Fig. 3: Examples of typical traffic patterns.

3.5 Handling Different Traffic Patterns
We examine four typical traffic patterns to demonstrate

how BalanceSketch manages them, showcasing that our
FlowBurst follower approximation technique attains compa-
rable load balancing performance to the optimal solution
of manipulating each FlowBurst at start. In our examples,
all FlowBursts/flowlets belong to the same flow. Suppose
the default next hop is 0, and the backup next hop is 1.
We assume the traffic of each flow consists of high-density
FlowBursts and low-density flowlets. An ideal load balance
solution should distribute these high-density FlowBursts
among all equivalent links as uniformly as possible. Ma-
nipulating other flowlets benefits little for load balance as
low-density flowlets contribute little to link congestion.
Pattern 1 (upper-left of Figure 3): This pattern consists of
continuous flowlets mixed by a FlowBurst. BalanceSketch
manipulates the BurstFollower (the flowlet bounded by
black-box in the figure), achieving the same load balance
performance as the ideal solution. In this case, manipulating
other flowlets benefits little for load balance. BalanceSketch
does not manipulate them and manages to achieve least
change of the next hop. Since there is no frequent manipula-
tion, BalanceSketch minimizes packet reordering. This idea
is consistent with our design philosophy of doing less.
Pattern 2 (lower-left of Figure 3): This pattern consists of
FlowBurst1, flowlet1, FlowBurst2, flowlet2, · · · . BalanceS-
ketch changes the next hop for each flowlet, and the follow-
ing FlowBurst is forwarded through the same next hop of
the previous flowlet. It achieves similar performance as the
ideal solution that manipulates each FlowBurst.
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Pattern 3 (upper-right of Figure 3): This pattern con-
sists of FlowBurst1, flowlet1, flowlet2, FlowBurst2, flowlet3,
flowlet4, · · · . BalanceSketch manipulates each BurstFol-
lower (e.g., flowlet1), and forwards following flowlet2 and
FlowBurst2 through the same next hop. The next hops of
BalanceSketch are ⟨0, 1, 1, 1, 0, 0, · · · ⟩, while that of the ideal
solution are ⟨1, 1, 1, 0, 0, 0, · · · ⟩. Both BalanceSketch and the
ideal solution select one next hop for every two flowlets and
one FlowBursts, and thus they have similar performance.
Pattern 4 (lower-right of Figure 3): This pattern consists
of FlowBurst1, FlowBurst2, flowlet1, FlowBurst3, Flow-
Burst4, flowlet2, · · · . BalanceSketch manipulates each lat-
ter FlowBurst and each flowlet, and its next hops are
⟨0, 1, 1, 1, 0, 0, · · · ⟩. It achieves similar performance as the
ideal solution with the next hops of ⟨1, 1, 0, 1, 1, 0, · · · ⟩.

3.6 BalanceSketch Optimizations
Flow Fingerprint: We use fingerprints (hash values) to
replace flow IDs (usually 104 bits) in BalanceSketch, to
improve its memory efficiency. In this way, the memory
overhead of BalanceSketch is independent to the size of flow
ID. Due to hash collisions, some flows could share the same
fingerprint, making BalanceSketch regards multiple flows as
one flow. Given a flow, the probability that it suffers from
fingerprint collisions is Pr [collision] = 1 − (1− 2−n)

M
l ,

where n is the fingerprint size (in bit), M is the number
of distinct flows in the network stream, and l is the num-
ber of buckets in BalanceSketch. This probability is low,
and thus has little impact on performance. For example,
when using 16-bit fingerprints and l = 50, 000 buckets, for
M = 1, 000, 000 concurrent flows in the network, the prob-
ability of fingerprint collision is just 3.05 × 10−4, which is
negligible. Experiments show that the accuracy of BalanceS-
ketch does not decrease when using 16-bit fingerprints.
Field Combination: Once a FlowBurst is detected, we
change the next_hop field to manipulate it. After that, even
if the vote field is decremented to zero, we do not evict this
flow in consideration of manipulating less flows (Case 3 in
§ 3.4). In other words, once next_hop is set to a non-Null
value, we do not need vote field any more. Thus, we can
combine vote and next_hop into one field vote_hop.
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Fig. 4: Compact timestamp (∆ = 4δ).

Compact Timestamp: We propose to compress the full
timestamp into s-bit cell, and use the cell to compactly
record the approximate time. Below we take 3-bit cell as an
example. As shown in Figure 4, noticing that 3-bit cell can
represent eight states, we cyclically divide the timeline into
eight kinds of time slices (0 ∼ 7), and the length of each time
slice is δ. We record these time slices (0 ∼ 7) rather than the
full timestamps in BalanceSketch. If two adjacent packets of
a flow are spaced by at least one time slice, we think the
second packet is the start of a flowlet. Suppose ∆ = kδ,
then if the last arrival time of a flow fi and the current time

are spaced by at least k time slices, we think flow fi ends.
Figure 4 shows four consecutive packets mapped into the
same bucket. The two packets of f1 are spaced by one time
slice, so we report the second packet as the start of a flowlet.
Suppose ∆ = 4δ, then since the last packet of f1 and the
first packet of f2 are spaced by four time slices, when the
first packet of f2 arrives, we think f1 ends and evict it.

The compact timestamp technique gains memory effi-
ciency at the cost of perceiving time in a fuzzy way. When
the interval between two adjacent packets is among δ ∼ 2δ,
BalanceSketch might not be able to correctly report the
second packet as the start of a flowlet, depending on the
relative offset of the timeline. Specifically, only when the
interval span three time slices can BalanceSketch report
the flowlet correctly. This issue is illustrated in the last
two packets in Figure 4. Although the interval between the
two packets of f2 exceeds δ, BalanceSketch cannot correctly
divide them into two flowlets because the interval span just
two time slices. Actually, more precision can be attained by
using more bits per timestamp or using multiple timestamps
with different timeline offsets, but we find that one 8-bit
timestamp suffice for good performance in our experiments
(see § 5.1.1).
Analysis: We derive the error of our Compact Timestamp
technique. For an arbitrary flow f , we assume all of its
flowlets arrives according to a Poisson process of intensity
λ. Let flowleti be the ith flowlet of f , and let xi be the
time interval between the arrival time of flowleti−1 and
flowleti. In our derivation, we ignore the timespan of
flowlet because it does not affect the final conclusion. Thus,
we have xi − δ follows an exponential distribution Exp(λ).
For flowleti, BalanceSketch cannot correctly report it if the
interval between flowleti−1 and flowleti span only two
time slices, i.e., xi only spans two slices. For a certain xi,
the probability that it spans two slices is 2δ−xi

δ . Let Ai be
the event that BalanceSketch fails to detect flowleti. We
have Pr[Ai] =

∫ 2δ
δ λe−λ(xi−δ) · 2δ−xi

δ dxi =
λδ+e−λδ−1

λδ . Let
δ′ = 1

λ be the average interval between adjacent flowlets,
which are usually of RTT scale [2]. In practice, we set δ
to be of sub-RTT scale, meaning that δ′ > δ, i.e., λδ < 1.
Thus, we have Pr[Ai] <

1
e . As stated above, we can also

use multiple timestamps with different timeline offsets to
further reduce the error rate. Actually, using y timestamps
can reduce the error by y times. When λδ = 0.1 and y = 3,
we have Pr[Ai] ≈ 1.2× 10−4, which is negligible.
Multi-cell BalanceSketch: To further improve the accuracy,
we propose the multi-cell version of BalanceSketch by ex-
tending each bucket of BalanceSketch into an array of d
(e.g., 4) cells. Each cell consists of four fields: flow_ID,
timestamp, vote, and next_hop. For each incoming
packet of flow fi at tnow, it is mapped into bucket B[h(fi)].
We first check whether fi is recorded in a cell in B[h(fi)]. If
so, we increment vote and update timestamp. Otherwise,
we second check whether there is an empty or outdated
cell in B[h(fi)]. If so, we insert fi into this cell. Otherwise,
we third find the cell with the minimum vote, and decre-
ment its vote by one. If vote is decremented to zero and
next_hop is Null, we replace the residing flow in this cell
with fi. Finally, if fi is recorded in a cell in B[h(fi)] and
its next_hop is not Null, we forward the packet through
next_hop. Otherwise, we forward the packet using ECMP.
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The insertion workflow of multi-cell BalanceSketch can be
accelerated by SIMD instructions [79] on CPU platforms.
Experimental results show that using 8-cell buckets can
improve the accuracy of BalanceSketch by up to 20%.
Automating Parameter Configuration: As described in § 2.1
and § 3.4, we use a speed threshold V to define FlowBurst,
and use a voting threshold F in BalanceSketch to identify
FlowBursts. However, we should need different thresholds
in different environments. Intuitively, under low network
load, there are less risk of load imbalance, and thus we
should manipulate less traffic to avoid making the network
more chaotic. In such case, we should use large V and F
to reduce the number of FlowBursts. Whereas under high
network load, we should manipulate more traffic to better
balance the load, and thus we need smaller V and F to
increase the number of FlowBursts. On the other hand, these
thresholds should not be too small to overwhelm the sketch
with excessive FlowBursts. Based on these ideas, we devise
a method to automatically setting V and F according to
current network load (or remaining bandwidth) as follows:
V ← V0 × exp

(
−4

max(0.6,1−p)

)
, and F ← V × δ 4, where V0

is the maximum bandwidth and p is the current network
load. We conduct experiments to evaluate the performance
of our automatic parameter configuration method, where
we evaluate the ratio of the theoretically/experimentally
manipulated flows/packets under different network load.
As show in Figure 5, under low network load, we manipu-
late a small fraction of traffic. As network load increases, we
gradually manipulate more flows/packets to better balance
the load. When network load exceeds ξ (ξ = 40% in
our experiments), as network load increases, we no longer
manipulate more traffic, so as to avoid overwhelming Bal-
anceSketch with too many FlowBursts. In practice, ξ can be
dynamically set according to the scale/skewness of traffic,
and the size of BalanceSketch.
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Fig. 5: Ratio of manipulated flows/packets under auto-
matic parameter configuration.

3.7 Mathematical Analysis
We mathematically analyze the ability of BalanceSketch

to identify FlowBursts, and validate our theoretical results
with experiments. To simplify the derivation, we first make
the following assumptions for the traffic model.

Assumption 3.1. Given a bucket in BalanceSketch, we assume
that all active flowlets mapped into this bucket have the same
speed, i.e., the interval between any two consecutive packets of
any flowlet is constant. Therefore, we can divide the timeline into

4. These formulas might not be optimal. We can further consider the
size of BalanceSketch and devise smarter formulas. But the results show
that these formulas can already well achieve our design goal.

consecutive time slots of equal length δs. Each flow has at most
one packet in each time slot. A flowlet is a group of continuous
packets that arrive in several consecutive time slots.

Assumption 3.2. Given a bucket in BalanceSketch, we assume
that the flows mapped into this bucket are: 1) A large flow f , whose
flowlet size is always n1 (in packets), and the interval between its
any two consecutive flowlets is always n2 (in time slots). Note
that we define the interval between two flowlets as the time gap
between their first packets. 2) Many small flows. We divide the
small flows into flowlets, and assume that these flowlets obey
the M/M/∞ queuing theory model: the interval between any
two consecutive flowlets obeys the exponential distribution with
parameter λ1, and the size of each flowlet obeys the exponential
distribution with parameter λ2.

We give the well-known conclusion of M/M/∞ model
in queuing theory through the following lemma.

Lemma 3.1. In each time slot, the number of packets of small
flows satisfies Poisson distribution with parameter λ = λ2

λ1
. Let

Yi be the number of packets of small flows arriving in the ith time
slot, then Pr[Yi = k] = e−λ · λ

k

k! .

To simplify the derivation, we assume Yi is independent
and identically distributed for different i, and that the packet
belonging to the large flow f is always the last to arrive in
each time slot.

Assumption 3.3. Given a bucket in BalanceSketch, let Xi be the
value of its vote field after the ith time slot (X0 = 0). For the
large flow f , we assume that it starts at the first time slot. For the
other small flows, to simplify the derivation, we assume that the
number of packets of small flows in each time slot is independent
and identically distributed, and according to Lemma 3.1, all obey
Poisson distribution with parameter λ. We also assume that the
packet belonging to the large flow f is always the last to arrive in
each time slot, therefore the flow_ID is always f during the first
n1 time slots according to our algorithm.

We can derive the following conclusions about the
Markov process of random variable Xi (Lemma 3.2), and
the ability of BalanceSketch to detect FlowBurst (Theorem
1).

Lemma 3.2. The random variable Xi, i.e., the value of the vote
filed satisfies the following Markov process when i ⩽ n1,

Xi = max(Xi−1 + 1− Yi, 1). (1)
Further, we can obtain that 1 ⩽ Xi ⩽ i, and for ∀i ≥ 2,

Pr[Xi = k] =


i−k∑
j=0

Pr[Xi−1 = k + j − 1] · e−λ · λ
j

j!

2 ⩽ k ⩽ i

1−
∑i

k=2 Pr[Xi = k] k = 1

.

(2)

Theorem 1. Given the flowlet threshold δ ⩽ n2 · δs, and the
voting threshold F ⩽ n1, where δs is the length of the time slot,
the probability Pf that the largest flow f is successfully reported
as FlowBurst after the (n1 + n2)

th time slot satisfies

Pf ⩾ Pr

[
Xn1

> F +
n2∑
i=1

Yn1+i

]
⩾ 1− λ · n1 + n2

n1 −F
. (3)
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Proof. Based on Lemma 3.2, we have Xi ⩾ 1 + Xi−1 − Yi,
therefore Xn1

satisfies

Xn1
= X0 +

n1∑
i=1

(Xi −Xi−1) ⩾ n1 −
n1∑
i=1

Yi

Then according to the Markov inequality, we have

Pf ⩾ Pr

[
Xn1
−

n2∑
i=1

Yn1+i > F
]

⩾ Pr

[
n1 −

n1+n2∑
i=1

Yi > F
]
= 1− Pr

[
n1+n2∑
i=1

Yi ⩾ n1 −F
]

⩾ 1−
E
[∑n1+n2

i=1 Yi

]
n1 −F

= 1− λ · n1 + n2

n1 −F
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Fig. 6: Numerical verification of probability Pf with de-
fault setting of n1 = 70, n2 = 30, λ = 0.5,F = 10.

Experimental analysis (Figure 6): We conduct experiments
to validate our mathematical analyses. Although we cannot
directly obtain the analytical solution of Pf from Lemma 3.2,
we can give the numerical solution of Pf under a specific
setting by numerical simulation. By setting n1 = 70, n2 =
30, λ = 0.5,F = 10 as default, we show how Pf changes
with F in Figure 6(a), and how Pf changes with n1 and λ in
Figure 6(b). The numerical results show that when the flow
f is large (i.e., n1 is large), the number of concurrent small
flows is small (i.e., λ is small), and the voting threshold is
small (i.e., F is small), the largest flow f will be correctly
reported as FlowBurst with a high probability.

3.8 Extension to Network Measurement
Besides L3 load balancing, our FlowBursts and BalanceS-

ketch can do more to improve the network. In this subsec-
tion, we show how to utilize FlowBursts to perform robust
per-flow per-hop measurement. We focus on four important
tasks: tracing forwarding path, finding the flows consuming
huge bandwidth (heavy hitters), finding the flows experi-
encing packet drops, and finding the flows experiencing
inflated queuing delays. The information of these abnormal
flows can guide the network operator to quickly locate
culprit devices and further debug the network.

In BurstBalancer, we deploy one BalanceSketch on each
switch. We configure all BalanceSketches to report the de-
tected FlowBursts along with their attributes (including the
timespan, packet count, etc.) to control planes. A central
analyzer periodically collects the information of FlowBursts
from all switches, and further analyze these information to
identify abnormal flows. In practice, the clocks of different
network devices are hard to be perfectly synchronized [80],
[81], which brings errors to exiting measurement systems
[48], [82]. Fortunately, we find that by performing network

measurement with FlowBursts, our BurstBalancer is robust
to imperfect clock synchronization. Below we describe how
to configure BurstBalancer to perform the four tasks.

Tracing forwarding path: We add two fields to each bucket
of BalanceSketch (or each cell in multi-cell BalanceSketch.
We will no longer emphasize this point.), which record the
start/end Sequence Number of the FlowBurst. We configure
each switch to report the Sequence Number range, and the
next-hop for each detected FlowBurst. For any FlowBurst,
the central analyzer can use its Sequence Number range and
per-switch next-hop to track its forwarding path, so as to
find the culprit devices where network anomalies happen.

Finding per-hop heavy hitters: We add a packet count field
to each bucket, and configure each switch to report the
packet count for each FlowBurst. For each active flow5 f , the
central analyzer can acquire its per-hop size by summing
up the packet counts of all FlowBursts in f . In this way,
the analyzer can find those flows that are consuming a
large amount of bandwidth on each switch, so as to decide
whether to impose some restrictions on them (e.g., reducing
their priorities).

Locating packet drops: We add three fields to each bucket:
a packet count field, two fields recording the start/end Se-
quence Number of the FlowBurst. We configure each switch
to report the packet count, the Sequence Number range, and
the next-hop for each FlowBurst. As stated above, the central
analyzer uses the Sequence Number range and per-switch
next-hop to track each FlowBurst along its forwarding path.
For each FlowBurst, the analyzer can locate those culprit
switches where its packet count decreases, so as to further
troubleshoot the network.

Locating inflated queuing delays: We add four fields to
each bucket: two timestamp field recording the start/end
time of the FlowBurst, and two fields recording the Se-
quence Number range of the FlowBurst. We configure each
switch to report the timespan, the Sequence Number range,
and the next-hop for each FlowBurst. The central analyzer
uses Sequence Number range and next-hop to trace each
FlowBurst, and finds those culprit switches where the Flow-
Burst timespan suddenly increases.

Discussion: As a network measurement system, BurstBal-
ancer has three advantages. 1) Fine-grained: BurstBalancer
can acquire per-flow per-hop information, and thus can
perform network-wide measurement tasks; 2) Lightweight:
Unlike many systems that collect packet-level information
for all flows [43], [48], [82], [83], BurstBalancer only records a
small fraction of critical flows (i.e., the flows with fast speed
and large size), and these flows are important to network
performance. Thus, BurstBalancer significantly reduces the
memory and bandwidth overhead; 3) Robust: BurstBalancer
uses FlowBurst to perform network measurement, which
is robust to imperfect clock synchronization. In conclusion,
besides L3 load balancing, another promising direction is
to use FlowBursts to perform accurate and lightweight
network measurement.

5. We define a flow as an active flow if the time interval between the
arrival time of its last packet tlast and the current time tnow is smaller
than the flow timeout threshold ∆, namely |tnow − tlast| < ∆.
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4 THE BURSTBALANCER SYSTEM

4.1 Overview of BurstBalancer
BurstBalancer deploys BalanceSketch on switches to de-

tect and make forwarding decisions for each FlowBurst. As
shown in Figure 7, we deploy one BalanceSketch on each
edge switch and let it process all packets arriving from
the line side. Given an incoming packet, we first insert its
flow ID into one bucket in our BalanceSketch. We check
whether the packet is the start of a FlowBurst. If so, we
change the next hop of this flow by randomly picking a
next hop. Afterwards, we forward the packet through the
recorded next_hop if its flow ID is recorded, otherwise, we
forward it using ECMP. In this way, BurstBalancer divides
large and dense flows into FlowBursts, and distributes them
to different paths. And for small flows and low-density
flows, BurstBalancer just neglects them and forwards them
using ECMP. BurstBalancer achieves good load balancing
performance while manipulates less flows at the same time.

Mice flow / Low-density flow (ECMP, single-path)

Core

Agg

Edge

BalanceSketch

Large&dense flow (divided into FlowBursts, multi-path)

Network packets

insert into sketch

FlowBurst?
YesNo

Recorded?

change path

YesNo

ECMP Next_hop

FlowBurst1 FlowBurst2

Fig. 7: BurstBalancer overview.

4.2 Testbed Implementation
We fully implement BurstBalancer on a testbed with 4

Edgecore Wedge 100BF-32X switches (with Tofino ASIC)
[55] and 16 end-hosts in a Leaf-Spine topology. On each
switch, we develop BalanceSketch using P4 language [77].

4.2.1 Challenges on Programmable Switches
To process packets at line rate, Tofino switch requires the

algorithms running on it to comply with many constraints.
Although BalanceSketch is easy to implement on software
platforms (e.g., middleboxes, etc.), when deploying it on
hardware, we face the following key challenges.
Resource limitation: We implement BalanceSketch in reg-
isters and use the Logical Units in each stage to lookup and
update the elements of registers in real time. Recall that each
bucket of BalanceSketch consists of four fields (flow_ID,
timestamp, vote, and next_hop). However, each Stateful
ALU can only access one pair of 32-bit elements in each
register. Thus, we must divide one bucket into multiple
parts and store them in different registers.
Pipeline limitation (I): Tofino switches process packets in
a pipelined manner, where each register can only be read
or modified once in one pipeline stage. Therefore, each
incoming packet can only access each register exactly once,
which brings difficulty in clearing the outdated buckets.
Due to the first challenge, we have to store the flow_ID
and timestamp of a bucket in two different registers. For
each incoming packet, we first check the flow_ID register

and then update the timestamp register if ID matches.
However, when ID mismatches and the timestamp is
outdated (smaller than tnow − ∆), BalanceSketch needs to
clear the bucket by setting flow_ID to Null (Case 1 in
§ 3.4). This backward operation is impossible on Tofino
architectures. In our implementation, we consider to use
the mirror and recirculate mechanism: once a bucket is
identified as outdated, we create a mirror packet and re-
send it to the ingress port. We use this mirror packet to
clear the flow_ID register. Here, the mirror and recirculate
mechanism would not cause performance issue. First, only
a few packets (<0.5%) need this mechanism. Second, this
mechanism is only used to clear the outdated bucket, which
would not affect the scheduling and forwarding of packets.
Pipeline limitation (II): In the software version of BalanceS-
ketch, if flow_ID mismatches and vote is decremented
to zero, we check whether next_hop is Null, and evict
the residing flow fold if so (Case 3 in § 3.4). This check
operation ensures that the FlowBursts in BalanceSketch are
not frequently replaced, and also prevents fold from packet
reordering incurred by immediately evicting. However, as
explained above, this backward operation cannot be im-
plemented in pipeline. Therefore, in our implementation,
when vote is decremented to zero, we must decide whether
to evict the residing flow before checking next_hop. To
address this issue, we consider dividing BalanceSketch into
two parts: a selector and a scheduler. The selector detects
FlowBursts and informs the scheduler to schedule them.
And the scheduler maintains the next hop information for
all scheduled flows. Once a flow is selected to schedule
and enters the scheduler, it will be kept until ends. In this
way, we approximately implement the software operation
of BalanceSketch in a pipelined manner.
Hardware constraints: In § 3.6, we propose a field combi-
nation technique to combine vote and next_hop fields
into one vote_hop field. However, if we combine these
two fields in our hardware implementation, there will be
three fields that have pairwise dependencies on each other:
flow_ID, timestamp, and vote_hop. For example, for
each incoming packet, we first check flow_ID field, and
then update timestamp and vote_hop field. After check-
ing timestamp and vote_hop, we decide whether to evict
the residing flow by changing flow_ID field. Unfortu-
nately, P4 [77] only supports simultaneously accessing at
most two variables. Thus, we need a kind of redundant
design to resolve the mutual dependencies of the three
fields, which is done by creating a duplicate for each field in
our implementation.

4.2.2 Workflow
As shown in Figure 8, the workload of BalanceSketch

has two parts: a selector and a scheduler. The selector detects
FlowBursts and selects the flows to be scheduled. The sched-
uler keeps the next hop information of the scheduled flows.
Both the two parts are implemented in ingress pipeline.
Selector: Each bucket in selector consists of three fields:
flow_ID, vote, and timestamp. The selector uses two
registers, where flow_IDs and votes are implemented in
one register, and timestamps in another. For each incoming
packet of fi, we first check and update the hashed flow_ID
and vote in the first register, i.e. increment vote if ID
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Fig. 8: BalanceSketch on programmable switch.

matches and decrement it otherwise. If vote is decremented
to zero, we replace flow_ID with fi. Then we access the
hashed timestamp in the second register: 1) We check
whether the bucket is outdated, i.e., check whether the time
gap exceeds ∆. If so, we create a mirror packet and use it
to clear the bucket. 2) We check whether the packet is the
start of a FlowBurst, i.e., check whether ID matches, vote
exceeds F , and time gap exceeds δ. If so, we inform the
scheduler to manipulate this flow by setting a temporary
variable sch_flag. 3) We finally update the timestamp to
the current time tnow if ID matches.
Scheduler: Each bucket in scheduler consists of three fields:
flow_ID, timestamp, and next_hop. The scheduler also
uses two registers, where flow_ID and timestamp are
implemented in one register, and next_hop in another. For
each incoming packet of fi, if it is the start of a FlowBurst,
i.e., sch_flag is set, we try to update the scheduler: we
check the hashed flow_ID and timestamp. If ID matches
or the timestamp is outdated (smaller than tnow −∆), we
update flow_ID to fi, timestamp to tnow, and next_hop
to a randomly chosen next hop. Finally, if the flow_ID is
fi, we forward the packet through next_hop. Otherwise,
we forward the packet using ECMP.

4.2.3 Hardware Resources Utilization
We show the utilization of different types of hardware re-

sources in Table 2. We can see that the average resources us-
age is less than 10% across all resources, except for Stateful
ALUs, which is used for accessing registers and performing
transactional read-test-write operations on BalanceSketch.
We implement BalanceSketch in 9 stages on Tofino switch:
4 stages for the selector and 2 stages for the scheduler. In
addition, we use 3 stages to implement the basic functions of
the switch, such as route matching and packet forwarding.

4.3 Discussion
BurstBalancer differentiates itself by manipulating only

a small fraction of flows. This aspect sets it apart from
other flowlet-level schemes, and enables it to seamlessly
integrate with numerous network measurement and man-
agement systems, including but not limited to 007 [37]
and HPCC [42]. To illustrate, let’s consider the 007 system,
which assumes all flows follow ECMP. After detecting TCP
retransmission on end-hosts, 007 triggers a path discovery
mechanism to acquire the routing links of the victim flow.
Subsequently, it employs a voting scheme based on the
paths of flows that had retransmissions, and the top-voted

links are reported in each measurement epoch. In LetFlow,
all flows have unfixed forwarding path, which changes
rapidly and randomly, making the path tracing scheme
impossible to implement. By contrast, in BurstBalancer,
most flows follow ECMP and thus have fixed forwarding
paths. In BurstBalancer, if a TCP retransmission is detected
for a ECMP flow, 007 can still trace its forwarding path
and update the votes for each link along the path. The
voting outcomes can then accurately reflect the real-time
congestion level of each link. Thus, BurstBalancer maintains
its compatibility with systems like 007.

TABLE 2: H/W resources used by BalanceSketch.
Resource Usage Percentage
Hash Bits 390 7.81%
SRAM 92 9.59%
Map RAM 26 4.51%
TCAM 0 0%
Stateful ALU 13 27.08%
VLIW instr 16 4.17%
Match Xbar 109 7.10%

5 EXPERIMENTAL RESULTS

We extensively evaluate BurstBalancer (BB) with CPU
experiments (§ 5.1), large-scale simulations (§ 5.2), and
testbed experiments (§ 5.3). Our experiments aim to answer
the following questions.
• Can BalanceSketch accurately detect FlowBursts? We

implement BalanceSketch using C++ and evaluate its
accuracy. The results show that BalanceSketch achieves
> 90% Recall Rate in finding FlowBursts. (§ 5.1.1)

• Can BurstBalancer manipulate less flows to balance
the traffic? We evaluate the load balance performance of
BurstBalancer on a single switch, confirming that com-
pared to LetFlow [2], BurstBalancer manipulates 58 times
less flows while better balances the traffic. (§ 5.1.2)

• In symmetric topologies, can BurstBalancer better bal-
ance the traffic? We extensively evaluate BurstBalancer
using simulations. As a whole, BurstBalancer achieves
5%∼35% better FCT than state-of-the-art LetFlow [2] and
DRILL [14] in symmetric topologies. (§ 5.2)

• In asymmetric topologies, can BurstBalancer better bal-
ance the traffic? We evaluate BurstBalancer on a small-
scale testbed with asymmetry. The results show that
BurstBalancer achieves up to 30× better FCT than LetFlow
and up to 6.4× better FCT than WCMP [21]. (§ 5.3)

• Can BurstBalancer be well deployed into commercial
switches? We evaluate BurstBalancer on an electronic
system level (ESL) simulation platform. The cycle-level
results show that BalanceSketch can be well deployed into
commercial chips and BurstBalancer achieves good load
balancing performance in RDMA networks. (§ 5.2.2)

Metrics: We use flow completion time (FCT) as the primary
metric. We also consider the statistics of the queue lengths
across ports and the packet reordering ratio. We use the Re-
call Rate (RR) and Average Relative Error (ARE) to evaluate
the accuracy of BalanceSketch, which are defined as follows.
1) Recall Rate (RR): Ratio of the number of correctly re-
ported instances to the number of ground-truth instances.
2) Average Relative Error (ARE): 1

|Ψ |
∑

fi∈Ψ |ni − n̂i|/ni,
where ni is the real size/timespan of FlowBurst fi, n̂i is its
estimated size/timespan, and Ψ is the set of all FlowBursts.
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Fig. 9: Traffic distributions. The Bytes (Pkts) CDF shows the distribution of traffic bytes (packets) across flow sizes.
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Fig. 10: Performance of BalanceSketch (BSketch) and optimized BalanceSketch.

Workloads: We use three realistic workloads and one syn-
thetic workload: 1) Web search workload [84] from a pro-
duction cluster running web search services, where the
average flow size is ∼ 2.5 × 106 bytes; 2) RPC workload
[85] that contains many small flows, where the average flow
size is∼ 2×102 bytes; 3) Enterprise workload that is derived
from our Huawei data center running Hadoop applications,
where the average flow size is∼ 5.7×104 bytes. 4) Synthetic
workload that is of heavy-tailed distribution, where the
average flow size is ∼ 30 packets. The traffic distribution is
shown in Figure 9. All the four workloads are heavy-tailed:
a small fraction of large flows contribute to most traffic.
Parameter selection: We set the parameters of BurstBalancer
intuitively: 1) We set the flowlet timeout threshold δ to a
sub-RTT timescale. As suggested in LetFlow [2], δ controls
the trade-off between load balance and packet reordering.
Larger δ goes with fewer reordering packets and greater risk
of load imbalance. A sub-RTT timescale δ can well divide
TCP bursts into flowlets and achieve good performance. 2)
We set the flow timeout threshold ∆ to a RTT timescale.
BalanceSketch uses ∆ to identify whether a residing flow
ends, so we set ∆ to 3∼5 times of RTT. 3) We set the voting
threshold F to a small value, because we find that the Bal-
anceSketch using small F can accurately detect FlowBursts.

5.1 CPU Experiments

5.1.1 Performance of BalanceSketch.

We evaluate the performance of BalanceSketch under
small memory usage. As we are the first to propose the
concept of FlowBurst, and considering that there are no
existing works that can be directly used to find FlowBursts,
we implement the strawman solution described in § 3.1 as
the baseline approach. We implement basic BalanceSketch,
and the optimized BalanceSketch using 16-bit flow ID fin-
gerprints and 8-bit compact timestamps.
Dataset: We use the IMC packet traces [54] collected in a
data center network, which contains about 19.9M packets
belonging to 7.6M different flows. We set the flowlet thresh-
old δ = 50µs, set V to the 70th percentile of the speed of
all active flowlets, and set ηk to the size of the 200th largest
flowlets with > V speed. In other words, we define the top-
200 largest flowlets with > V speed as FlowBursts.

Accuracy of basic BalanceSketch (Figure 10(a)): We find
that the RR of BalanceSketch greatly outperforms the strawman
solution, and the RR of the optimized BalanceSketch is higher than
basic BalanceSketch. Compared to the strawman solution,
RR of BalanceSketch is about 20% higher on average. The
optimized BalanceSketch improves RR by about 10% ∼ 33%
compared to the basic version.
Accuracy of multi-cell BalanceSketch (Figure 10(b)): We
find that for multi-cell BalanceSketch, larger d goes with higher
RR. Compared to the basic BalanceSketch, the multi-cell
BalanceSketch with d = 8 improves RR by about 20% on
average. The results show that when using 50KB of memory,
the multi-cell BalanceSketch with d = 8 achieves RR of 90%.
Accuracy of FlowBurst size estimation (Figure 10(c)-10(d)):
We find that the ARE of BalanceSketch is one order of magnitude
lower than the strawman solution, and the ARE of the optimized
BalanceSketch is lower than basic BalanceSketch. When using
40KB of memory, ARE of the strawman solution, the basic
BalanceSketch, and the optimized BalanceSketch are 1.51,
0.20, and 0.13, respectively. We also find that for multi-cell
BalanceSketch, larger d goes with lower ARE. Compared to the
basic BalanceSketch, the multi-cell BalanceSketch with d = 8
improves ARE by 1 ∼ 2 orders of magnitudes on average.
When using 50KB of memory, the multi-cell BalanceSketch
with d = 8 achieves ARE of 7.6× 10−4.
Speed of BalanceSketch (Figure 10(e)): We find that on
CPU platform, our BalanceSketch achieves >60 Million op-
erations per seconds processing speed, which is faster than
most sketch algorithms [75]. In our hardware implemen-
tation (§ 5.3), we deploy BalanceSketch into the pipeline
of the switch ASICs, whose speed is only affected by the
clock frequency. For example, the Tofino switches used in
our testbed have 1.2GHz clock frequency.
Analysis: We find that BalanceSketch greatly outperforms the
strawman solution. The results are consistent with our anal-
ysis in § 3.1. The main reason is that the strawman solu-
tion records information of all flowlets, most of which are
unnecessary flowlets, incurring enormous redundancy. In
contrast, BalanceSketch only keeps FlowBursts and discards
unnecessary flowlets, gaining high memory efficiency. We
also find that optimized/multi-cell BalanceSketch is more efficient.
The results show that 16-bit flow fingerprint and 8-bit
compact timestamp are sufficient for good performance.

11



0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 D
ev

ia
tio

n 
 (N

or
m

al
iz

ed
 b

y 
M

ea
n) ECMP 

LetFlow_2K
LetFlow_4K
BB_2K (ours)
BB_4K (ours)

(a) # pkts at all ports.
0
1
2

9 5

1 0 0

Ma
nip

ula
ted

 Fl
ow

s (
%)   L e t F l o w _ 2 K

  L e t F l o w _ 4 K
  B B _ 2 K  ( o u r s )
  B B _ 4 K  ( o u r s )

(b) Manipulated flows.
2

3

4

5

6

7

8

R
eo

rd
er

in
g 

Pk
ts

 (%
) LetFlow_2K

LetFlow_4K
BB_2K (ours)
BB_4K (ours)

(c) Reordering pkts.

0 32 64 96 128
Port (sorted by load)

0.000

0.005

0.010

0.015

N
or

m
al

iz
ed

 L
oa

d 
(p

kt
s.

)

ECMP
LetFlow
BurstBalancer (ours)

(d) Load distribution.
Fig. 11: Performance of BalanceSketch on single switch.
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Fig. 12: Performance on finding high-bandwidth-consuming flows (a-d) and detecting packet drops (e).

In summary, BalanceSketch well achieves our design goal of
accurately identifying FlowBursts using small memory.

5.1.2 Load Balance Performance on a Single Switch
We evaluate the load balance performance of Burst-

Balancer on single switch and compare it against ECMP
[20] and LetFlow [2]. We use C++ to simulate the load
balancing module of a 128-port switch, on which we deploy
the Flowlet Tables (LetFlow) and the BalanceSketchs with
different sizes (2K/4K # entries/buckets). In our setting,
there are two switches connected by 128 links. We generate
the traffic according to the synthetic workload (Figure 9(d))
at switch 1. We measure the traffic distribution across the
128 links, and count the reordering packets at switch 2.
Load distribution across all ports (Figure 11(a)): We find
that compared to LetFlow, BurstBalancer better balances the traffic
using smaller memory. The results show that the standard
deviation of BurstBalancer using 2K buckets is smaller than
LetFlow using 4K entries. This is because due to the limited
memory and the large number of concurrent flows, LetFlow
inevitably regards multiple flows as one, leading the num-
ber of detected flowlets decreases a lot. In other words, the
large volume of concurrent flows makes LetFlow harder to
divide flows into flowlets, resulting in unbalanced load.
Ratio of manipulated flows (Figure 11(b)): We find that
compared to LetFlow, BurstBalancer manipulates 58× fewer flows
while better balance the load. The results show that the manip-
ulated flows of BurstBalancer is 1.0 %∼1.65%, while that of
LetFlow is > 95%. Note the the load balance performance
of BurstBalancer 2K is better than LetFlow 4K.
Ratio of reordering packets (Figure 11(c)): We find that
compared to LetFlow using 4K entries, BurstBalancer using 2K
buckets has less reordering packets while achieves better load
balance performance. We simulated a scenario where two
switches S1 and S2 are connected by 128 links. We generate
traffic at S1, and measure the packet reordering rate at S2

by counting the mismatches between actual and expected
sequence number.
Load distribution for high-density traffic (Figure 11(d)):
To better demonstrate the advantages of our BurstBalancer
over LetFlow, we accelerate the synthetic workload by 5
times to create a high-density traffic model. We repeat the
experiments using LetFlow 4K and BurstBalancer 2K. The
results show that the performance of LetFlow and ECMP

is almost the same, because the high-density traffic makes
it difficult for LetFlow to detect flowlets, and thus LetFlow
degenerates into ECMP. BurstBalancer can still well balance
the traffic since it only manipulates critical flowlets and
ignores abundant unnecessary flowlets.

5.1.3 Performance on Network Measurement

We evaluate the performance of BurstBalancer on per-
forming the measurement tasks in § 5.1.2. We conduct
experiments using CAIDA [86] dataset. For the experiments
of locating packet drops and inflated queuing delay, we
randomly choose τ packets and let the switch proactively
drops these packets or increases their queuing delays.
Accuracy on finding per-hop heavy hitters (Figure 12(a)-
12(d)): We find that BalanceSketch can accurately finding heavy
hitters with small memory usage. As shown in Figure 12(a),
when using 50KB memory, BalanceSketch achieves >95%
Recall Rate in finding top-200 heavy hitters, which is sig-
nificantly higher than that of the strawman solution. Fig-
ure 12(b) shows the performance of multi-cell BalanceS-
ketch. We can see that larger d goes with higher accuracy
for heavy hitter detection. We fix the memory usage to
300KB, and illustrate the ratio of flows/packets recorded in
BalanceSketch (i.e., the packets/flows that are manipulated
by BurstBalancer) in Figure 12(c)-12(d). We can see that
BalanceSketch only records a small fraction of flows (<
20%), and these flows contribute to a large amount of traffic
(> 80%), meaning that BalanceSketch can effectively finding
those high-bandwidth-consuming flows.
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Fig. 13: Performance on detecting inflated delays.

Accuracy on detecting packet drops (Figure 12(e)): We find
that BurstBalancer achieves up to 97% Recall Rate in detecting
packet drops. We can see that larger packet drop rate goes
with higher accuracy, and even under τ = 0.5% packet drop
rate, BurstBalancer can still achieve up to 73% Recall Rate to
detect packet drops.
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Accuracy on detecting inflated queuing delays (Figure 13):
We find that BurstBalancer achieves up to 94% Recall Rate in
detecting inflated queuing delays. From Figure 13(a), we can
see that as the inflated delay rate decreases, the accuracy
of BurstBalancer only slightly decreases. Under τ = 0.5%
delay rate, BurstBalancer can still achieve up to 90% Recall
Rate to detect inflated delays. We also evaluate the accuracy
of BurstBalancer on estimating the timespans of FlowBursts
in Figure 13(b). We can see that BalanceSketch achieves up
to 10−3 ARE, and the basic BalanceSketch can still achieves
nearly 10−2 ARE, which is very accurate.

5.2 Simulations
5.2.1 Event-level Simulations (NS-2).

We evaluate BurstBalancer using an event-level network
simulator, Network Simulator 2 (NS-2) [56], in large-scale
symmetric topologies, where we compare BurstBalancer
against ECMP [20], DRILL [14], and LetFlow [2] under
different network loads. We also evaluate the performance
of BurstBalancer and LetFlow using tables of different sizes,
validating the memory efficiency of BurstBalancer.
Topology and traffic: We conduct experiments in a two-
tier Leaf-Spine topology with 8 spine and 8 leaf switches.
Each leaf switch is connected to 16 servers. All links run
at 10Gbps. Here, we have a convergence rate of 2 at the
leaf level, which is common in modern data centers [2],
[3]. We configure 90% of the bandwidth to deliver the web
search workload (Figure 9(a)), and the rest to deliver the
RPC workload (Figure 9(b)) as background traffic.
Setting: For BurstBalancer and LetFlow, we configure the
BalanceSketch/Flowlet Table to have 250 buckets/entries by
default. In practice, such a small table can fit into one single
1R1W on-chip memory bank, and consumes negligible die
area. We set the flowlet threshold δ = 200µs, set the flow
timeout threshold ∆ = 50ms, and set F = 0.
FCT v.s. network load (Figure 14): We find that the overall
average FCT of BurstBalancer is always lower than ECMP,
DRILL, and LetFlow under different network loads. As shown in
Figure 14(a), as network loads vary, the overall average FCT
of BurstBalancer changes from 13.6ms to 54.9ms, while that
of ECMP, DRILL, and LetFlow changes from 14.7ms, 15.4ms,
and 15.3ms to 58.6ms, 60.6ms, and 57.7ms, respectively. In
summary, BurstBalancer achieves up to ∼25.2%, ∼20.1%,
and ∼25.8% lower overall average FCT than ECMP, DRILL,
and LetFlow, respectively. We further study the average FCT
of small flows (< 100KB), medium flows (0.1∼10MB), and
large flows (> 10MB) in Figure 14(b)-14(d). The results
show that for small flows, DRILL has the lowest average
FCT because it balances the traffic at the finest granularity.
But for medium flows and large flows, the average FCT of
DRILL is high because it suffers significant packet reorder-
ing. BurstBalancer always achieves the lowest average FCT
for medium flows and large flows among all schemes.
FCT v.s. number of buckets/entries (Figure 15): We find
that the overall average FCT of BalanceSketch always outperforms
LetFlow under different table sizes. The experiments are con-
ducted under 90% network loads. As shown in Figure 15(a),
as the number of buckets varies, the overall average FCT of
BurstBalancer changes from 44.2ms to 40.1ms, while that of
LetFlow changes from 77.7ms to 42.2ms. The results show

that the gap between BurstBalancer and LetFlow becomes
larger as the number of buckets decreases. This is because
LetFlow cannot accurately divide flows into flowlets under
small memory usage. In summary, BurstBalancer achieves
up to ∼43.1% lower average FCT than LetFlow. We further
study the average FCT of flows of different sizes in Fig-
ure 15(b)-15(d), and the results are similar to Figure 15(a).
Analysis: BurstBalancer has lower FCT than LetFlow when
using the flowlet tables of the same sizes. When the amount
of storage is sufficient, BurstBalancer has similar perfor-
mance as LetFlow. When the amount of storage is small,
LetFlow has poor load balance performance but BursstBal-
aner can still well balance the traffic. This is because when
the number of concurrent flows exceeds the size of the
flowlet table, LetFlow inevitably regards multiple flows as
one, making it difficult to detect flowlets. And thus, LetFlow
cannot well balance the traffic when using small flowlet
tables. By contrast, BurstBalancer only manipulates a small
amount of critical flowlets, which is memory efficient.

5.2.2 ESL Simulations (HDCN)
We evaluate BurstBalancer on an electronic system level

(ESL) network simulator named Hyper Data Center Net-
work (HDCN), where we build a large-scale RDMA net-
work to observe how well can BurstBalancer balance the
load, and to what extent is the reordering ratio. We com-
pare BurstBalancer against ECMP [20], per-packet random
routing (Random), per-packet round-robin routing (Packet-
Spray, PS), LetFlow [2], and DRILL [14].
Platform and implementation: HDCN is an electronic
system level (ESL) simulation platform used by Huawei
for years. Developed based on SystemC kernel, HDCN
offers cycle-level simulation capability, which cannot be
achieved by event-level simulators [56], [87], [88]. HDCN
integrates general switch models and general NIC models,
supports various network topologies (FatTree, VL2, etc.),
and allows users to customize network configurations. It
also offers multiple congestion control algorithms (DCQC-
N/ECN/PFC). In addition, HDCN utilizes MPI to support
distributed/multi-threaded parallel acceleration, achieving
simulation speeds significantly higher than current open-
sourced simulators like NS2 [56], NS3 [87] and NSPY [88].
Currently, HDCN is extensively used within Huawei for
the research and development of novel network-wide algo-
rithms and chip architectures [89]. We implement BalanceS-
ketch by extending a generalized chip model with small
modifications of its pipeline processing logic. We set the
number of buckets of BalanceSketch to 50 ∼ 200, which
can fit into a single 1R1W on-chip memory bank. Thanks
to the chip-level visibility of HDCN to any network device,
we can directly observe the queue lengths across all fabric
ports in our experiments, and use their average or standard
deviation to reflect the load balancing performance.
Topology, traffic, and setting: We conduct experiments
in a VL2 topology with 4 core, 8 aggregation, and 8 edge
switches in 4 pods. The bandwidth of all fabric links are
100Gbps. Each edge switch is connected to 16 servers
through 50Gbps links. Each server runs Remote Direct
Memory Access (RDMA) [90] transport logic in network
interface card (NIC). To better observe the distribution of
traffic on multi-paths, we disable the go-back-N mechanism

13



50 60 70 80 90 100
Network Load (%)

10

20

30

40

50

60

70

M
ea

n 
FC

T 
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(a) All flows.

50 60 70 80 90 100
Network Load (%)

0.1

0.2

0.3

0.4

0.5

M
ea

n 
FC

T 
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(b) Small flows (<0.1MB).

50 60 70 80 90 100
Network Load (%)

0

10

20

30

40

50

M
ea

n 
FC

T 
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(c) Medium flows.

50 60 70 80 90 100
Network Load (%)

100

200

300

400

500

M
ea

n 
FC

T 
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(d) Large flows (>10MB).
Fig. 14: NS-2 simulation results: FCT statistics under different network loads.
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(b) Small flows (<0.1MB).

30 120 210 300
# Buckets

10

20

30

40

50

60

M
ea

n 
FC

T 
(m

s)

LetFlow
BurstBalancer (ours)

(c) Medium flows.

30 120 210 300
# Buckets

300

400

500

600

700

M
ea

n 
FC

T 
(m

s)

LetFlow
BurstBalancer (ours)

(d) Large flows (>10MB).
Fig. 15: NS-2 simulation results: FCT statistics of LetFlow and BurstBalancer using tables of different sizes.
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Fig. 16: HDCN simulation results: queue length statistics and ratio of reordering packets.

of RDMA. We use the enterprise workload (Figure 9(c)) and
configure each client in a pod to send ON-OFF traffic to
servers in the other pod, so that all traffic traverses the
fabric. The ratio of the ON/OFF duration is 1 : 5. The
experiments are conducted under ∼75% network loads. We
set δ to about 1.5× RTT, set ∆ = 10δ, and set F = 15.
Statistics of the queue lengths (Figure 16(a)-16(b)): We find
that BurstBalancer better balances the traffic than ECMP and
LetFlow, and achieves similar load balance performance as DRILL
and per-packet random routing. As shown in Figure 16(a), the
average queue lengths of BurstBalancer are smaller than
ECMP and LetFlow, and similar to DRILL and per-packet
random routing. Per-packet round-robin has the smallest
average queue length. Figure 16(b) shows the standard
deviation of the average queue length across all fabric ports.
The results are similar to that of the average queue lengths.
Ratio of reordering packets (Figure 16(c)): We find that
BurstBalancer achieves the lowest packet reordering ratio (< 1%)
among candidate schemes (except ECMP). We can see that
packet-level schemes (DRILL, per-packet random, and per-
packet round-robin) have the highest reordering rate. Let-
Flow has higher reordering rate than BurstBalancer due to
the large difference in path latency caused by unbalanced
load. Note that the results in our experiments are worse than
that in real scenes because of the high-density workload.
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Fig. 17: Performance under different manipulating choices.

Performance under different manipulating choices (Fig-
ure 17): We find that in symmetric topologies, for BurstBalancer,
randomly picking a port for each FlowBurst and picking the
least loaded port have similar performance. This is because
BurstBalancer balances the traffic so well that there is little
room for improvement. For LetFlow, the difference between
the two manipulating choices is pronounced.
Analysis: Through the cycle-level results in our ESL sim-
ulations, we can see that BurstBalancer well balances the
traffic with small reordering ratio in RDMA networks. Our
ESL experiment also validates that BurstBalancer can be
well deployed into commercial chips. The results have been
acknowledged by the committee of Huawei, and we have
deployed BurstBalancer into our commercial chips as a load
balancing function.

5.3 Testbed Experiments
As described in § 4.2, we build a small-scale testbed in an

asymmetric topology, on which we compare BurstBalancer
against WCMP [21], and LetFlow [2].
Topology and traffic: As shown in Figure 19, we use a two-
tier Leaf-Spine topology consisting of 2 spine switches and
2 leaf switches, each of which is connected to 8 servers.

S2S1

L1 L2
1 23

4

Fig. 19: Testbed topology.

All links run at 40Gbps. We
fail one of the two links be-
tween a leaf and a spine
to create asymmetry. We use
a client-server program to
generate dynamic traffic [91],
where the client application
generates requests through persistent TCP connections
based on a Poisson process, and the server application re-
sponds with the requested data. On each leaf, we configure
6 servers to generate requests to 6 servers under another
leaf according to the web search workload (Figure 9(a)).
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(b) Small flows (<0.1MB).
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(c) Medium flows.
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Fig. 18: Testbed results: FCT statistics under different network loads in asymmetric topology.

We configure the other 2 servers to generate single-packet
requests to 2 servers under another leaf. The single-packet
requests are used as background traffic to improve the
number of concurrent flows. We configure the bandwidth
usage of the single-packet traffic as ∼ 5Gbps.
Setting: For BurstBalancer and LetFlow, we configure Bal-
anceSketch/Flowlet Table to have 128 or 256 buckets/en-
tries. For WCMP, we configure the weighted cost only ac-
cording to the localized link status of the switch. We set the
flowlet threshold δ = 500µs, set the flow timeout threshold
∆ = 50ms, and set the voting threshold F = 0.
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Fig. 20: Testbed results: Number of forwarded pkts.

FCT v.s. network load (Figure 18): We find that in asymmetric
typologies, the overall average FCT of BurstBalancer is always
better than WCMP and LetFlow under different network loads.
As shown in Figure 18(a), as network loads vary, the overall
average FCT of WCMP changes from 1.62ms to 64.4ms. The
overall average FCT of BurstBalancer using BalanceSketch
of 128 buckets and 256 buckets change from 1.63ms and
1.65ms to 13.8ms and 10.2ms, respectively. And the overall
average FCT of LetFlow using Flowlet Table of 128 entries
and 256 entries change from 1.64ms and 1.61ms to 232ms and
32.8ms, respectively. Due to asymmetry, the average FCT has
a sudden increase between 50%∼60% network loads. As
a whole, the average FCT of BurstBalancer is significantly
lower than WCMP and LetFlow, and the BurstBalancer us-
ing 128 buckets and 256 buckets have similar performance.
LetFlow has higher FCT than BurstBalancer because when
using Flowlet Table of 128/256 entries. Note that when
using 128 table entries, the average FCT of LetFlow is sig-
nificantly higher than the others. This is because such small
memory makes it difficult for LetFlow to detect flowlets, and
thus the next_hops in the Flowlet Table almost remains
unchanged. In LetFlow, each flow is forwarded through
the next_hop recorded in one of the 128 entries. Since
the distribution of the 128 next_hops is uneven, the load
balance performance is bad. We further study the average
FCT of flows of different sizes in Figure 18(b)-18(d). The
results are similar to that in Figure 18(a).
Forwarding statistics of the four ports in a leaf switch
(Figure 20): We find that in asymmetric topologies, BurstBal-
ancer achieves the traffic distribution closer to the optimal ratio.
We measure the number of forwarded packets of the four

fabric ports in a leaf switch (shown in Figure 19) under
90% network loads. In this asymmetric topology, the optimal
traffic distribution ratio among Port#1∼Port#4 is 1:1:2:2.
As shown in Figure 20(a), for ECMP, the traffic distribution
ratio is 1:0.96:1.12:1.14. This ratio is not 1:1:1:1 thanks to
the implicit feedback mechanism of persistent connections:
the probability of reusing congested connections is small.
As shown in Figure 20(b), for BurstBalancer, the traffic
distribution ratio is 1:1.03:1.45:1.47. As explained in LetFlow
[2], flowlet switching schemes have the implicit feedback
mechanism: once a flow is routed through a congested link,
this flow is more likely to experience a flowlet timeout, and
thus it is more likely to be rerouted through other links.
The results show that BurstBalancer also keeps this implicit
feedback mechanism, and achieves the traffic distribution
closer to the optimal ratio.

5.4 Discussion
In our experiments, we juxtaposed the load balance

performance of BurstBalancer with LetFlow under the same
flowlet table sizes. With sufficient memory allocated for the
flowlet table, the load balance performance of BurstBalancer
and LetFlow appear to be similar. However, it is worth notic-
ing that BurstBalancer only manipulates a small fraction
of flows (<2%), whereas LetFlow manipulates almost all
flows (>98%) (Figure 11(b)). The forwarding paths of most
flows in BurstBalancer are fixed and predictable. As a result,
BurstBalancer experiences less packet reordering, thereby
simplifying network measurement and management. On
the other hand, under conditions of limited available mem-
ory for the flowlet table, BurstBalancer outperforms LetFlow
in load balance performance. Considering the current trend
of switch bandwidth growing much faster than the on-chip
SRAM, we project that BurstBalancer’s efficient memory us-
age will become increasingly valuable for future networks.

6 CONCLUSION

This paper presents BurstBalancer, an efficient load bal-
ancing system for data center networks. The design philos-
ophy of BurstBalancer is to only manipulate a small amount
of critical flowlets, which are formally defined as Flow-
Bursts. BurstBalancer proposes a compact sketch algorithm,
namely BalanceSketch, to accurately identify and manipu-
late most FlowBursts under small memory usage. Experi-
ments on a testbed and simulations show that BurstBalancer
outperforms state-of-the-art LetFlow in both symmetric and
asymmetric topologies, while manipulates less flows at the
same time. Our ESL platform (HDCN) has verified the
effectiveness and efficiency of BurstBalancer on commercial
chips. The results have been acknowledged by the commit-
tee of Huawei, and we have deployed BurstBalancer into
our commercial chips as a load balancing function.
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